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Abstract: The organometallic-mediated radical polymerization (OMRP) of vinyl acetate (VAc) and its
OMR copolymerization (OMRcoP) with tert-butyl 2-trifluoromethylacrylate (MAF-TBE) mediated
by Co(SAL)2 (SAL = 2-formylphenolato or deprotonated salicylaldehyde) produced relatively
well-defined PVAc and poly(VAc-alt-MAF-TBE) copolymers at moderate temperature (<40 ◦C) in
bulk. The resulting alternating copolymer was characterized by 1H-, 13C- and 19F-nuclear magnetic
resonance (NMR) spectroscopies, and by size exclusion chromatography. The linear first-order kinetic
plot, the linear evolutions of the molar mass with total monomer conversion, and the relatively low
dispersity (Đ~1.55) of the resulting copolymers suggest that this cobalt complex provides some degree
of control over the copolymerization of VAc and MAF-TBE. Compared to the previously investigated
cobalt complex OMRP mediators having a fully oxygen-based first coordination sphere, this study
emphasizes a few peculiarities of Co(SAL)2: a lower ability to trap radical chains as compared to
Co(acac)2 and the absence of catalytic chain transfer reactions, which dominates polymerizations
carried in the presence of 9-oxyphenalenone cobalt derivative.

Keywords: alternating copolymers; cobalt complex; fluoropolymer; organometallic mediated radical
polymerization; poly(vinyl acetate)

1. Introduction

Fluoropolymers are unique materials, exhibiting outstanding properties, suitable for high-value
added applications [1,2]. The incorporation of sequences of these polymers into a di- or multi-block [3]
polymer architectures could lead to interesting materials of even greater value. Extensive research and
development of different reversible deactivation radical polymerization (RDRP) techniques over
the last two decades has enabled the facile synthesis of macromolecules with a high degree of
complexity and well-defined architectures [4,5]. Although nitroxide-mediated radical polymerization
(NMP) [6], atom transfer radical polymerization (ATRP) [7], iodine-transfer polymerization (ITP) [8–10]
and reversible addition-fragmentation chain transfer (RAFT) polymerization [11–15] have been
comparatively more studied, organometallic-mediated radical polymerization (OMRP) [16–20] has
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recently emerged as a potent RDRP technique for the polymerization of “less activated monomers”
(LAMs), such as vinyl imidazolium salts [21,22] or vinyl amides (such as vinyl pyrrolidone) [23].
Indeed, for these more difficult monomers, OMRP and, in particular, cobalt-mediated radical
polymerization (CMRP) [24] has proven very efficient, opening synthetic routes for homopolymers
and block copolymers that could only be prepared with a lower level of control or not at all by other
RDRP techniques. The technique was pioneered by Wayland et al. [25] using tetramesitylporphyrin for
the controlled polymerization of acrylates, and since then several other CoII complexes with different
donor atom combinations and coordination geometries have been reported. However, the controlled
polymerization of LAMs seems so far restricted to complexes supported by chelating oxygen-based
ligands, like the archetypic bis(acetylacetonate)cobalt(II) complex, Co(acac)2 (1a), first introduced
by Debuigne et al. [26] for the controlled polymerization of vinyl acetate (VAc). To the best of our
knowledge, investigations of other CoII complexes entirely supported by oxygen atoms in OMRP has,
so far, been limited to the 1,1,1-trifluoro- and 1,1,1,5,5,5-hexafluoropentan-2,4-dionates (1b and 1c) [27],
to the 2,2,6,6-tetramethylheptan-3,5-dionate (1d) [28] and to the 9-oxyphenalenone derivative (2) [29]
(Scheme 1).
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Scheme 1. Schematic representations of the cobalt(II) complexes: bis(acetylacetonato)cobalt(II) (1a); bis
(1,1,1-trifluoro-acetylacetonato)cobalt(II) (1b); bis(1,1,1,5,5,5-hexafluoropentan-2,4-dionato)-cobalt(II)
(1c); bis(2,2,6,6-tetramethylheptan-3,5-dionato)cobalt(II) (1d); bis(9-oxyphenalenonato)-cobalt(II) (2),
and; bis(2-formylphenolato)cobalt(II) (3).

We are interested in expanding the available array of cobalt(II) complexes as OMRP mediators
and to understand how the metal coordination sphere affects the metal controlling ability, potentially
providing access to the controlled polymerization of new challenging monomers such as the fluorinated
olefins [30,31]. The focus of the present article is the assessment, for the first time, of the air-stable
bis(2-formylphenolato)cobalt(II) complex (Co(SAL)2, 3, Scheme 1), where the 2-formylphenolate is the
deprotonated form of salicylaldehyde. This complex has already been described in the literature [32,33]
and is quite easily synthesized. Its performances in the bulk polymerization of VAc and in the bulk
copolymerization of VAc and tert-butyl 2-trifluoromethylacrylate (MAF-TBE) are evaluated here.
The combination of these two monomers was recently shown to radically polymerize in a strictly
alternating fashion (their reactivity ratios are essentially zero) [34] and to be well controlled by
Co(acac)2 [35]. Fluorinated copolymers containing 2-(trifluoromethyl)acrylic acid (MAF) and alkyl
2-trifluoromethacrylates (MAF-esters) may have applications in molecularly imprinted polymers,
microlithography, polymer gel electrolyte membranes for fuel cells, and polymer electrolytes for
Li-ion batteries [36]. Such copolymers may also contribute to the development of new materials with
enhanced properties (e.g., high hydrophobicity, adhesion) [37–39] for high-tech applications (e.g.,
functional coatings or membranes).
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2. Materials and Methods

2.1. Materials

Vinyl acetate (VAc, ≥99%, Sigma-Aldrich Chimie, Saint Quentin-Fallavier, France) and tert-butyl
2-trifluoromethylacrylate (MAF-TBE, kindly donated by Tosoh F-Tech Company, Shunan, Japan)
were stored under nitrogen and purged for 30 min with nitrogen before use. 2,2,6,6-Tetramethyl-1-
piperidinyloxy (TEMPO) (Acros Organics, Geel, Belgium), mesitylene (Mes) (>99.9%, Sigma-Aldrich
Chimie, Saint Quentin-Fallavier, France), and 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70,
Wako chemicals, Neuss, Germany) were used as received. Acetone and laboratory reagent grade
pentane (purity > 95%) were purchased from Sigma-Aldrich and used as received. The deuterated
solvents used for nuclear magnetic resonance (NMR) spectroscopy THF-d8, acetone-d6 and CDCl3
were purchased from Euroiso-top (Grenoble, France) (purity > 99.8%). The cobalt complex 3 was
prepared according to the published procedure [32,33].

2.2. Experimental Procedures

2.2.1. OMRP of VAc Initiated by V-70 in the Presence of 3

All manipulations were carried out under a protective argon atmosphere. Compound 3
(0.087 mmol, 0.026 g) and V70 (0.174 mmol, 0.054 g) were introduced into the Schlenk tube and purged
by three vacuum-argon cycles, followed by the addition of degassed vinyl acetate (4 mL, 43.4 mmol)
and 0.2 mL of mesitylene. The reaction mixture was degassed by two freeze/pump/thaw cycles.
Then, V-70 was added to the reaction mixture and the Schlenk tube was immersed in an oil bath at
30 ◦C under magnetic stirring. Aliquots were withdrawn periodically to monitor the reaction progress
by 1H-NMR and size exclusion chromatography (SEC). The monomer conversion was determined
by 1H-NMR spectroscopy in THF-d8 using mesitylene as an internal standard. The samples for SEC
characterization were quenched with excess TEMPO, then precipitated from pentane and dried under
vacuum. The VAc conversion was calculated using Equation (1) or (2) where

∫ j
i CH stands for the

integral of the CH signal ranging from i ppm to j ppm in the 1H-NMR spectrum at time t (unless
stated otherwise).

%VAc conversion =
(
∫ 5.20

4.75 CH−
∫ 4.65

4.35 CH)∫ 5.20
4.75 CH

× 100 (1)

%VAc conversion =
[
∫ 7.40

7.10 CH(VAc)/
∫ 6.90

6.60 CH(mesitylene)]

[
∫ 7.40

7.10 CH(VAc)/
∫ 6.90

6.60 CH(mesitylene)]t=0

× 100 (2)

2.2.2. Co(SAL)2-Mediated Radical Copolymerization of VAc and MAF-TBE

All copolymerizations were performed under a dry dinitrogen atmosphere using Schlenk
techniques. In a typical copolymerization, V-70 (278 mg, 0.9 mmol) and 3 (54 mg, 0.3 mmol) were placed
into a Schlenk flask and purged by three vacuum-nitrogen cycles. Then, the degassed monomers,
VAc (7.4 mL, 80.5 mmol) and MAF-TBE (14.1 mL, 80.5 mmol) were introduced into the flask under
a nitrogen flux and the reaction mixture was heated at 40 ◦C under magnetic stirring. During
polymerization, samples were withdrawn from the reaction medium at regular intervals to monitor the
monomer conversions by 1H-NMR spectroscopy (for VAc) and 19F-NMR spectroscopy (for MAF-TBE),
and for polymer molar masses and dispersities (Đ) determinations using SEC (see SI, Table S2,
Figures S1 and S2). All the samples were quenched with an excess of TEMPO (solution in degassed
THF, typically 6 equivalents with respect to the number of moles of 3 used in the copolymerization) to
remove the residual cobalt complex from the polymer chain-end before the SEC analysis. The monomer
conversions were determined by 1H-NMR (for VAc) and 19F-NMR (for MAF-TBE) spectroscopies
using Equations (3) and (4), respectively, where

∫ j
i CH and

∫ m
n CF3 stand for the integral of the CH
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signal, ranging from i ppm to j ppm in the 1H-NMR spectrum at time t, and that of the CF3 signal,
ranging from n ppm to m ppm in the 19F-NMR spectrum at time t.

%VAc conversion =

∫ 5.40
5.00 CH

(
∫ 4.65

4.35 CH +
∫ 5.40

5.00 CH)
× 100 (3)

% MAF− TBE conversion =

∫ −70.5
−68.5 CF3∫ −67.5

−66.5 CF3 +
∫ −70.5
−68.5 CF3

× 100 (4)

After completion of the reaction, the unreacted monomers were removed under vacuum.
The remaining crude product was dissolved in acetone and precipitated twice from chilled pentane.
It was then filtered through a filter funnel, and dried under vacuum (10−3 bar, 40 ◦C) for 12 h.
The purified copolymers were characterized by 1H-, 19F- and 13C-NMR spectroscopies (see Supporting
Information, Figures S3–S5) and by SEC (see Section 3).

2.3. Characterizations

2.3.1. Size Exclusion Chromatography (SEC)

The molar masses (Mns) and dispersities (Ðs) of the polymers were assessed by size exclusion
chromatography (SEC). The SEC system (Agilent Technologies, Les Ulis, France) used for the
poly(VAc-alt-MAF-TBE) copolymer analysis was equipped with a PL0390-0605390 LC light scattering
detector functioning at two diffusion angles (15◦ and 90◦), a PL0390-06034 capillary viscometer, and a
390-LC PL0390-0601 refractive index detector and two PL1113-6300 ResiPore 300 × 7.5 mm columns.
The entire SEC system was equilibrated at 35 ◦C. DMF (containing 0.1 wt % of LiCl), at a flow rate of
0.8 mL min−1 was used as the eluent, while toluene was used as the flow rate marker. Poly(methyl
methacrylate) standards were used for calibration and typical sample concentration employed was
10 mg mL−1. The results were processed using the corresponding Agilent software. The SEC analyses
of the poly(vinyl acetate) samples were carried out in filtered THF (flow rate: 1 mL min−1) at 35 ◦C
on a 300 × 7.5 mm PL gel 5 µm mixed-D column (Polymer laboratories) equipped with multi-angle
light-scattering (Mini Dawn Wyatt) and refractive index (RI2000, Sopares or Wyatt Optilab Rex)
detectors. The results were processed using Astra 6 software, using a dn/dc value of 0.085.

2.3.2. Nuclear Magnetic Resonance (NMR) Spectroscopy

The 1H-, 13C- and 19F-NMR spectra were recorded on a Bruker AC 400 Spectrometer (400 MHz
for 1H, 100 MHz for 13C and 376 MHz for 19F) using CDCl3, THF-d8 or acetone-d6 as a solvent using
the following experimental conditions for 1H- (or 13C- or 19F)-NMR spectra: flip angle 90◦ (or 90◦or
30◦); acquisition time 4.5 s (or 0.3 s or 0.7 s); pulse delay 2 s (or 1 or 5 s); number of scans 32 (or 8192
or 64), and; a pulse width of 12.5, 9.5 and 5.0 µs for 1H-, 13C- and 19F-NMR, respectively. Coupling
constants and chemical shifts are presented in Hertz (Hz) and parts per million (ppm), respectively.
1H decoupling was performed with waltz16. 19F decoupling was performed with nested loops using
0.5 ms and 1 ms chirped adiabatic pulses with 80 kHz band with in order to desynchronize and
minimize decoupling artifacts.

3. Results and Discussion

The performance of 3 as an OMRP mediator was assessed in the homopolymerization of VAc
(Scheme 2a) and in the alternating copolymerization of VAc and MAF-TBE (Scheme 2b).
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Scheme 2. Schematic representations of the cobalt-mediated radical polymerization (CMRP) of vinyl
acetate (VAc) (a) and of VAc and tert-butyl 2-trifluoromethylacrylate (MAF-TBE) (b) mediated by 3.
In (b), the first addition of the primary radical (R) to VAc is arbitrarily assumed. The alternative R
addition to MAF-TBE is also possible.
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3.1. Homopolymerizations of VAc and MAF-TBE Mediated by 3

Bulk homopolymerizations of VAc were carried out at 30 ◦C using V-70 as initiator in the presence
and absence of 3. A V-70/3 ratio of 2 was used in the cobalt-mediated process, namely, conditions
that allow a degenerate transfer controlling mechanism (excess radicals with respect to the putative
organometallic dormant species). A first important observation is the absence of an induction time.
This contrasts with the behavior reported for the same polymerization controlled by 1a [26,40], 1b [27]
and 1d [28], where essentially no polymer was formed until all the CoII complex was converted into the
organometallic dormant species PVAc-CoIII, followed by controlled polymerization by degenerative
transfer. On the other hand, the polymerization carried out in the presence of complex 2 [29] also
exhibited no induction time, as in the present case. The conventional radical polymerization (no
cobalt complex) ran slightly faster than the polymerization mediated by 3, with apparent first-order kp

values of 2.5 × 10−5 s−1 (in the absence of complex) and kp = 1.5 × 10−5 s−1 (with 3), see Figure 1a.
Although the polymer dispersities (Đ) were similar at relatively low conversion (1.62 at 22% in the
presence of 3 and 1.60 at 37% in the conventional radical polymerization, Figure 1b and Table S1),
the dispersity increased to 1.99 at higher conversions for the PVAc obtained by conventional radical
polymerization and only to 1.66 for that of the polymerization mediated by 3. The polymerization
carried out in the presence of 2, using the same VAc/V-70/Co ratio and temperature, gave a
significantly lower apparent kp of 2.0 × 10−6 s−1 [29]. These results suggest that 3 has the ability to
reversibly interact with the growing radical chains, though less than 2 and much less than 1a, 1c and 1d,
and that the trapping equilibrium is not sufficiently displaced in favor of the dormant species to ensure
a good level of control. However, the low solubility of 3 in the VAc monomer may also contribute to
this poor control. It is also relevant to note that there is no evidence of catalytic chain transfer (CCT),
contrary to the polymerization mediated by 2. Indeed, the isolated polymers had higher molar masses,
according to the SEC analyses (Table S1), than predicted for a controlled polymerization. Attempts to
obtain a homopolymer from MAF-TBE in the presence of 3 failed as expected, since this monomer
does not homopolymerize under radical conditions [35,36].
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Figure 1. First order kinetic plot (a) and representative size exclusion chromatography (SEC) traces
(b) for the radical polymerization of VAc mediated by 3 in bulk at 30 ◦C initiated by V-70 in the presence
{[VAc]0/[V-70]0/[3]0 = 500/2/1, (�)} and absence {[VAc]0/[V-70]0 = 500/2, ( )}, of 3.

3.2. Copolymerization of VAc and MAF-TBE Mediated by 3

Following this initial result with VAc, the bulk copolymerization of VAc and MAF-TBE (1:1 feed)
mediated by 3 was investigated (Scheme 2b, Table S2). First, it should be pointed out that 3 exhibits
greater solubility in the VAc/MAF-TBE mixture than in neat VAc (and even greater in neat MAF-TBE),
although it was not fully soluble in the initial stages of the polymerization. The solutions became
homogeneous at higher conversions as all the complex became incorporated in the propagating
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polymer chains. The copolymerization progress was monitored by 1H- and 19F-NMR spectroscopies
to determine the VAc and MAF-TBE conversions, respectively (the stacked spectra are shown
in Figures S1 and S2). As expected, since these monomers are known to copolymerize in an
alternating manner [34,35], equimolar conversions of VAc and MAF-TBE were recorded throughout
the polymerization (Figure 2 and Table S2). The broad 1H NMR signal centered at 5.20 ppm (Figure S1)
was assigned to the methine group of VAc in the VAc-MAF-TBE alternating dyad [35]. In contrast, the
methine group in the PVAc homopolymer gives a signal at 4.80 ppm [41].
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Figure 2. Conversion of VAc and MAF-TBE vs. time for the bulk copolymerization of VAc and
MAF-TBE at 40 ◦C initiated by V-70 in the presence of 3 {[VAc]0 + [MAF-TBE]0}/[V-70]0/[3]0 = 537/3/1,
[VAc]0/[MAF-TBE]0 = 1/1.

Confirmation of the alternating structure was supported by detailed 1H-, 19F- and 13C-NMR
characterizations (Figures S3–S5), in excellent agreement with the previously published spectroscopic
characterization of this polymer [34,35]. Notably, the 1H-NMR spectrum (Figure S3) shows the
characteristic resonance of the VAc –CHOAc units in the VAc-MAF-TBE alternating dyad [34,35,42–45],
which is significantly shifted from that of the same units in the homopolymer, and those of the –C(CH3)3

of MAF-TBE units [34,35]. The notable absence of –CHOAc signal corresponding to the PVAc
homopolymer at 4.8 ppm [41] is consistent with the exclusive formation of an alternating copolymer.
The 19F-NMR spectrum (Figure S4) reveals the characteristic signal of the –CF3 group in the MAF-TBE
units at−69 ppm [46]. The 13C{19F}-NMR spectrum (Figure S5) allows the full resonance assignment in
accordance to the expected poly(VAc-alt-MAF-TBE) structure [35]. The resonance centered at 67.5 ppm
has a complex shape, probably because of the presence of different stereoisomers in the alternating
MAF-TBE-VAc-MAF-TBE triads.

The first-order kinetic plot of this copolymerization (Figure 3) is linear, consistent with a constant
radical concentration throughout the copolymerization. In addition, an induction period of about
1.5 h was observed, consistent with the higher initial solubility of 3 in the VAc/MAF-TBE mixture and
confirming that 3 is indeed able to trap all radicals until the polymerization kicks off by degenerate
transfer once all 3 is converted to the dormant alkylcobalt(III) complex.
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Figure 3. First order plot for the bulk copolymerization of VAc and MAF-TBE at 40 ◦C initiated by V-70
in the presence of 3 {[VAc]0 + [MAF-TBE]0}/[V-70]0/[3]0 = 537/3/1, [VAc]0/[MAF-TBE]0 = 1/1.

The SEC traces of this alternating copolymerization (Figure 4a) remained monomodal throughout
the reaction, with an essentially linear evolution of the copolymer molar mass (Mn) versus
monomer conversion (Figure 4b) and dispersities that decreased as conversion increased. These are
characteristic features of a controlled polymerization. However, the dispersity remained relatively high
(Đ = 1.55–1.75) compared with that of the corresponding Co(acac)2-mediated copolymerization [35].
The initial (<20% monomer conversion) poorly controlled phase, indicated by the higher Đ values is
probably partially due to the incomplete solubility of 3 in the bulk monomer mixtures.

Polymers 2017, 9, 702 8 of 11 

 

The SEC traces of this alternating copolymerization (Figure 4a) remained monomodal 

throughout the reaction, with an essentially linear evolution of the copolymer molar mass (Mn) 

versus monomer conversion (Figure 4b) and dispersities that decreased as conversion increased. 

These are characteristic features of a controlled polymerization. However, the dispersity remained 

relatively high (Đ = 1.55–1.75) compared with that of the corresponding Co(acac)2-mediated 

copolymerization [35]. The initial (<20% monomer conversion) poorly controlled phase, indicated by 

the higher Đ values is probably partially due to the incomplete solubility of 3 in the bulk monomer 

mixtures. 

 

Figure 4. Evolutions of the SEC traces vs. elution time (a) and dependence of Mn and Đ vs. total 

monomer conversion (b) for the bulk copolymerization of VAc with MAF-TBE at 40 °C initiated by 

V-70 in the presence of 3, {[VAc]0 + [MAF-TBE]0}/[V-70]0/[3]0 = 537/3/1, [VAc]0/[MAF-TBE]0 = 1/1. The 

straight line in (b) represents the theoretical Mn, based on one chain per Co atom. 

4. Conclusions 

In conclusion, this study reports, for the first time, the action of bis(2-formylphenolato)cobalt(II) 

complex as an OMRP controlling agent. The moderating equilibrium is less in favor of the dormant 

species relative to species 1a, 1b and 1d, not allowing a sufficient level of control for the 

homopolymerization of VAc. This effect is similar to that recently reported for the 9-oxyphenalenone 

derivative (2) [29], which has a similar structure to complex 3. However, contrary to the VAc 

polymerization mediated by 2, the one mediated by 3 shows no evidence of catalytic chain transfer 

to monomer, indicating that 3 not only makes homolytically weaker PVAc-CoIII bonds in the 

dormant species relative to 1a, but also has a lower aptitude to abstract a β-H atom from the growing 

radical PVAc chains. The OMRP testing of 3 was then extended to the alternating copolymerization 

of VAc and MAF-TBE, enabling a relatively well-controlled synthesis of a strictly alternating 

poly(VAc-alt-MAF-TBE) copolymer under degenerative transfer conditions. The moderately 

controlled behavior of this alternating copolymerization is suggested by the linear semilogarithmic 

plot, the linear Mn-conversion plot, and the acceptable Đ values which decrease as the conversion 

increases. The alternating structure of the copolymer was confirmed by detailed microstructure 

analysis using NMR. 

We have therefore extended the array of available CoII complexes based on a fully 

oxygen-based coordination sphere to the Co(SAL)2 complex 3 for OMRP applications. Although the 

initial results presented here show lower performance in the homopolymerization of VAc and 

alternating copolymerization of VAc and MAF-TBE relative to the acac complex 1a, because of less 

favorable trapping equilibria, the system has potential in the controlled radical polymerization of 

other LAMs such as fluorinated olefins and work along this direction is currently ongoing in our 

laboratories. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/12/702/s1. Tables 

of data for bulk VAc homopolymerization and VAc/MAF-TBE alternating copolymerization, stacked plots of 

Figure 4. Evolutions of the SEC traces vs. elution time (a) and dependence of Mn and Đ vs. total
monomer conversion (b) for the bulk copolymerization of VAc with MAF-TBE at 40 ◦C initiated by
V-70 in the presence of 3, {[VAc]0 + [MAF-TBE]0}/[V-70]0/[3]0 = 537/3/1, [VAc]0/[MAF-TBE]0 = 1/1.
The straight line in (b) represents the theoretical Mn, based on one chain per Co atom.

4. Conclusions

In conclusion, this study reports, for the first time, the action of bis(2-formylphenolato)cobalt(II)
complex as an OMRP controlling agent. The moderating equilibrium is less in favor of the
dormant species relative to species 1a, 1b and 1d, not allowing a sufficient level of control for the
homopolymerization of VAc. This effect is similar to that recently reported for the 9-oxyphenalenone
derivative (2) [29], which has a similar structure to complex 3. However, contrary to the VAc
polymerization mediated by 2, the one mediated by 3 shows no evidence of catalytic chain transfer to
monomer, indicating that 3 not only makes homolytically weaker PVAc-CoIII bonds in the dormant
species relative to 1a, but also has a lower aptitude to abstract a β-H atom from the growing
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radical PVAc chains. The OMRP testing of 3 was then extended to the alternating copolymerization
of VAc and MAF-TBE, enabling a relatively well-controlled synthesis of a strictly alternating
poly(VAc-alt-MAF-TBE) copolymer under degenerative transfer conditions. The moderately controlled
behavior of this alternating copolymerization is suggested by the linear semilogarithmic plot, the
linear Mn-conversion plot, and the acceptable Đ values which decrease as the conversion increases.
The alternating structure of the copolymer was confirmed by detailed microstructure analysis
using NMR.

We have therefore extended the array of available CoII complexes based on a fully oxygen-based
coordination sphere to the Co(SAL)2 complex 3 for OMRP applications. Although the initial
results presented here show lower performance in the homopolymerization of VAc and alternating
copolymerization of VAc and MAF-TBE relative to the acac complex 1a, because of less favorable
trapping equilibria, the system has potential in the controlled radical polymerization of other LAMs
such as fluorinated olefins and work along this direction is currently ongoing in our laboratories.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/12/702/s1.
Tables of data for bulk VAc homopolymerization and VAc/MAF-TBE alternating copolymerization, stacked
plots of the evolution of the 1H- and 19F-NMR spectra for the copolymerization, and 1H-, 19F- and 13C{19F}-NMR
spectra of the isolated poly(VAc-alt-MAF-TBE) copolymer.
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