

High-contrast imaging with E-ELT/METIS

Olivier Absil Université de Liège

1st VORTEX international workshop — Caltech — August 2016

First E-ELT instruments approved

Three « first light » instruments

METIS consortium

B. Brandl M. Feldt E. Pantin A. Glasse C. Waelkens M. Meyer M. Guedel (PI)

Project timeline

Total Project

No		Short description		Date	
KM.1	KOM	ESO Kick-Off Meeting	T _o	14-10-2015	
KM.2	PDR	Preliminary Design Review	T ₀ + 24 months	1-10-2017	
KM.3	FDR	Final Design Review	T ₀ + 48 months	1-10-2019	Phase
KM.4	PAE	Preliminary Acceptance (Europe)	T ₀ + 108 months	1-10-2024	Phase L
KM.5	PAC	Provisional Acceptance	T ₀ + 126 months	1-04-2026	Phase E
KM.6	FA	Final Acceptance	T ₀ + 150 months	1-06-2027	

Phase-B

No		Short description		Date	
	CM01	Ph-B Consortium kick-off		28-09-2015	
KM.1	KOM	ESO Kick-Off Meeting		14-10-2015	
	CM02	Consortium progress meeting	CM01 + 5 months	Mar 2016	DOW
	CM03	Ph-B consortium midterm meeting	CM01 + 12 months	Oct 2016	<u> </u>
	CM04	Consortium progress meeting	PDR – 7 months	Mar 2017	
		PDR documents delivery	PDR – 1.5 months	Aug 2017	
KM.2		PDR	CM01 + 24 months	Oct 2017	

Instrument baseline

METIS will include the following observing capabilities:

- Imaging at 3 19 μm. The imager includes low/medium resolution slit spectroscopy as well as coronagraphy for high contrast imaging.
- High resolution (R ~ 100,000) IFU spectroscopy at 3 5 μm, including a mode with extended instantaneous wavelength coverage.
- All observing modes work at the diffraction limit with single conjugate (SC) and eventually assisted by a laser tomography adaptive optics (LTAO) system.

The sky's the limit ... literally

- Thermal IR imaging & spectroscopy of RV giant planets
- ◆ Photometry of 1-4 R_⊕ planets at room temperature

Equilibrium Temperature [K]

Ν

How to get there?

- Need to achieve background-limited performance as close as possible (baseline: 5 λ/D, goal: 2 λ/D)
- Two baseline high-contrast imaging modes:
 - * AGPM vortex coronagraphy
 - * (vector) Apodizing Phase Plate

From Phase-A design

APP layout

Ring-apodized VC layout

TEX

VC+LPM layout

Main limitations / constraints of vortex observing modes

- ♦ Vortex downstream chopper —> no chopping, unless:
 - * AGPM can be made « K-band invariant » —> in FP1
 - * Two AGPMs side-by-side in FP2, and chopper very accurate
- Vortex+IFS combination not possible with AGPM in FP2:
 - * AGPM and IFS pick-off both fixed wrt METIS FoV
 - * IFS image slicer needs dithering for proper sampling
- Ring apodizer cannot be optimized for spiders
- No atmospheric dispersion compensator

No ADC: consequences on vortex observations

 AGPM can only be used close to zenith and/or in narrow-band filters

Charge-4 vortex would greatly help

Expected ADI performance (see Brunella's talk this afternoon)

Main pending issues

- Finalize narrow & broad band filters —> will affect final AGPM parameters
- NCPA measurement technique?
- Charge-4 vortex design, manufacturing & testing
- Ring apodizer design, manufacturing & testing
- LPM design, manufacturing & testing