

- U. Liège: O. Absil, J. Surdej, S. Habraken, M. Van Droogenbroeck,
 D. Defrère, C. Delacroix, G. Orban de Xivry, M. Reggiani, O. Wertz,
 B. Carlomagno, V. Christiaens, C. Gomez Gonzalez, A. Jolivet
- U. Uppsala: M. Karlsson, P. Forsberg, P. Piron, E. Vargas Catalan
- Caltech/JPL: D. Mawet, E. Serabyn, K. Matthews, G. Ruane, AJ Riggs, E. Choquet, M. Bottom, H. Ngo, R. Jensen-Clem
- Obs. Paris: E. Huby, P. Baudoz
- Collaborators at ESO (J. Girard, J. Milli, M. Kasper, H.-U. Käufl),
 CEA Saclay (E. Pantin), U. Leiden (M. Kenworthy, F. Snik),
 Keck (B. Femenia, P. Wizinowich), U. Arizona (P. Hinz)

OLIVIER ABSIL

FIVE YEARS OF HARVEST WITH THE VORTEX CORONAGRAPH

OUTLINE

history and technology development commissioning & on-sky performance scientific results

image processing with machine learning future projects

HISTORY AND TECHNOLOGY DEVELOPMENT

THE BIRTH OF A CONCEPT

► FQPM → sub-wavelength grating → annular groove phase mask

- advantages:
 - * inner working angle
 - * clear 360° discovery space
 - * achromaticity

THE VORTEX CORONAGRAPH IN A NUTSHELL

perfect on-axis cancellation for a circular aperture

IMPLEMENTATIONS OF THE VORTEX PHASE MASK

- scalar vortex
 - * helical piece of glass
- vector vortex
 - * liquid crystal polymers
 - * subwavelength gratings
 - * photonic crystals

Annular Groove Phase Mask

OPTIMIZING THE GRATING DESIGN

Delacroix et al. (2013)

MANUFACTURING DIAMOND AGPM @ UPPSALA

Vargas Catalan et al. (2016)

 diamond coated with Al and Si layers (sputtering) e-beam pattern transferred with solvent-assisted moulding

etching

3. reactive ion etching

SETTING UP THE « YACADIRE » BENCH @ MEUDON

ANGUISH...

BLISS!

BEST PERFORMANCE IN THE LAB - 2017 UPDATE

- bench (VODCA)
 now available at
 ULiège
- L-band AGPMs etched & tested
- broadband rejection up to 1500 : 1

EXTENDING THE CONCEPT

- AGPM first developed for thermal infrared (L, M, N bands)
 - * excellent performance on ~30% bandwidth
- manufacturing tests for H-K
 bands promising, but work
 remains to be done
- now exploring higher topological charges
 - * less sensitive to tip-tilt, at the expense of larger IWA

COMMISSIONING & ON-SKY PERFORMANCE

INSTALLATION AND COMMISSIONING

- piggyback on existing coronagraphic IR cameras
- very short commissioning phase (1-2 nights)

AGPM FIRST LIGHT @ NACO (DEC 2012)

worked out of the hox

Mawet et al. (2013)

ON-SKY OPERATIONS: THE VORTEX GLOWS!

- thermal emission outside pupil partly diffracted inside pupil by vortex
- seen in all instruments (vortex upstream cold stop)
- removed by background subtraction
- useful for centering

ON-SKY OPERATIONS: ACQUISITION & CENTERING

- pointing errors create asymmetric « donut »
- central obstruction changes the expected behavior of the donut
- 0.0 λ/D 0.1 λ/D 0.2 λ/D 0.3 λ/D 0.4 λ/D 0.5 λ/D 0.6 λ/D

 w/o central obstruction

 0.0 λ/D 0.1 λ/D 0.2 λ/D 0.3 λ/D 0.4 λ/D 0.5 λ/D 0.6 λ/D
 - w/ central obstruction
- need modeling to infer
 pointing error from image (QACITS algorithm)
- can be used to control pointing at low frequency

CLOSED-LOOP CENTERING CONTROL

- fully automated vortex
 operations with QACITS
 validated on NIRC2
 - * includes acquisition & calibration
- ensures consistant centering and data quality
- rms jitter ~ 0.02 λ/D(@ 0.03 Hz)

pupil after Lyot stop

ON-SKY STARLIGHT CANCELLATION @ NIRC2

- on-sky extinction limited by
 - * pupil geometry / Lyot stop
 - * AO residuals
 - * non-common path aberrations
- daytime speckle nulling helps reduce NCPA ... but NIRC2 upgrade needed!

Bottom et al. (in prep)

IMPROVEMENT IN DETECTION LIMITS @ NIRC2

- obvious gain in 3-610 λ/D
 region (0.25" 0.8")
- vortex transmission detrimental @ 1-2 λ/D

saturated imaging/

vortex imaging

comparison based on two HR 799 data sets with similar integration time and parallactic angle rotation, processed using a standard PCA-ADI algorithm

VORTEX PERFORMANCE ON VARIOUS INSTRUMENTS

SCIENTIFIC RESULTS

Biller et al. 2014, Reggiani et al. 2014

EARLY SCIENCE @ VLT/NACO: HD 169142

point-like source at 0.15" from Herbig Ae star, inside H-band PDI inner cavity

not detected at J band (GPI) nor H-K bands (MagAO)

- possible explanations
 - * accreting protoplanet?
 - * disk feature?

FIRST LIGHT @ KECK/NIRC2: HIP 79124

- brown dwarf around Sco-Cen A0 star
- ▶ 177 mas, $\Delta L=4.3$
- only detected with aperture masking so far
- recovered with NIRC2+vortex during commissioning

CONSTRAINING (PROTO) PLANETS IN TW HYA DISK

 protoplanet with circumplanetary disk truncated at ~1R_{Jup} presently accreting at a rate insufficient to form a Jupiter-mass planet

TRANSITION DISK SURVEY (NIRC2 & NACO)

SPHERE/IRDIS Y band polarimetry (Benisty et al. 2015)

Protoplanet prediction (Dong et al. 2015)

goal: search for protoplanets at the origin of disk structures

THE KECK/NIRC2 + VORTEX VIEW OF MWC758

MWC758: YET ANOTHER PROTOPLANET CANDIDATE?

- main properties
 - * 0.1" separation (20 au), $\Delta L = 7$
 - * two epochs: PA difference consistent with Keplerian rotation in 1 yr
- low probability for bckg star
- companion? needs to be <6 M_{Jup}
 - → not purely photospheric emission
- conclusion: accreting protoplanet or disk feature?
 - * no polarized disk emission there!

Reggiani et al. (submitted)

MWC758: ORIGIN OF THE SPIRALS?

- now three spiral arms to reproduce with models
- driven by protoplanet?
 - * outer planet? most likely explanation based on models, but strong constraints from observations (< 6 M_{Jup})
 - * inner planet? might explain one spiral, but not all three

HOW TO BETTER EXPLOIT THE DATA?

- interesting science at 1-3 λ/D
 - * strongly affected by residual speckles
 - non-Gaussian noise–> more false positives
 - * hard to validate candidates

- ADI-based techniques produce SNR, but do not inform on nature of the source
- machine learning can help

IMAGE PROCESSING WITH MACHINE LEARNING

MACHINE LEARNING IN A NUTSHELL

construction of algorithms that can learn from, and make predictions on data

Unsupervised

SUPERVISED LEARNING

goal: learn function f mapping input samples \mathcal{X} to labels \mathcal{Y} given a labeled dataset $(x_i, y_i)_{i=1,...,n}$:

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i, f(x_i)) + \lambda \Omega(f)$$

- ightharpoonup mapping function f based on (deep) neural network
 - * layers of neurons whose parameters can be tuned to approximate a complex function
 - * DNN can be trained with labeled datasets
- problem: need labels & large training sample!

SUPERVISED DETECTION OF EXOPLANETS

Gomez Gonzalez et al. (submitted)

1. generation of labeled data

2. training the DNN

3. prediction

LABELED DATASET

Labels: $y \in \{c^-, c^+\}$

SUPERVISED DETECTION OF EXOPLANETS

Gomez Gonzalez et al. (submitted)

1. generation of labeled data

2. training the DNN

3. prediction

TEST WITH INJECTED COMPANIONS (SPHERE/IRDIS)

ROC CURVES

- Separation
 - $*2-3\lambda/D$
- Contrasts
 - $* 2.9 \times 10^{-5}$ to 1.4 × 10⁻⁴

FUTURE PROJECTS

NEAR - NEW EARTH IN THE ALPHA CENTAURI REGION

- ESO project funded by Breakthrough Watch
 - * what? search for rocky planets around a Cen A&B
 - * how? refurbish VISIR and put it behind UT4+AOF
 - * when? 100h observing campaign in mid-2019
- vortex team contribution
 - * provide optimized AGPM for 10-12.5µm filter
 - * design optimized Lyot stop
 - * develop closed-loop pointing control with QACITS

NEAR LYOT STOP: TWO CHALLENGES

- binary target star
 - * need to dim secondary star
- complicated pupil

AN APODIZED LYOT STOP

shaped-pupil: induce dark hole from 3" to 8" around B

NOTIONAL IMAGES OF ALPHA CENTAURI SYSTEM

- habitable zone at 0.8" 1.1" (A) or 0.5" 0.65" (B)
- Contrast around 10⁻⁶ for 2 R⊕ planet

NEXT STEPS: VLT/ERIS AND ELT/METIS

- ERIS: L & M band AGPMs
 - * standard vortex coronagraph with simple Lyot stop
- METIS: L, M & N band AGPMs
 - * ring-apodized vortex coronagraph: cancels diffraction from huge central obstruction

ELT+VC

ELT+RAVC

METIS SCIENCE HIGHLIGHTS

- direct imaging of several RV planets
- potential to detect temperate rocky planets
- characterization with high-res LM-band IFS

A VORTEX UPGRADE FOR SPHERE?

- yeal: open the 1-3 λ /D parameter space
 - * increase number of detections
 - * access a few RV planets
- need to identify main limitations to FQPM performance
 - * component degradation?
 - * effect of dead actuators?
 - * low-order wavefront aberrations?
- K-band AGPM performance being evaluated

THANKS FOR YOUR ATTENTION

AND NOW ... GAME ON!