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First E-ELT instruments 
approved
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Project organization
Timeline

Total Project
No Short description Date

KM.1 KOM ESO Kick-Off Meeting T0 14-10-2015

KM.2        PDR Preliminary Design Review T0 + 24 months 1-10-2017

KM.3        FDR Final Design Review T0 + 48 months 1-10-2019

KM.4        PAE Preliminary Acceptance (Europe) T0 + 108 months 1-10-2024
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KM.6        FA Final Acceptance T0 + 150 months 1-06-2027

Phase-B
No Short description Date
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KM.1 KOM ESO Kick-Off Meeting 14-10-2015

CM02       Consortium progress meeting CM01 + 5 months Mar 2016

CM03       Ph-B consortium midterm meeting CM01 + 12 months Oct 2016

CM04       Consortium progress meeting PDR – 7 months Mar 2017

PDR documents delivery PDR – 1.5 months Aug 2017

KM.2 PDR CM01 + 24 months Oct  2017

Phase B
Phase C
Phase D
Phase E
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Instrument baselineInstrument Baseline 

METIS will include the following observing capabilities: 

• Imaging at 3 – 19 μm.  The imager includes 
low/medium resolution slit spectroscopy as well as 
coronagraphy for high contrast imaging.  

• High resolution (R ~ 100,000) IFU spectroscopy at 3 – 
5 μm, including a mode with extended instantaneous 
wavelength coverage.  

¾All observing modes work at the diffraction limit with 
single conjugate (SC) and eventually assisted by a laser 
tomography adaptive optics (LTAO) system. 



The sky’s the limit … literally

✦ Thermal IR imaging & 
spectroscopy of RV giant planets 

✦ Photometry of 1-4 R⨁ planets at 
room temperature

but partly generic case study, the present analysis is for a
specific telescope and a specific instrument. The corresponding
sensitivity estimates were derived using an instrument simu-
lator (including, e.g. a model PSF, sky background noise,
throughput, relevant telescope parameters). Furthermore, in
light of the results presented in the previous section, we
extended our analysis beyond 8 pc (as in Crossfield 2013) to
include all dwarf stars with K<7mag and d<20 pc. We
removed close binaries, gathered stellar photometry and

parallaxes from the literature (Perryman et al. 1997; Monet
et al. 2003; Cutri et al. 2003; Zacharias et al. 2012, and
SIMBAD), adopted stellar radii and effective temperatures
based on interferometric measurements of similar stars
(Boyajian et al. 2012a, b, 2013), and assigned stellar masses
using the V-band relation of Henry & McCarthy (1993).
Selecting only objects with declination <30°, this final target
list includes 246 objects; 24 of these host already known planets
or planet candidates, most of which do not pass the detection
threshold that we impose in our analysis, as they are either too
close to the star and/or too faint. Finally, the present analysis
determines how many planets are detectable in more than one
filter (see below) and provides a concrete list of stars for which
we summarize the detection probabilities per filter.
This new Monte Carlo analysis reveals that &10 small

planets within 15 pc should be detected in at least one of the
L, M or N bands. Roughly five objects could be observed in
both L and M bands, and a small number (*2) might be
observable in a combination of N and L and/or M. The results
are summarized in Fig. 3, where we show the 2D probability
distributions (planetary radius versus equilibrium tempera-
ture) separately for the L,M and N bands. Roughly 25% of the
planets have radii of 1–2 R⊕. The rest has radii >2 R⊕ and is
increasingly likely to host a substantial gaseous envelope
(cf. Marcy et al. 2014). The expected Teq of the smaller planets
is*100K higher than for the larger planets. This is a selection
effect: in our simulations, larger planets (!.4 R⊕) are seen
mainly in reflected starlight (even in M band); smaller planets,
however, must emit relatively more thermal radiation to
climb above the sensitivity threshold, and so thermal radiation
comprises up to*50% of their observed flux. For the L andM
bands the most likely range of equilibrium temperature is
300–500K, whereas, statistically, in the N band a couple of
planets in the 200–400K range should be found.
For the results shown in Table 3 we changed the perspective

and analysed which stars in our sample are the best targets
for planet searches. We only list objects where the probability
of detecting a planet – regardless of size or temperature – is
at least 10% in one of the observational bands. Table 3
emphasizes that, according to our simulations, the L band is
the best wavelength range to search for planets, but it also
shows that – based on the Kepler planet occurrence statistics –
for some stars there is a fair chance to detect planets in more
than one band.

Discussion

The analyses presented in the previous sections rely on some
assumptions and led to some results that warrant further
discussion.
Concerning the assumed sensitivity limits it is obvious that

these are preliminary and are probably subject to change in the
course of the METIS project. However, the values represent
the current state of knowledge. Similarly, the exact filter
profiles are not yet defined for METIS. This leads to some
uncertainties when we compare the predicted fluxes for the
RV-detected gas giant planets to the METIS detection limits

Fig. 3. 2D probability distributions for the detection of small planets
using E-ELT/METIS. From top to bottom the panels show the
distributions for detections in the L, M and N bands, respectively.
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objects in the M band because their declination was higher
than our assumed limit.
Finally, we compared the estimated L and M band

magnitudes of the remaining objects to our assumed 5 σ
sensitivity limits (Table 1). Figure 1 shows that, given the
selection criteria described above,METIS is capable of directly
detecting 26 of the known gas giant planets in the L band, 13 of
which are also detectable in the M band. The planets cover a
range in minimummass roughly between 1 and 18MJupiter and
their host stars span a wide magnitude range for a given
distance, which indicates an interesting spread in both planet
and also host star properties. Furthermore, the planets span a
wide range in semi-major axis and also orbital eccentricity.
This leads to a wide range of planetary temperatures across
the whole sample, but also to significant changes in stellar
insolation for individual planets on highly eccentric orbits. A
first-order estimate for the expected equilibrium temperature
reveals that two planets (HD 62509 b and HD 60532 b) likely
have effective temperatures higher than those predicted by the
models applied in our selection process. Hence, these planets
should appear even brighter and be easier to detect than
shown here. Finally, three of the planets reside in stellar binary
systems (HD196885 A b, HD106515 A b and GJ676 A b), and
there are two systems where two planets can be detected (HD
60532 b,c andHD 128311 b,c). These latter systems potentially
allow a direct comparison of gas giant properties within
extrasolar planetary systems. Other stars have additional
planets as well, but those are below the detection limits chosen
here. We list all planets and their key properties in Table 2.

Detecting small planets

One of the mid- to long-term goals of exoplanet research is
certainly the direct detection and characterization of rocky –

and potentially habitable – planets. It is useful to consider what
ELTs might be able to deliver in this context (cf. Hinz et al.

2009). In a first step, we provide some first-order estimates of
what parameter space in terms of planet size, temperature and
host star properties E-ELT/METIS will be able to probe,
depending on the observing wavelength. In a second step, we
carry out an updated version of the Monte Carlo experiment
first presented by Crossfield (2013) to quantify, how many
planets we can expect to detect based on the occurrence rate of
planets found by the Kepler mission.

Small planet parameter space probed by E-ELT/METIS

The following first-order estimates provide some interesting
insights about the prospects of imaging small planets with
E-ELT/METIS. We consider three planetary sizes (1, 2 and
3 R⊕) and five different effective temperatures for these planets
approximated as blackbody emission (255, 300, 400, 500,
600 K). Varying the distance between the Earth and these
planets, we compute the flux density received at the Earth in
different wavebands. As a benchmark test it is useful to recall
that the Earth seen from 10 pc distance emits approximately
0.4 μJy at 10.5 μm assuming blackbody emission coming from
its surface (Des Marais et al. 2002).
In order to assess if certain types of planets can be directly

imaged with METIS, we further need to take into account the
sensitivity limits in each filter and also the IWA achievable at
each observing wavelengths (Table 1). As described above, we
assume that the BGL can be achieved at 2λcen/D and we take
this separation as IWA. Finally, we assume that the planet’s
effective temperature corresponds to its equilibrium tempera-
ture Teq, which depends on the luminosity of the star, the
planet’s Bond albedo AB, and the separation from the host
star rp:

Teq =
L∗(1− AB)

4πσ

[ ]1/4 1
2rp

( )1/2

.

Fig. 1. Properties of RV-detected planets that can be directly imaged with E-ELT/METIS. Symbols are the same in all panels. Left panel:
Apparent L magnitude of planets detected by RV as a function of their minimum mass. The dash-dotted line indicates the 5 σ detection limit (see,
Table 1). Blue dots show planets that are only detectable in the L band (13 objects) and red dots planets that are detectable in the L and M band
(13 objects). Filled dots are objects with an estimate for their orbital inclination i, open dots are objects with unknown i. Middle panel: Host star
apparent V band magnitude as a function of distance for detectable planets. Right panel: Orbital eccentricity as a function of semi-major axis for
detectable planets.
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How to get there?

✦ Need to achieve background-limited performance 
as close as possible (baseline: 5 λ/D, goal: 2 λ/D) 

✦ Two baseline high-contrast imaging modes: 

✴ AGPM vortex coronagraphy 

✴ (vector) Apodizing Phase Plate



From Phase-A design

SPIE Montreal 2014

Instrument Concept

17/09/2015

21

Common Fore-Optics 

AO Wavefront Sensor 

Imager 

IFU Spectrograph 

Warm Calibration Unit

to …

(high-contrast barely considered)



Phase B
non-rotating



Coronagraphic layouts
LMS

LM  
camera

NQ  
camera

LMS PP

LMC PP

NQC PP

FO  
FP1

FO  
PP2

FO  
FP2

METIS fore-optics

FO  
PP1

chopper



APP layout
LMS

LM  
camera

NQ  
camera

LMS PP

LMC PP

NQC PP

FO  
FP1

FO  
PP2

FO  
FP2

FO  
PP1

chopper

APP

APP

APP

• APP placed in IFS and 
camera pupil wheels 

• PP1 not possible: upstream 
AO pickoff, and non rotating

APP



Ring-apodized VC layout
LMS

LM  
camera

NQ  
camera

FO  
FP1

FO  
PP2

FO  
FP2

FO  
PP1

chopper AGPMRing  
apodizer

Lyot stop

Lyot stop

Lyot stop

• AGPM not in FP1 due to AO 
pickoff 

• Ring apodizer in PP1, not 
rotating with pupil

LMS PP

LMC PP

NQC PP



VC+LPM layout
LMS

LM  
camera

NQ  
camera

LMS PP

LMC PP

NQC PP

FO  
FP1

FO  
PP2

FO  
FP2

FO  
PP1

chopper AGPM

LPM

LPM

LPM

• Lyot stop replaced by APP-
like phase mask 

• Could be combined with ring 
apodizer (low transmission)



Main limitations / constraints of 
vortex observing modes

✦ Vortex downstream chopper —> no chopping, unless: 
✴ AGPM can be made « K-band invariant » —> in FP1 

✴ Two AGPMs side-by-side in FP2, and chopper very accurate 

✦ Vortex+IFS combination not possible with AGPM in FP2: 

✴ AGPM and IFS pick-off both fixed wrt METIS FoV 

✴ IFS image slicer needs dithering for proper sampling 

✦ Ring apodizer cannot be optimized for spiders 

✦ No atmospheric dispersion compensator



No ADC: consequences on vortex 
observations

✦ AGPM can only be used close to 
zenith and/or in narrow-band filters 

✦ Charge-4 vortex would greatly help



Expected ADI performance  
(see Brunella’s talk this afternoon)

New apodizer solutions could significantly improve sensitivity



Main pending issues
✦ Finalize narrow & broad band filters —> will affect 

final AGPM parameters 

✦ NCPA measurement technique? 

✦ Charge-4 vortex design, manufacturing & testing  

✦ Ring apodizer design, manufacturing & testing 

✦ LPM design, manufacturing & testing


