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What is asteroseismology ? (“stellar seismology”) 

Study the interiors of stars by interpreting their pulsations 

Goal: improve our knowledge of stellar interiors (stars are opaque...) 

What is not well known ? 
 
• Global properties (mass, radius,…) 
• Thermonuclear fusion properties 
• Microphysics (opacities) 
• Convection properties  

 (core, envelope) 
• Microscopic transport (gravitational  

 settling, radiative forces) 
• Macroscopic transport (differential  

 rotation,magnetism, etc.) 
• ... 
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What is asteroseismology ? (“stellar seismology”) 

Theoretical grounds: 
 
• Linearized equations of hydrodynamics 
 
•  Angular dependence described with 
spherical harmonics 
 
• Pulsations are excited and propagate in 
some regions, and are evanescent in 
others 

• In white dwarfs: gravity modes 
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A zoo of pulsating stars  

representative of different stages of evolution (from birth to death)  

Main sequence stars 
(H-burning)  
including the Sun 

Intermediate stages of evolution 
•  Red Giants 
•  Horizontal Branch stars  
(He-burning), eg. sdB stars 

Late stages of evolution 
White dwarfs (no burning) 
 

HR (temperature-luminosity) diagram 
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The zoo of pulsating white dwarfs 
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Classical (~0.6Ms, 0.5-1.2Ms) 
•  GW Vir or PG1159, He-C-O 

atmo  (~140,000-80,000 K, ~20 
pulsators are known) 

•  V777 Her (DBV), He-rich atmo 
(~30,000-25,000 K, ~15 known) 

•  ZZ Ceti (DAV), H atmo  
     (~12,000-11,000 K, ~60 known) 
 

Pulsators are present at various masses and evolutionary stages 

Extremely Low-Mass (~0.2Ms) 
•  Pre-ELM, H-He atmo, 5 known 
•  ELM DAV, H atmo, 5 known 

Courtesy: G. Fontaine 
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The zoo of pulsating white dwarfs 
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Predicted 
•  DAOV (post-EHB) 
•  Hot-DAV (~30,000 K) 

Exotics 
•  GW Lib, accreting white 

dwarfs, H-He atmo, ~15 known 

Dismissed? (as self-driven pulsator) 

•  DQV, C-rich atmo, ~5 known, 
highly magnetic (MG) Hot-DAV 

DQV 

GW Lib 

Pulsators are present at various masses and evolutionary stages 

Rotation rather than pulsations? 
(not multiperiodic + theoretical works) 

Courtesy: G. Fontaine 
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The zoo of pulsating white dwarfs 

 
 

•  GW Vir stars:  500-5000 s 
•  V777 Her stars:  150 - 1000 s 
•  ZZ Ceti stars:        100 - 1000 s 
•  Pre-ELM white dwarfs: 300-1000 s 
•  ELM white dwarfs: 1500-5000 s 

 
 

       

Multiperiodic pulsators 
(V ~ 15 - 20) 

short-period pulsating sdB  

long-period pulsating sdB  
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Typical internal structure of a white dwarf 

C/O core 

He mantle 

H envelope 

log q≡ log (1-M(r)/M*) 

-∞ 

0 

-6.0 

-2.0 

“onion-like” stratification 

Here: ZZ Ceti model, 0.6Ms, Teff=11,800 K 

Internal stratification and core composition not well known ! 
(reflects uncertainties on the previous phases of stellar evolution: 12C(α,γ)16O rate, 
various mixing processes, thermal pulses on AGB, etc) 

ELM: He-core 
Very massive: Ne-Mg core 
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Search the stellar model(s) whose theoretical periods best fit all the 
observed ones, in order to minimize 

 

> Results: structural and core parameters of the star (M*, Menv, Mcore, etc.), 
        internal chemical stratification (elements profiles)     

 

 

   Parametrized/static models (independent of stellar evolution), or grids of 
fully evolutionary models 
N parameters: Teff, logg, envelope layering, core composition, convection efficiency  

1. “Quantitative asteroseismology” (Pobs ! Ptheo) 

 

Under external constraints from spectroscopy + mode identification (if available) 

   Efficient optimization codes (based on Genetic 
Algorithms) to thoroughly explore the parameter space and find the minima of S2 

> Models: 
 

> Optimization procedure: 
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The example of the V777Her star KIC08626021 (Giammichele et al.) 

•  23 months of Kepler high-precision observations (0.6 nHz) 
•  8 observed independent modes, 143-376 s 
•  Spectroscopy: Teff=29,360±780 K, logg=7.89±0.05 
•  Parametrized models for DB stars: ex. He profile parametrization: 

Giammichele et al. 

surface core 
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•  Fit to the 8 periods at the precision of the observations (S2~10-15) 
•  Inferred chemical profile: 

Giammichele 
et al. 
(submitted) 

Higher central and total O abundance and bigger core  
than predicted from stellar evolution 

The example of the V777Her star KIC08626021 (Giammichele et al.) 

See also poster of N. Giammichele  

core surface 
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The example of the V777Her star KIC08626021 (Giammichele et al.) 

Access to stellar radius, mass, 
luminosity, distance,… 

Asteroseismic results important for: 
•  Constraints for stellar evolution 
•  WD cosmochronology (GAIA) 

•  C/O content 
•  « insulating » envelope 
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Internal rotation profile in white dwarfs 
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By exploiting the fine structure of modes, interpreted as rotational splitting 
(rotation lifts the (2l+1)-fold degeneracy of pulsation modes) 

 

ξr,ξh:eigenfunctions 

KIC08626021 
(Zong et al. 2016) 

How to compute pulsation periods in presence of rotation is a whole field of 
asteroseismology, but, if Pmodes << Prot: 
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Internal rotation profile in white dwarfs: PG 1159-035 (=GW Vir) 
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A pre-WD has already lost all of its angular momentum 

Charpinet et al. 
(2009), Nature 

Solid-body rotation over 99% of the stellar mass; Prot=33.67±0.24h 
 

12+5 multiplets 
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Understanding how pulsations are excited, trying to reproduce observed 
instability strips 

 

2. “Non-adiabatic asteroseismology” 
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•  Don Winget (1981) for ZZ Ceti: 
H ionization/recomb. around Teff~12,000 K 
 ⇒ envelope opacity increase   
⇒ strangle the flow of radiation, convection 

zone develops 
⇒ g-modes instabilities 
// ELM pulsators (H atmo) 
 
•  By analogy, Winget proposed pulsating 

He-rich, V777 Her white dwarfs: 
 HeII partial ionization around Teff~30,000 K 
// pre-ELM pulsators (H-He atmo) 
 
•  Partial ionization of K-shell e- of C and O 

for GW Vir, no convection development   
(κ-mechanism) 

 

 
 

       

General picture: opacity-driven mechanism: 

 

core surface 
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Understanding how pulsations are excited, trying to reproduce observed 
instability strips 

 

2. “Non-adiabatic asteroseismology” 

 

ZZ Ceti & ELM (H-atmo) V777 Her (He-rich atmo) 

What can be learned: convection in WDs (depth, efficiency)  
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Understanding how pulsations are excited, trying to reproduce observed 
instability strips 

 

2. “Non-adiabatic asteroseismology” 

 

•  Decades of work to reach a homogeneous view of the empirical strips (high-quality 
photometric & spectroscopic observations + high-quality model atmospheres)  

•  In both cases: most likely a pure strip 
•  Efficiency of convection in atmospheres: α/MLT=0.6 (ZZ Ceti) and α/MLT=1.25 

(V777Her)  

Empirical strips (e.g. group of P. Bergeron, WET collaboration): 

Theoretical strips (e.g. Van Grootel et al.): 

•  Τconv << Periods of pulsations (blue edge), or Τconv <~ Periods (later in cooling)  
⇒  need of  Time-Dependent Convection (TDC), as in MAD code (Dupret, Liège) 
 

•  TDC still fails to reproduce the red edge: energy leakage argument (mode are no 
longer reflected back by the atmosphere) 

 

•  1D stellar models with, for upper layers, same T stratification than full 1D model 
atmospheres 
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convection 
zone 

Detailed modeling of the superficial layers:  

Our structure models have the same T stratification as the complete (1D) model atmospheres  
⇒”feedback” of the convection on the global atmosphere structure 

Base of the atmosphere 

Modeling details 

core surface 
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Theoretical instability strip for ZZ Ceti and ELM DA pulsators 
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TDC blue edge 

Red edge  
(energy leakage) 

non variable (<10mmag); pulsator 

1.2 Ms 

0.20 Ms 

0.15 Ms 

Homogeneous atmospheric 
parameters (here ML2/α = 0.6) 

 

Structure (ML2/α = 1.0) and 
atmospheric (ML2/α = 0.6) MLT 

calibrations are dependent 

Van Grootel et al. (2013) 
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Theoretical instability strip for V777Her stars 

Van Grootel et al. 
(2017) 

pulsator 

non variable 

Structure and 
atmosphere: 
ML2/α = 1.25  
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Theoretical instability strip for V777Her stars 

Van Grootel et al. 
(2017) 

pulsator 

non variable 

Structure and 
atmosphere: 
ML2/α = 1.25  

•  Red edge leakage slightly too cool (?) 
•  Kepler observartions: 2 pulsators hotter than blue edge ! 

BUT: 
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Possibilities for improvement ? 

•  TDC with turbulent pressure perturbations 
 
•  With δPt=3: 

Teff (K) 
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Red edge « with turbulent pressure »: ~500 K hotter than red edge leakage 

But 3δPt is not physically realistic. Mimic other components of the Reynolds 
stress tensor (Pt = rr component), i.e. turbulent viscosity ? 

Theoretical instability strip for V777Her stars 
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Red edge « with turbulent pressure »: ~500 K hotter than red edge leakage 

But 3δPt is not physically realistic. Mimic other components of the Reynolds 
stress tensor (Pt = rr component), i.e. turbulent viscosity ? 

Theoretical instability strip for V777Her stars 

We need better convection modeling in WD  
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3D simulations for DA and DB white dwarfs (P.E. Tremblay) 

29 See also poster of E. Cukanovaite 
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convection 
zone 

Detailed modeling of the superficial layers:  

Our structure models have the same T stratification as the complete (1D) model atmospheres  
⇒”feedback” of the convection on the global atmosphere structure 

Base of the atmosphere 

Modeling details 
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To improve further equilibrium structures used for asteroseismology, 
including for WD cosmochronology: 
•  Extended EOS 
•  Radiative & conductive opacities 
 

To understand better driving/damping pulsations in WDs: 
•  Patched 1D models + improved treatment for interaction between 

convection and pulsations by including turbulent viscosity (work in 
progress) 



Valerie Van Grootel - Santa Fe, June 2017 



Valerie Van Grootel - Santa Fe, June 2017 



Valerie Van Grootel - Santa Fe, June 2017 35 

Conclusions 

What we can learned from WD seismology:  
•  Quantitative asteroseismology: 

• Global parameters 
• Internal layering and chemical stratification 
• Internal rotation profile 

•  Non-adiabatic asteroseismology: 
• how pulsations are driven 
• how convection behaves in WD 

 What do we need from WD seismology:  

•  About physics: EOS & opacities 
•  Patched 1D models + improved treatment for interaction between convection 

and pulsations (work in progress) 
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Theoretical grounds of asteroseismology  

• From the linearized equations of hydrodynamics (small perturbations to equilibrium): 

• Lamb and Brunt-Väisälä frequency 

 
•  if σ2 > Ll

2,N2 : p-modes (restoring force : pressure), acoustic waves 
•  if σ2 < Ll

2,N2 : g-modes (restoring force : buoyancy), gravity waves 
 

Oscillations are excited and propagate in some regions, and are evanescent in others 
  

-   eigenfunction f’(r) (radial dependence) 
-   oscillation eigenfrequency σkl (temporal dep.) 
-  spherical harmonics Yl

m  (angular dep.) 
 

(f’ = p, v, T, ...) 
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Driving and damping of pulsations in GW Vir white dwarf 
Courtesy: G. Fontaine 

Base of the photosphere 
convection zone 

Bipping: pulsations are driven 
Degeneracy boundary 
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Internal rotation profile in white dwarfs: KIC08626021 
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Pulsation modes probe ~70% of the stellar radius (81% of the stellar mass) 

Solid-body rotation down to 0.3 R*, Prot=46.34±2.54 h 

(Giammichele et al.) 
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Driving mechanism for pulsations 

 
 

•  Don Winget (1981) for ZZ Ceti: 
H ionization/recomb. around Teff~12,000 K 
 ⇒ envelope opacity increase   
⇒ strangle the flow of radiation, convection 

zone develops 
⇒ g-modes instabilities 
// ELM pulsators (H atmo) 
 
•  By analogy, Winget proposed pulsating 

He-rich, V777 Her white dwarfs: 
 HeII partial ionization around Teff~30,000 K 
// pre-ELM pulsators (H-He atmo) 
 
•  Partial ionization of K-shell e- of C and O 

for GW Vir, no convection development   
(κ-mechanism) 

 

 
 

       

Common point: opacity-driven mechanism 
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Energy leakage argument 

•  For the red edge (long-standing problem): 
based on the idea of Hansen, Winget & Kawaler (1985): red edge arises when 

 
τth ~ Pcrit     α (l(l+1))-0.5 

(τth : thermal timescale at the base of the convection zone), 

which means the mode is no longer reflected back by star’s atmosphere  

Modeling details 


