Belgian Interferometry Day, 12 March 2014

# A survey of hot exozodiacal disks with the VLTI

Olivier Absil Université de Liège

#### Context: debris disks

- \* We all live in a debris disk
  - 2nd generation dust (asteroids, comets)
- Dust is luminous (much more than planets)
- Dust is expected in all planetary systems





#### Inner vs. outer debris disk



## Exozodis with interferometry

- ♦ Disk larger than λ/B → visibility drop
- Best detected at short baselines (~10-30 m)





#### 2005: 1<sup>st</sup> detection with CHARA/FLUOR



# Morphology?



Defrère et al. 2011

## Deduced properties

- \* Hot grains (> 1000 K)
- Grains smaller than blowout
- Distance ~ 0.1to 0.5 AU
- Steep density power law (ring-like?)
- \* Small mass (~10<sup>-9</sup> M<sub>Earth</sub>)



## 2006-2011: the CHARA survey

Absil et al. 2013

- \* FLUOR instrument
- Magnitude-limited sample (K < 4)</li>
- Equal amount of stars with and without cold dust
- 40 stars, evenly spread between type A, F, G-K
- Avoid all types of binaries
- Mean sensitivity: 0.27% (1σ)



#### Statistical trends

Absil et al. 2013



#### Comes PIONIER...

- First high-accuracy interferometer at VLTI
  - Single-mode fibers, fringe scanning à la FLUOR
- \* 4 telescopes
  - → 6 baselines at a time
- Low spectral resolution
- Limiting magnitude H ~ 6 for high accuracy



# 2011: early results

Defrère et al. 2012

- \* 3n (GTO)
- Validate PIONIER performance
- Start scientific observations
  - First spectrum of hot exozodi (β Pic)
  - Mostly scattered light?



### 2012: the PIONIER survey

Ertel et al., in prep

- \* 4 runs of 3n (GTO)
- \* 89 stars observed
  - Magnitude-limited at H < 5</li>
  - Same selection criteria as CHARA/FLUOR survey
  - One non-dusty star for each dusty star
  - Avoid « bloated » stars
- Huge gain in observing efficiency wrt FLUOR





# Preliminary survey results

Ertel et al., in prep





## Open questions / follow-up

- Colors and physical properties of exozodiacal disks
  - Do H and K bands trace the same phenomenon? (5n in 2013)
  - Connection with « warm » (~300 K) disks? (9n GTO in 2014)
- Origin of hot exozodiacal disks still very mysterious
  - All « standard » dynamical models fail to reproduce their properties and occurrence rate
  - Trapping mechanisms = promising solution
- Are hot exozodiacal disks variable?
  - Variability survey on-going, may shed light on dust origin