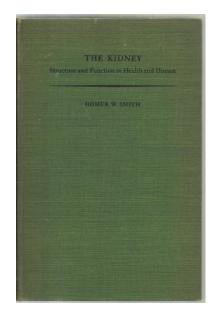


Pierre Delanaye, MD, PhD University of Liège CHU Sart Tilman BELGIUM



Summary

- Estimating GFR (creatinine, eGFR, cystatin C)
- USI
- Measuring GFR

The Glomerular Filtration Rate is usually the best parameter to assess the global kidney function.

So, how to measure (or estimate GFR)?

Renal function: concept of clearance

 <u>Clearance of a solute (ml/min)</u>: volume of plasma cleared (« purified ») of this substance per time

 $CI = [U] \times [V] / [P]$

- Ideal marker for GFR:
 - Constant production
 - No effect on GFR, non toxic
 - Not bound to protein, freely filtrated through glomerulus
 - No secretion, no absorption in the tubules
 - No extra renal clearance
 - Easy to measure, not too costly

Serum creatinine

- One of the most prescribed analyte in clinical chemistry
- ...but the most important is to know its limitations
- Physiological limitations
- Analytical limitations

Measurements of serum creatinine

- Jaffe methods
- Enzymatic methods
- Jaffe and enzymatic methods gives slightly different results

Analytical limitations

- Jaffe: Pseudochromogen: glucose, fructose, ascorbate, proteins, urate, acetoacetate, acetone, pyruvate => false « high »
- Bilirubins: false « low »
- Few (fewer) interferences with enzymatic methods

Analytical limitations

• Different Jaffe-Enzymatic methods, different calibration by different manufacturers

Physiological limitations

- Production (relatively) constant but muscular production => serum creatinine is dependent of muscualr mass, not only GFR
 - gender
 - age
 - ethnicity
 - Muscular mass(creatine)

• Extra-renal production (bacterial)

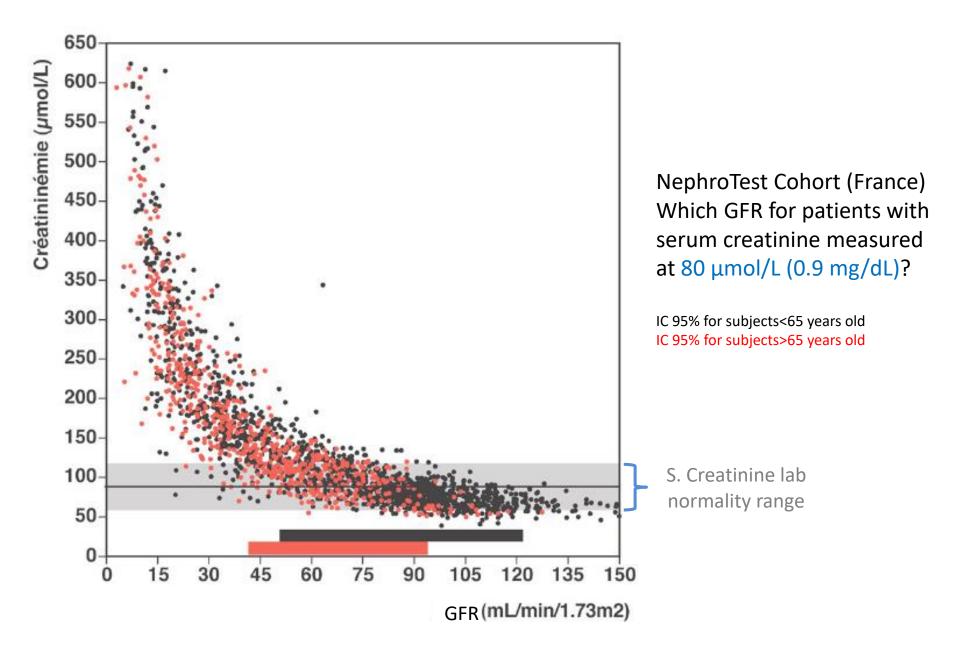
Physiological limitations

Tubular secretion of creatinine

- 10 to 40%
- Increase with decreased GFR
- Unpredictable at the individual level !

Drugs interaction with creatinine

tubular secretion inhibitor


cimetidin, trimethoprim, dolutegravir

- fibrates
- high concentrations » interactions acetylcystein, dobutamin, lidocain, ascorbate

Perrone RD, Clin Chem, 1992, 38, 1933 Delanaye P, Ann Biol Clin (Paris), 2010, 68, 531 Delanaye P, Nephron Clin Pract, 2011, 119, c187

Creatinine: to the trash?

- Very cheap (0.04€ /Jaffe)
- Good specificty
- Good analytical CV
- Favor for enzymatic methods

With the kind permission of Marc Froissart

Serum Creatinine

• Exponential relationship between serum creatinine and GFR!!!

In a given patient,

if serum creatinine increased from 0.6 to 1.2 mg/dl => decrease in GFR of 50%

if serum creatinine increased from 2.0 to 3.0 mg/dl => decrease in GFR of 25%

Creatinine clearance

- Not recommended by guidelines
- Creatinine tubular secretion
- Lack of precision:

errors in urine collection

22 to 27% for « trained » patients 50 to 70 % for others

large intra-individual variability for creatinine excretion

KDIGO, Kidney Int, 2012, 3 Perrone RD, Clin Chem, 1992, 38, 1933 Delanaye P, Ann Biol Clin (Paris), 2010, 68, 531

Creatinine clearance

- The Cockcroft original study
- Final sample n=236
- But the starting sample was 534 with 2 available creatinine clearance in medical wards
- Exclusion of 56% (!) because :
- 1. Variability of serum creatinine > 20%: n=29
- 2. Creatinine excretion/24 h < 10 mg/d: n=31
- 3. Inadequate (?) data: n=65
- 4. Variability of creatinine excretion > 20%: n=173 (32%)

Creatinine-based equations

- MDRD, Cockcroft
- CKD-EPI
- Others (FAS, Lund-Malmö)
- Other biomarkers (Cystatin)

 Table 1. MDRD study equations and Cockcroft equation commonly used for GFR estimation

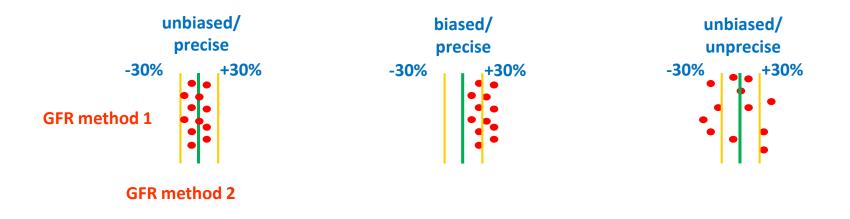
Cockcroft and Gault

GFR (ml/min) = $\frac{(140 - age) \times weight (kg)}{7.2 \times SCr (mg/dl)} \times 0.85$ if woman

4-Variable MDRD study equation (IDMS traceable)

GFR (ml/min/1.73 m²) = $175 \times SCr (mg/dl)^{-1.154} \times age^{-0.203} \times 0.742$ (if woman) × 1.21 for Black-American

> Cockcroft DW, Nephron, 1976, 16, p31 Levey AS, Ann Intern Med, 1999, 130, p461


Cockcroft versus MDRD

	Cockcroft	MDRD
Population	Canada 1976	USA 1999
N	249	1628
Mean GFR	73	40
Measured GFR	Creatinine Clearance	Iothalamate
Assay	Jaffe	Jaffe
% women	4	40
% black	0 (?)	12
Mean age	18-92	51
Mean weight	72	79.6
Indexation for BSA	No	yes
Internal validation	no	yes

Cockcroft DW, Nephron, 1976, 16, p31 Levey AS, Ann Intern Med, 1999, 130, p461

Statistics

- Good correlation: a "sine qua non" condition but insufficient
- Bias: mean difference between two values = the systematic error
- Precision: SD around the bias = the random error
- Accuracy 30% = % of eGFR between ± 30% of measured GFR

Predictive Performance of the Modification of Diet in Renal Disease and Cockcroft-Gault Equations for Estimating Renal Function

Marc Froissart,*^{†§} Jerome Rossert,^{†||} Christian Jacquot,^{‡§} Michel Paillard,*^{†§} and Pascal Houillier*^{†§}

*Department of Physiology and Biophysics, Georges Pompidou Hospital (AP-HP); [†]INSERM U652 and IFR 58; [‡]Department of Nephrology, Georges Pompidou Hospital (AP-HP); [§]René Descartes Medical School, Paris V University; and [¶]Paris VI University, Paris, France

Recent recommendations emphasize the need to assess kidney function using creatinine-based predictive equations to optimize the care of patients with chronic kidney disease. The most widely used equations are the Cockcroft-Gault (CG) and the simplified Modification of Diet in Renal Disease (MDRD) formulas. However, they still need to be validated in large samples of subjects, including large non-U.S. cohorts. Renal clearance of ⁵¹Cr-EDTA was compared with GFR estimated using either the CG equation or the MDRD formula in a cohort of 2095 adult Europeans (863 female and 1232 male; median age, 53.2 yr; median measured GFR, 59.8 ml/min per 1.73 m²). When the entire study population was considered, the CG and MDRD equations showed very limited bias. They overestimated measured GFR by 1.94 ml/min per 1.73 m² and underestimated it by 0.99 ml/min per 1.73 m², respectively. However, analysis of subgroups defined by age, gender, body mass index, and GFR level showed that the biases of the two formulas could be much larger in selected populations. Furthermore, analysis of the SD of the mean difference between estimated and measured GFR showed that both formulas lacked precision; the CG formula was less precise than the MDRD one in most cases. In the whole study population, the SD was 15.1 and 13.5 ml/min per 1.73 m² for the CG and MDRD formulas, respectively. Finally, 29.2 and 32.4% of subjects were misclassified when the CG and MDRD formulas were used to categorize subjects according to the Kidney Disease Outcomes Quality Initiative chronic kidney disease classification, respectively.

J Am Soc Nephrol 16: 763-773, 2005. doi: 10.1681/ASN.2004070549

	Ν	Bland and Altman (ml/min per 1.73 m²)		Accuracy within (% of Subjects)			CRMSE	
		Bias	Precision	15%	30%	50%	(ml/min per 1.73 m ²)	
MDRD formula								
high GFR ^b	1044	-3.3	17.2	61.3	92.4	98.8	17.5	
low GFR ^c	1051	1.3	8.5	54.8	82.9	93.3	8.6	
overall	2095	-1.0	13.7	58.0	87.2	96.0	13.8	
CG formula								
high GFR ^b	1044	0.4	19.4	56.1	88.0	97.4	19.4	
low GFR ^c	1051	3.5	9.7	41.2	69.0	85.2	10.3	
overall	2095	1.9	15.4	48.7	78.5	91.3	15.5	

Table 3. Bias, precision, and accuracy of the MDRD and CG formulas^a

^aResults obtained with these formulas were compared with GFR values obtained by measuring the renal clearance of ⁵¹Cr EDTA. Bias is defined as the mean difference between estimated and measured GFR. Precision is 1 SD of bias. Accuracy was assessed by determining the percentage of subjects who did not deviate >15, 30, and 50% from measured GFR and by calculating the combined root mean square error (CRMSE).

^bMeasured GFR ≥ 60 ml/min per 1.73 m².

^cMeasured GFR <60 ml/min per 1.73 m².

CLINICAL EPIDEMIOLOGY www.jasn.org

Evaluation of the Modification of Diet in Renal Disease Study Equation in a Large Diverse Population

Lesley A. Stevens,* Josef Coresh,[†] Harold I. Feldman,[‡] Tom Greene,[§] James P. Lash,^I Robert G. Nelson,[¶] Mahboob Rahman,** Amy E. Deysher,* Yaping (Lucy) Zhang,* Christopher H. Schmid,* and Andrew S. Levey*

*Tufts-New England Medical Center, Boston, Massachusetts; [†]Johns Hopkins University, Baltimore, Maryland; [‡]University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; [§]University of Utah, Salt Lake City, Utah; ^{II}University of Illinois at Chicago, Chicago, Illinois; [§]National Institutes of Health, Phoenix, Arizona; and **Case Western Reserve University, Cleveland, Ohio

J Am Soc Nephrol 18: 2749-2757, 2007. (

- Excellent accuracy, bias, precision in stage 3-4 CKD
- Best accuracy observed: 80-85%
- Better than Cockcroft especially in precision, in stage 3-4, in obese

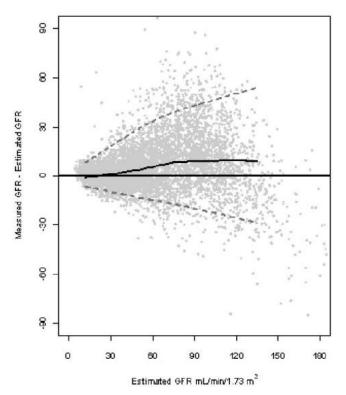


Figure 2. Difference of the MDRD Study equation by level of eGFR. Difference is calculated as (mGFR – eGFR). Solid horizontal

MDRD: the limitations

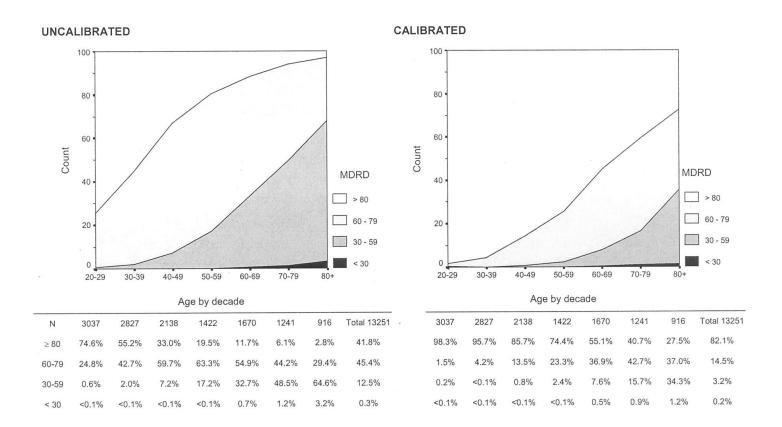
- MDRD more bias (absolute) and less precision in high GFR
- Non negligible proportion of subjects with stage 2 classified as stage 3 CKD
- Trend to underestimate GFR especially in young women

MDRD: limitations = creatinine (exp -1.154) 1) analytical limitation

• MDRD study equation: Cleveland Laboratory

Modified Kinetic Jaffe (Beckman Astra CX3)

• NHANES study :


Modified Kinetic Jaffe (Hitachi 737)

difference of 0.23 mg/dl between two methods

(higher results with Hitachi)

If creatinine is 1 mg/dL: difference in eGFR will be 21 ml/min/1.73m² with MDRD If creatinine is 2 mg/dL: difference in eGFR will be 6 ml/min/1.73m² with MDRD

MDRD: limitations = creatinine 1) analytical limitation

Coresh, J. et al. J Am Soc Nephrol 2002;13:2811-2816

IDMS traceability

A multicentric evaluation of IDMS-traceable creatinine enzymatic assays

Laurence Piéroni ^a, Pierre Delanaye ^{b,*}, Anne Boutten ^c, Anne-Sophie Bargnoux ^d, Eric Rozet ^e, Vincent Delatour ^f, Marie-Christine Carlier ^g, Anne-Marie Hanser ^h, Etienne Cavalier ⁱ, Marc Froissart ^j, and Jean-Paul Cristol ^d On behalf of the Société Française de Biologie Clinique ¹

^a Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France

^b Nephrology-Dialysis-Transplantation, University of Liège, CHU Sart Tilman, Liège, Belgium

^c Biochimie, CHU Bichat, APHP, Paris, France

^d Biochimie, CHU Lapeyronie, Montpellier, France

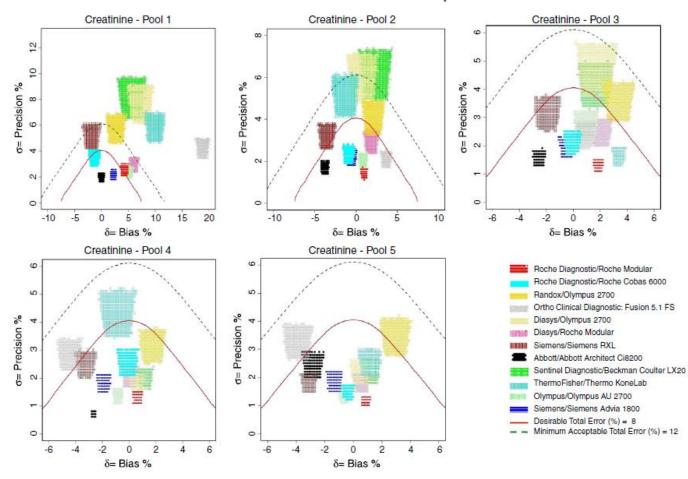
^e Analytical Chemistry Laboratory, CIRM, University of Liège, Liège, Belgium

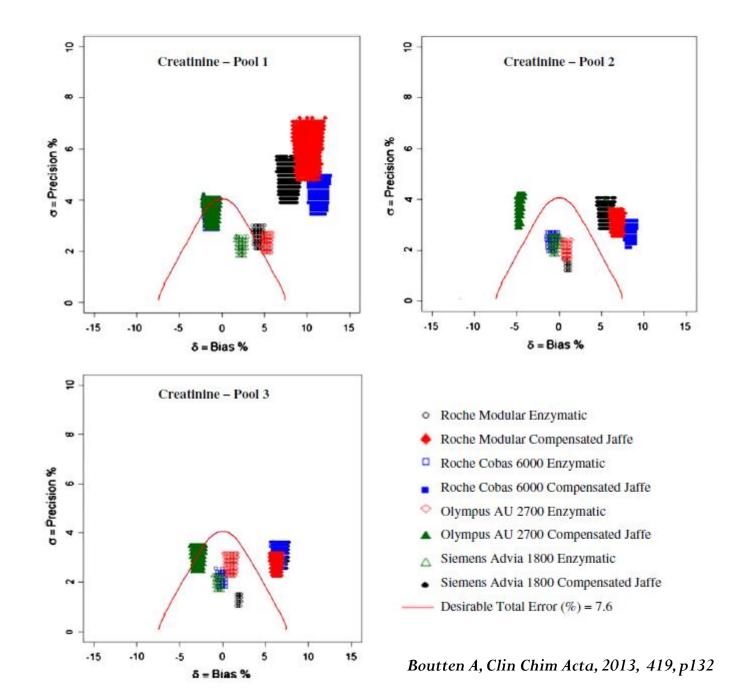
^f Laboratoire National de Métrologie et d'Essais, Paris, France

⁸ Biochimie, Hôpitaux de Lyon Sud, Lyon, France

h Biochimie, Hospices civils, Colmar, France

ⁱ Clinical Chemistry, University of Liège, CHU Sart Tilman, Liège, Belgium

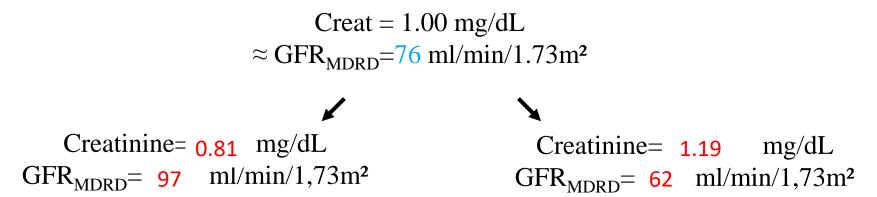

^j Physiologie Rénale, Hôpital Européen Georges Pompidou, APHP, Paris, France


Clinica Chimica Acta 412 (2011) 2070-2075

MDRD: 186 => 175

Results of GC-IDMS from LNE

Pool 5: 174.5 +/-3.1 μmol/L Pool 4: 149.7 +/-2.9 μmol/L Pool 3: 97.9 +/-1.7 μmol/L Pool 2: 74.4 +/-1.4 μmol/L Pool 1 : 35.9 +/-0.9 μmol/L



MDRD: limitations = creatinine analytical limitations

CRITICAL DIFFERENCE = f(CVa, CVi) = 19% (Jaffe)

Male, Caucasian, 60 y:

If MDRD higher than 60 ml/min/1,73m² => just use >60 mL/min/1.73 m²

Kuster N, Clinica Chimica Acta, 2014, 428C, 89 Delanaye P, J Nephrol, 2014, 27, 467

MDRD: limitations = creatinine clinical limitations

Specific population: MDRD is not magic!! Keep our clinical feeling!!

Anorexia Nervosa (Delanaye P, Clin Nephrol, 2009, 71, 482) Cirrhotic (Skluzacek PA, Am J Kidney Dis, 2003, 42, 1169) Intensive Care (Delanaye P, BMC Nephrology, 2014, 15, 9) Severely ill (Poggio ED, Am J Kidney Dis, 2005, 46, 242) Heart transplanted (Delanaye P, Clin Transplant, 2006, 20, 596) Kidney transplantation (Masson I, Transplantation, 2013, 95, 1211) Obese (Bouquegneau A, NDT, 2013, 28, iv122) Elderly (Schaeffner E, Ann Intern Med, 2012, 157, 471)

The new CKD-EPI equation

Article

Annals of Internal Medicine

A New Equation to Estimate Glomerular Filtration Rate

Andrew S. Levey, MD; Lesley A. Stevens, MD, MS; Christopher H. Schmid, PhD; Yaping (Lucy) Zhang, MS; Alejandro F. Castro III, MPH; Harold I. Feldman, MD, MSCE; John W. Kusek, PhD; Paul Eggers, PhD; Frederick Van Lente, PhD; Tom Greene, PhD; and Josef Coresh, MD, PhD, MHS, for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration)* Ann Intern Med, 2009;150:604-612,

<i>Table 2.</i> The CKD-EPI Equation for Estimating GFR on the Natural Scale*					
Race and Sex	Serum Creatinine Level, µmol/L (mg/dL)	Equation			
Black					
Female	≤62 (≤0.7) >62 (>0.7)				
Male	≤80 (≤0.9) >80 (>0.9)				
White or other					
Female	≤62 (≤0.7) >62 (>0.7)				
Male	≤80 (≤0.9) >80 (>0.9)				

CKD-EPI

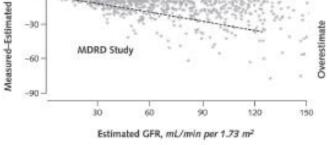

- Development dataset: n=5504
- Internal validation: n=2750
- External validation: n=3896
- Creatinine calibrated
- Median GFR in the development = 68 mL/min/1.73 m²

Figure. Performance of the CKD-EPI and MDRD Study equations in estimating measured GFR in the external validation data set.

x ⁹⁰ 7

Table 3. Comparison of the CKD-EPI and MDRD Study Equations in Estimating Measured GFR in the Validation Data Set*

Variable and Equation	All Patients	Patients With Estimated GFR <60 mL/min per 1.73 m ²	Patients With Estimated GFR ≥60 mL/min per 1.73 m ²
Median difference (95% CI), mL/min per 1.73 m ³ †			
CKD-EPI	2.5 (2.1-2.9)	2.1 (1.7-2.4)	3.5 (2.6-4.5)
MDRD Study	5.5 (5.0-5.9)	3.4 (2.9-4.0)	10.6 (9.8-11.3)
Interquartile range for differences (95% CI), mL/min per 1.73 m ² ‡			
CKD-EPI	16.6 (15.9-17.3)	11.3 (10.7-12.1)	24.2 (22.8-25.3)
MDRD Study	18.3 (17.4–19.3)	12.9 (12.0-13.6)	25.7 (24.4-27.1)
Pao (95% Cl), %§			
CKD-EPI	84.1 (83.0-85.3)	79.9 (78.1-81.7)	88.3 (86.9-89.7)
MDRD Study	80.6 (79.5-82.0)	77.2 (75.5-79.0)	84.7 (83.0-86.3)
Root mean square error (95% CI)			
CKD-EPI	0.250 (0.241-0.259)	0.284 (0.270-0.298)	0.213 (0.203-0.223)
MDRD Study	0.274 (0.265-0.283)	0.294 (0.280-0.308)	0.248 (0.238-0.258)
	Part Constant States		

Papers in Press. Published October 18, 2017 as doi:10.1373/clinchem.2017.276683 The latest version is at http://hwmaint.clinchem.aaccjnls.org/cgi/doi/10.1373/clinchem.2017.276683

Clinical Chemistry 64:3 000-000 (2018)

Reviews

Systematic Review and Metaanalysis Comparing the Bias and Accuracy of the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration Equations in Community-Based Populations

Emily C. McFadden,¹ Jennifer A. Hirst,¹ Jan Y. Verbakel,¹ Julie H. McLellan J,¹ F.D. Richard Hobbs,^{1,3} Richard J. Stevens,¹ Chris A. O'Callaghan,^{2,3} and Daniel S. Lasserson^{2,3,4*}

Author	Year of publication	Number of subjects	Mean mGFR			Difference in bias (95% CI)
Low – mGFR <6	0			i		
Liu	2013	332	39.7	! - ∎		0.73 (-1.72, 3.18)
Qiu	2013	176	40.7			-2.65 (-7.49, 2.19)
Du	2011	142	41.8			-0.75 (-4.49, 2.99)
Bevc	2012	113	42.9			-3.30 (-7.50, 0.90)
Altiparmak	2013	229	45.6	+		-2.43 (-3.91, -0.95)
Lui	2014A	209	47.9	_		-1.30 (-7.66, 5.06)
_emoine	2013	218	51.8		•	3.20 (0.08, 6.32)
Cvan	2015	43	53.1	_		-1.08 (-5.96, 3.80)
opes	2013	95	55			-2.90 (-6.84, 1.04)
Bevc	2012A	255	55.5	- B +		-3.30 (-5.41, -1.19)
Praditpornsilpa	2011	350	55.9	-#-		-1.60 (-3.30, 0.10)
Bouquegneau	2013	366	56	: - -		2.70 (0.60, 4.80)
Subtotal $(l^2 = 65)$.5%, <i>P</i> = 0.001)			\diamond		-0.93 (-2.33, 0.48)
High – mGFR ≥6	50					
Schaeffner	2012	570	60.3	÷.		-2.27 (-3.52, -1.02)
Craig	2011	516	65	TI		2.40 (0.59, 4.21)
Kong	2013	977	68.3			-5.05 (-6.74, -3.36)
Michels	2010	271	72.6		_	3.70 (0.15, 7.25)
lliadis	2011	448	73.4	· · · · ·		-0.40 (-2.07, 1.27)
Valente	2014	120	74			-3.00 (-6.92, 0.92)
MacIsaac	2015	199	80			-0.06 (-3.13, 3.01)
Veronese	2014	354	87	_ _+T		-5.00 (-8.54, -1.46)
Obiols	2013	100	93.9	'		-3.50 (-7.31, 0.31)
Krones	2015	24	97.5	_		-8.00 (-14.50, -1.50)
Spithoven	2013	215	97.7			-1.30 (-3.93, 1.33)
Camargo	2011	55	98			-10.00 (-17.11, -2.89)
Sagou	2016	120	100	i		-7.00 (-11.05, -2.95)
Arreola-Guerra	2014	97	102.7			-6.09 (-12.33, 0.15)
Silveiro	2011	105	103	∎ ¦.↓_		-4.00 (-9.82, 1.82)
Camargo	2011	56	106	=	-	-2.00 (-11.27, 7.27)
Chung	2013	207	110.3			-8.00 (-11.85, -4.15)
Lujan	2012	85	116	 !		-6.79 (-11.38, -2.21)
Subtotal $(l^2 = 79)$	7%, P = 0.000)			0		-3.16 (-4.77, -1.55)
						, , , , , , , , , , , , , , , , , , , ,
				-20 -10	0	10 20
	Less bias with CKD-EPI Less bias with MDRD					

Fig. 2. Difference in mean bias from CKD-EPI and mean bias from MDRD, and pooled estimate (diamond) stratified into subgroups of high and low mGFR using random-effects metaanalysis.

Horizontal bars and diamond width denote 95% CIs, and box sizes indicate relative weight in the analysis.

Author	Year of publication	Number of subjects	Mean mGFR		Difference in accuracy P ₃₀ (95% CI)
Low – mGFR <60					
Liu	2013	332	39.7	+	0.00 (-7.56, 7.56)
Qiu	2013	176	40.7		5.60 (-4.82, 16.02)
Koppe	2013	224	41.3		1.33 (-7.04, 9.70)
Du	2011	142	41.8		-0.80 (-12.28, 10.68)
Flamant	2012	782	42.6		-0.50 (-4.36, 3.36)
Bjork	2012	996	44		-0.40 (-3.96, 3.16)
Altiparmak	2012	229	45.6		1.70 (-7.40, 10.80)
Murata	2013	2324	46.2		-0.20 (-2.69, 2.29)
	2014A	209	40.2		
Lui					3.80 (-5.75, 13.35)
Тео	2010	232	51.7		3.10 (-4.00, 10.20)
Lemoine	2013	218	51.8		-7.30 (-15.33, 0.73)
Nyman	2014	3495	52	· · · · · · · · · · · · · · · · · · ·	0.30 (-1.72, 2.32)
Cvan	2015	43	53.1		-7.00 (-22.06, 8.06)
Kilbride	2013	394	53.4		2.00 (-3.36, 7.36)
Bjork	2011	850	55		-0.40 (-4.22, 3.42)
Lopes	2013	95	55	+	4.20 (-8.47, 16.87)
Nyman	2011	850	55		-0.40 (-4.22, 3.42)
Praditpornsilpa	2011	350	55.9		5.30 (-1.74, 12.34)
Bouquegneau	2013	366	56		-4.00 (-9.99, 1.99)
Subtotal $(l^2 = 0.0\%)$	%, P = 0.855)			• • ·	0.06 (-1.00, 1.12)
High – mGFR ≥60					
Schaeffner	2012	570	60.3		7.00 (1.95, 12.05)
Lui	2014	351	60.7		2.30 (-4.73, 9.33)
Lui	2014	351	62.8		6.00 (-1.36, 13.36)
Levey	2009	3896	68	+	3.50 (1.81, 5.19)
Kong	2013	977	68.3	_	3.60 (-0.40, 7.60)
Chen	2014	139	68.8		-2.90 (-14.32, 8.52)
Michels	2010	271	72.6		3.30 (-3.04, 9.64)
lliadis	2011	448	73.4		1.90 (-3.36, 7.16)
Valente	2014	120	74		6.00 (-3.47, 15.47)
MacIsaac	2015	199	80		4.10 (-2.17, 10.37)
Veronese	2014	354	87		6.00 (-0.36, 12.36)
Jessani	2014	581	91		8.10 (2.96, 13.24)
Eriksen	2010	1621	91.7		2.00 (0.37, 3.63)
Bhuvanakrishna	2015	508	91.7		-4.00 (-7.51, -0.49)
Obiols	2013	100	93.9		6.00 (-2.27, 14.27)
Maple-Brown	2014	224	97		7.60 (0.73, 14.47)
Krones	2015	24	97.5		0.00 (-1.79, 1.79)
Spithoven	2013	215	97.7		0.00 (-3.38, 3.38)
	2013	55	98		10.00 (-3.21, 23.21)
Camargo	2011	583	98.9		
Murata			98.9 100		12.90 (8.58, 17.22)
Sagou	2016	120			0.00 (-6.46, 6.46)
Arreola-Guerra	2014	97	102.7		13.40 (1.67, 25.13)
Silveiro	2011	105	103		3.00 (-9.85, 15.85)
Tent	2010	253	103		16.00 (9.31, 22.69)
Camargo	2011	56	106		2.00 (-15.66, 19.66)
Maple-Brown	2014	340	108		5.10 (0.89, 9.31)
Chung	2013	207	110.3		7.70 (1.47, 13.93)
Lujan	2012	85	116		10.90 (4.21, 17.59)
Subtota $(l^2 = 70.2)$	2%, <i>P</i> = 0.000)	J			4.57 (2.90, 6.23)

Fig. 4. Difference in mean accuracy from CKD-EPI and mean accuracy from MDRD, and pooled estimate (diamond) stratified into subgroups of high and low mGFR using random-effects metaanalysis. P₃₀, proportion of eGFR results within 30% of mGFR result. Horizontal bars and diamond width denote 95% Cls, and box sizes indicate relative weight in the analysis.

Discussion: MDRD or CKD-EPI ?

- Lower CKD prevalence in epidemiological studies
- Better prediction of CVD => better at the population level
- Better bias in GFR >60 (90?) ml/min/1.73m² but not better precision => not better at the individual level
- Ethnicity factor: probably not better
- Impact of the analytical error is less in high GFR

The price to pay...

Relative Performance of the MDRD and CKD-EPI Equations for Estimating Glomerular Filtration Rate among Patients with Varied Clinical Presentations

Kazunori Murata,* Nikola A. Baumann,* Amy K. Saenger,* Timothy S. Larson,*[†] Andrew D. Rule,^{+‡} and John C. Lieske^{*†}

Summary

Background The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was developed using both CKD and non-CKD patients to potentially replace the Modification of Diet in Renal Disease (MDRD) equation that was derived with only CKD patients. The objective of our study was to compare the accuracy of the MDRD and CKD-EPI equations for estimating GFR in a large group of patients having GFR measurements for diverse clinical indications.

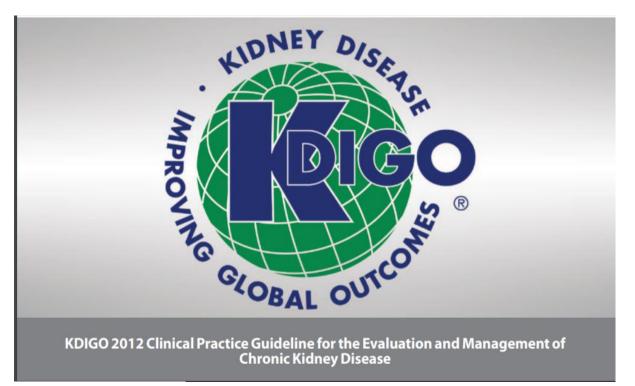
Design, setting, participants, and measurements A cross-sectional study was conducted of patients who underwent renal function assessment for clinical purposes by simultaneous measurements of serum creatinine and estimation of GFR using the MDRD and CKD-EPI equations and renal clearance of iothalamate (n = 5238).

Results Bias compared with measured GFR (mGFR) varied for each equation depending on clinical presentation. The CKD-EPI equation demonstrated less bias than the MDRD equation in potential kidney donors (-8% versus -18%) and postnephrectomy donors (-7% versus -15%). However, the CKD-EPI equation was slightly more biased than the MDRD equation in native CKD patients (6% versus 3%), kidney recipients (8% versus 1%), and other organ recipients (9% versus 3%). Among potential kidney donors, the CKD-EPI equation had higher specificity than the MDRD equation for detecting an mGFR <60 ml/min per 1.73 m² (98% versus 94%) but lower sensitivity (50% versus 70%).

Conclusions Clinical presentation influences the estimation of GFR from serum creatinine, and neither the CKD-EPI nor MDRD equation account for this. Use of the CKD-EPI equation misclassifies fewer low-risk patients as having reduced mGFR, although it is also less sensitive for detecting mGFR below specific threshold values used to define CKD stages.

Clin J Am Soc Nephrol 6: 1963-1972, 2011. doi: 10.2215/CJN.02300311

*Department of Laboratory Medicine and Pathology, *Department of Internal Medicine, Division of Nephrology and Hypertension, and *Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota


Correspondence: Dr. John C. Lieske, Mayo Clinic Division of Nephrology and Hypertension, 200 First Street SW, Rochester, MN 55905. Phone: 507-266-7960; Fax: 507-266-7891; E-mail: Lieske.John@mayo.edu

The price to pay...

• What would be your choice?

Better estimate the GFR of a <u>subject</u> with measured GFR between 90 and 120 mL/min/1.73 m²?

Better estimate the GFR of a *patient* with measured GFR between 30 and 60 mL/min/1.73 m²?

Kidney International Supplements (2013) 3, 3; doi:10.1038/kisup.2012.75

Adeera Levin, MD, FRCPC University of British Columbia Vancouver, Canada

Rudy W Bilous, MD Newcastle University and James Cook University Hospital Middlesbrough, United Kingdom

Josef Coresh, MD, PhD, MHS Johns Hopkins University Baltimore, USA

Angel LM de Francisco, MD, PhD Hospital Universitario Valdecilla Santander, Spain

Paul E de Jong, MD, PhD University Medical Center Groningen Groningen, The Netherlands

Kathryn E Griffith, BM, BS, MSc, MRCP, MRCGP University Health Centre, York University York, United Kingdom

Brenda R Hemmelgarn, MD, PhD, FRCP(C) University of Calgary Alberta, Canada

Kunitoshi Iseki, MD University Hospital of the Ryukyus Nishihara, Okinawa, Japan

WORK GROUP CO-CHAIRS

Paul E Stevens, MB, FRCP East Kent Hospitals University NHS Foundation Trust Canterbury, United Kingdom

WORK GROUP

Edmund J Lamb, PhD, FRCPath East Kent Hospitals University NHS Foundation Trust Canterbury, United Kingdom

Andrew S Levey, MD Tufts Medical Center Boston, USA

Miguel C Riella, MD, PhD, FACP Evangelic University Hospital Curitiba, Brazil

Michael G Shlipak, MD, MPH VA Medical Center, UCSF San Francisco, USA

Haiyan Wang, MD Peking University First Hospital Beijing, China

Colin T White, MD, FRCPC University of British Columbia Vancouver, Canada

Christopher G Winearls, MB, DPhil, FRCP Oxford Radcliffe Hospitals NHS Trust Oxford, United Kingdom report eGFR_{creat} in adults using the 2009 CKD-EPI creatinine equation. An alternative creatinine-based GFR estimating equation is acceptable if it has been shown to improve accuracy of GFR estimates compared to the 2009 CKD-EPI creatinine equation.

CKD-EPI: limitations = creatinine clinical limitations

Specific population: CKD-EPI is not magic!! Keep our clinical feeling!!

Anorexia Nervosa (Delanaye P, Clin Nephrol, 2009, 71, 482) Cirrhotic (Skluzacek PA, Am J Kidney Dis, 2003, 42, 1169) Intensive Care (Delanaye P, BMC Nephrology, 2014, 15, 9) Severely ill (Poggio ED, Am J Kidney Dis, 2005, 46, 242) Heart transplanted (Delanaye P, Clin Transplant, 2006, 20, 596) Kidney transplantation (Masson I, Transplantation, 2013, 95, 1211) Obese (Bouquegneau A, NDT, 2013, 28, iv122) Elderly (Schaeffner E, Ann Intern Med, 2012, 157, 471)

MDRD – CKD-EPI: nothing else?

• The Bis Equation

• The Lund-Malmö equation

• The FAS equation

• Other biomarkers: cystatin C

Schaeffner, Ann intern Med, 2012, 157, 471 Bjork, Scand J Urol Nephrol, 2012, 46, 212 Pottel H, Nephrol Dial Transplant, 2016 Seronie-Vivien, CCLM, 2008 Ulf Nyman*, Anders Grubb, Anders Larsson, Lars-Olof Hansson, Mats Flodin, Gunnar Nordin, Veronica Lindström and Jonas Björk

The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population

Clin Chem Lab Med 2014, 52(6), 815-824

Revised Lund-Malmö Study equation (LM Revised) [34]

 $e^{X-0.0158 \times Age+0.438 \times ln(Age)}$

Female	pCr<150 µmol/L:	X=2.50+0.0121×(150-pCr)
Female	pCr≥150 µmol/L:	X=2.50-0.926×ln(pCr/150)
Male	pCr<180 µmol/L:	X=2.56+0.00968×(180-pCr)
Male	pCr≥180 µmol/L:	X=2.56-0.926×ln(pCr/180)

- Lund-Malmo study
- n=3495 (chez 2847 sujets), iohexol, standardized creatinine
- Mean GFR = 52 mL/min/1,73 m²

An estimated glomerular filtration rate equation for the full age spectrum

Hans Pottel¹, Liesbeth Hoste¹, Laurence Dubourg², Natalie Ebert³, Elke Schaeffner³, Bjørn Odvar Eriksen⁴, Toralf Melsom⁴, Edmund J. Lamb⁵, Andrew D. Rule⁶, Stephen T. Turner⁶, Richard J. Glassock⁷, Vandréa De Souza⁸, Luciano Selistre⁹, Christophe Mariat¹⁰, Frank Martens¹¹ and Pierre Delanaye¹²

Example 1: A healthy 18-year-old male with a body height (*L*) of 180 cm and SCr of 0.90 mg/dL:

Paediatric equation (Schwartz): $eGFR = 0.413 \times L/SCr = 0.413 \times 180/0.90 = 83 \text{ mL/min}/1.73 \text{ m}^2$. Adult equation (CKD-EPI): $eGFR = 141 \times (0.90/0.90)^{-1.209}$ $0.993^{18} = 124 \text{ mL/min}/1.73 \text{ m}^2$. +50%

N=6870, 735 children

Age, years	Height ^a , cm	Q ^b , μmol/L (mg/dL)
Boys and girls		
1	75.0	23 (0.26)
2	87.0	26 (0.29)
3	95.5	27 (0.31)
4	102.5	30 (0.34)
5	110.0	34 (0.38)
6	116.7	36 (0.41)
7	123.5	39 (0.44)
8	129.5	41 (0.46)
9	135.0	43 (0.49)
10	140.0	45 (0.51)
11	146.0	47 (0.53)
12	152.5	50 (0.57)
13	159.0	52 (0.59)
14	165.0	54 (0.61)
Male adolescents		
15	172.0	64 (0.72)
16	176.0	69 (0.78)
17	178.0	72 (0.82)
18	179.0	75 (0.85)
19	180.0	78 (0.88)
Male adults		
≥20	≥181.5	80 (0.90)
Female adolescents		
15	164.5	57 (0.64)
16	166.0	59 (0.67)
17	166.5	61 (0.69)
18	167.0	61 (0.69)
19	167.5	62 (0.70)
Female adults		
≥20	≥168.0	62 (0.70)

Table 1. Q-values [=median serum creatinine in μ mol/L (mg/dL)] for the FAS equation, according to age or height (from refs [4, 5, 10])

^aHeight is the median height of a child or adolescent at the specified age (Belgian growth curves).

Pooled data eGFR equivalent RMSE Constant bias Proportional bias P10, % P30, % (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) Children and adolescents <18 years $-1.7(-3.1, -0.2)^{*,\dagger}$ 1.01 (0.99, 1.03)*,[†] All (n = 735)FAS 20.1 (18.5, 21.6) 40.1 (36.6, 43.7) 87.5 (85.1, 89.9)* $-2.7(-4.1, -1.3)^{*, \ddagger}$ 1.00 (0.98, 1.01)*,[‡] mGFR = 94.588.8 (86.6, 91.1)[†] FAS-height 19.8 (18.1, 21.4) 41.9 (38.3, 45.5) $6.0 (4.5, 7.5)^{\dagger, \ddagger}$ 1.09 (1.07, 1.11)^{†,‡} 83.8 (81.1, 86.5)*,* Schwartz 21.7 (19.5, 23.7) 40.1 (36.6, 43.7) 6.2 (3.6, 8.9)*,* 1.15 (1.09, 1.21)*,[†] mGFR < 60 (n = 99)FAS 14.6 (8.5, 18.9) 34.3 (24.8, 43.9) 75.8 (67.2, 84.3) FAS-height 13.5 (4.2, 18.6) 4.7 (2.2, 7.2)*,[‡] 1.12 (1.06, 1.17)*,‡ 39.4 (25.6, 49.2) 77.8 (69.4, 86.1)* mGFR = 45.1

9.4 (6.7, 12.2)^{†,‡}

 $-2.9(-4.5, -1.3)^{*,\dagger}$

 $-3.8(-5.4, -2.3)^{*,*}$

5.4 (3.7, 7.1)^{†,‡}

5.0 (4.5, 5.5)*

6.3 (5.9, 6.8)*

13.4 (12.6, 14.2)*

12.7 (11.8, 13.5)*

2.2 (1.6, 2.7)*

4.2 (3.7, 4.7)*

 $-1.1(-1.6, -0.6)^*$

5.6 (5.1, 6.2)*

-1.2(-1.9, -0.6)

2.2 (1.6, 2.7)*

6.9 (6.2, 7.6)*

3.7(3.0, 4.4)

 $-5.2(-6.1, -4.4)^*$

4.1 (3.2, 4.9)*

-8.6(-9.7, -7.5)

16.7 (8.2, 22.1)

20.8 (19.1, 22.4)

20.6 (18.9, 22.3)

22.4 (20.0, 24.5)

17.2 (16.6, 17.8)

16.4 (15.8, 16.9)

19.0 (17.7, 20.2)

19.2 (18.1, 20.3)

16.6 (15.9, 17.2)*

15.3 (14.7, 15.8)*

11.2 (10.7, 11.7)*

12.9 (12.4, 13.4)*

12.0 (11.4, 12.6)

9.5 (8.8, 10.1)*

13.1 (12.3, 13.8)*

9.7 (9.0, 10.3)

13.1 (12.3, 13.8)

12.7 (12.1, 13.3)

14.8 (13.7, 15.7)

Schwartz

FAS-height

Schwartz

CKD-EPI

CKD-EPI

CKD-EPI

CKD-EPI

CKD-EPI

CKD-EPI

FAS

FAS

FAS

FAS

FAS

BIS1[®]

FAS

BIS1^a

BIS1^a

FAS

 $mGFR \ge 60 \ (n = 636)$

mGFR < 60 (n = 1089)

 $mGFR \ge 60 \ (n = 3282)$

mGFR = 102.2

Adults 18-70 years All (n = 4371)

mGFR = 78.6

mGFR = 42.3

mGFR = 90.6

mGFR = 55.6

mGFR = 40.7

mGFR = 74.4

Older adults \geq 70 years All (n = 1764)

mGFR < 60 (n = 986)

 $mGFR \ge 60 \ (n = 778)$

1.22 (1.16, 1.28)^{†,‡}

0.99 (0.97, 1.00)*,*

0.98 (0.96, 0.99)*,[‡]

 $1.07 (1.05, 1.09)^{\dagger, \ddagger}$

1.12 (1.11, 1.12)*

1.13 (1.12, 1.14)*

1.35 (1.33, 1.37)*

1.31 (1.29, 1.34)*

1.04 (1.03, 1.04)*

1.07 (1.06, 1.07)*

1.02 (1.01, 1.03)*

1.13 (1.12, 1.15)*

1.05 (1.03, 1.07)

1.09 (1.07, 1.11)*

1.19 (1.17, 1.21)*

1.16 (1.13, 1.18)

0.94 (0.93, 0.95)*

1.07 (1.06, 1.08)*

0.90 (0.88, 0.91)

31.3 (22.0, 40.6)

41.0 (37.2, 44.9)

42.3 (38.4, 46.1)

41.5 (37.7, 45.3)

40.4 (38.9, 41.9)*

42.5 (41.1, 44.0)*

19.1 (16.8, 21.4)*

21.9 (19.4, 24.3)*

47.5 (45.8, 49.2)*

49.4 (47.7, 51.1)*

39.7 (37.5, 42.0)*

35.0 (32.8, 37.3)*

34.7 (32.0, 37.4)

36.6 (33.6, 39.6)*

29.5 (26.7, 32.4)*

35.3 (31.8, 38.8)

43.7 (40.2, 47.2)

42.0 (38.6, 45.5)

33.9 (29.6, 38.1)

70.7 (61.6, 79.8)*

89.3 (86.9, 91.7)*

90.6 (88.3, 92.8)[†]

85.8 (83.1, 88.6)*,[†]

81.6 (80.4, 82.7)

81.9 (80.7, 83.0)

52.2 (49.3, 55.2)*

55.2 (52.2, 58.1)*

91.3 (90.3, 92.3)

90.7 (89.7, 91.7)

86.1 (84.4, 87.7)*

77.6 (75.7, 79.6)*

81.8 (79.7, 84.0) 81.0 (78.6, 83.5)*

67.7 (64.8, 70.7)*

75.4 (72.2, 78.5)

92.4 (90.6, 94.3)

90.1 (88.0, 92.2)

91.5 (89.0, 94.0)

Table 3. Prediction performance results of different eGFR equations on the pooled databases according to age group and measured GFR categories (mGFR below or above 60 mL/min/1.73 m²)

The same symbols (*, *, *) within each subgroup and column indicate significant differences (paired <i>t</i> -test for constant and proportional bias, McNemar's test for P10 and P30 = % of subjects
with an eGFR value within 10% and 30% of measured GFR).

^aFor the BIS1 performance results, the data (n= 570) from the BIS1 study were not included (therefore, no comparisons with FAS and CKD-EPI were made).

MDRD – CKD-EPI: nothing else?

• The Bis Equation

• The Lund-Malmö equation

• The FAS equation

• Other biomarkers: cystatin C

Schaeffner, Ann intern Med, 2012, 157, 471 Bjork, Scand J Urol Nephrol, 2012, 46, 212 Pottel H, Nephrol Dial Transplant, 2016 Seronie-Vivien, CCLM, 2008

Cystatin C

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Estimating Glomerular Filtration Rate from Serum Creatinine and Cystatin C

Lesley A. Inker, M.D., Christopher H. Schmid, Ph.D., Hocine Tighiouart, M.S.,
 John H. Eckfeldt, M.D., Ph.D., Harold I. Feldman, M.D., Tom Greene, Ph.D.,
 John W. Kusek, Ph.D., Jane Manzi, Ph.D., Frederick Van Lente, Ph.D.,
 Yaping Lucy Zhang, M.S., Josef Coresh, M.D., Ph.D., and Andrew S. Levey, M.D.,
 for the CKD-EPI Investigators*

Characteristic	Development and Internal Validation (N = 5352)	External Validation (N = 1119)	P Value
Age — yr	47±15	50±17	< 0.001
Age group — no. (%)			
<40 yr	2008 (38)	357 (32)	< 0.001
40–65 yr	2625 (49)	530 (47)	
>65 yr	719 (13)	232 (21)	
Male sex — no. (%)	3107 (58)	663 (59)	0.46
Black race — no. (%)†	2123 (40)	30 (3)	<0.001
Diabetes — no. (%)	1726 (32)	594 (53)	<0.001
Body-mass index‡			
Mean	28±6	25±4	<0.001
<20— no. (%)	214 (4)	81 (7)	< 0.001
20–24 — no. (%)	1585 (30)	503 (45)	
25–30 — no. (%)	1881 (35)	386 (35)	
>30— no. (%)	1671 (31)	149 (13)	
Mean weight — kg	83±20	74±15	< 0.001
Mean height — cm	171±10	170±9	0.017
Mean body-surface area — m²	1.94±0.24	1.85±0.21	< 0.001
Mean serum cystatin C — ml/liter	1.4±0.7	1.5±0.8	0.01
Mean serum creatinine — mg/dl§	1.6±0.9	1.6±1.1	0.15
Mean measured GFR — ml/min/1.73 m² of body-surface area	68±39	70±41	0.13
Measured GFR — no. (%)			
<15 ml/min/1.73 m²	160 (3)	51 (5)	< 0.001
15–29 ml/min/1.73 m²	785 (15)	166 (15)	
30–59 ml/min/1.73 m²	1765 (33)	316 (28)	
60–89 ml/min/1.73 m ²	1105 (21)	215 (19)	
90–119 ml/min/1.73 m ²	862 (16)	199 (18)	
>120 ml/min/1.73 m²	675 (13)	172 (15)	

Table 2. Creatinine Equation (CKD-EPI 2009), Cystatin C Equation (CKD-EPI 2012), and Creatinine–Cystatin C Equation (CKD-EPI 2012) for Estimating GFR, Expressed for Specified Sex, Serum Creatinine Level, and Serum Cystatin C Level.*

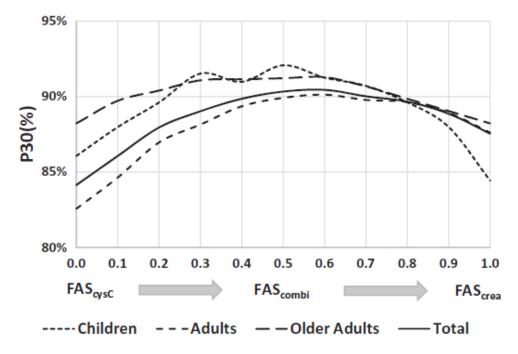
Basis of Equation and Sex	Serum Creatinine†	Serum Cystatin C	Equation for Estimating GFR
	mg/dl	mg/liter	
CKD-EPI creatinine equation			
Female	≤0.7		$144 \times (Scr/0.7)^{-0.329} \times 0.993^{A_{ge}} \times 1.159$ if black]
Female	>0.7		144×(Scr/0.7) ^{-1.209} ×0.993 ^{Age} [×1.159 if black]
Male	≤0.9		$141 \times (Scr/0.9)^{-0.411} \times 0.993^{A_{ge}} \times 1.159$ if black]
Male	>0.9		141×(Scr/0.9) ^{-1.209} ×0.993 ^{Age} [×1.159 if black]
CKD-EPI cystatin C equation§			
Female or male		≤0.8	133×(Scys/0.8) ^{-0.499} ×0.996 ^{Age} [×0.932 if female]
Female or male		>0.8	133×(Scys/0.8) ^{-1.328} ×0.996 ^{Age} [×0.932 if female]
CKD-EPI creatinine-cystatin C equation¶			
Female	≤0.7	≤0.8	$130 \times (Scr/0.7)^{-0.248} \times (Scys/0.8)^{-0.375} \times 0.995^{A_{ge}} [\times 1.08 \text{ if black}]$
		>0.8	$130 \times (Scr/0.7)^{-0.248} \times (Scys/0.8)^{-0.711} \times 0.995^{A_{ge}} [\times 1.08 \text{ if black}]$
Female	>0.7	≤0.8	$130 \times (Scr/0.7)^{-0.601} \times (Scys/0.8)^{-0.375} \times 0.995^{A_{ge}} [\times 1.08 \text{ if black}]$
		>0.8	$130 \times (Scr/0.7)^{-0.601} \times (Scys/0.8)^{-0.711} \times 0.995^{A_{ge}} [\times 1.08 \text{ if black}]$
Male	≤0.9	≤0.8	$135 \times (Scr/0.9)^{-0.207} \times (Scys/0.8)^{-0.375} \times 0.995^{A_{ge}} [\times 1.08 \text{ if black}]$
		>0.8	$135 \times (Scr/0.9)^{-0.207} \times (Scys/0.8)^{-0.711} \times 0.995^{Age} [\times 1.08 \text{ if black}]$
Male	>0.9	≤0.8	$135 \times (Scr/0.9)^{-0.601} \times (Scys/0.8)^{-0.375} \times 0.995^{A_{ge}} [\times 1.08 \text{ if black}]$
		>0.8	$135 \times (Scr/0.9)^{-0.601} \times (Scys/0.8)^{-0.711} \times 0.995^{Age} [\times 1.08 \text{ if black}]$

(2012) in the External-Validation Data Set Comprising 111	9 Participants.*			
Variable		Estima	ted GFR	
	Overall	<60	60-89	≥90
		ml/min/1.73 m² c	of body-surface area	
Bias — median difference (95% CI)				
Creatinine equation	3.7 (2.8 to 4.6)	1.8 (1.1 to 2.5)	6.6 (3.5 to 9.2)	11.1 (8.0 to 12.5)
Cystatin C equation	3.4 (2.3 to 4.4)	0.4 (-0.5 to 1.4)	6.0 (4.6 to 8.5)	8.5 (6.5 to 11.2)
Creatinine-cystatin C equation	3.9 (3.2 to 4.5)	1.3 (0.5 to 1.8)	6.9 (5.0 to 8.9)	10.6 (9.5 to 12.7)
Average of creatinine and cystatin C†	3.5 (2.8 to 4.1)	0.4 (-0.3 to 0.8)	6.5 (4.6 to 8.4)	11.9 (9.9 to 13.9)
Precision — IQR of the difference (95% CI)				
Creatinine equation	15.4 (14.3 to 16.5)	10.0 (8.9 to 11.0)	19.6 (17.3 to 23.2)	25.0 (21.6 to 28.1)
Cystatin C equation	16.4 (14.8 to 17.8)	11.0 (10.0 to 12.4)	19.6 (16.1 to 23.1)	22.6 (18.8 to 26.3)
Creatinine-cystatin C equation	13.4 (12.3 to 14.5)	8.1 (7.3 to 9.1)	15.9 (13.9 to 18.1)	18.8 (16.8 to 22.5)
Average of creatinine and cystatin C equations†	13.9 (12.9 to 14.7)	7.9 (7.1 to 9.0)	15.8 (13.9 to 17.7)	18.6 (16.1 to 22.2)
Accuracy — % (95% CI)‡				
1-P ₃₀				
Creatinine equation	12.8 (10.9 to 14.7)	16.6 (13.6 to 19.7)	10.2 (6.4 to 14.2)	7.8 (5.1 to 11.0)
Cystatin C equation	14.1 (12.2 to 16.2)	21.4 (18.2 to 24.9)	12.7 (8.5 to 17.4)	2.2 (0.6 to 3.9)
Creatinine-cystatin C equation	8.5 (7.0 to 10.2)	13.3 (10.7 to 16.1)	5.3 (2.7 to 8.2)	2.3 (0.9 to 4.2)
Average of creatinine and cystatin C equations†	8.2 (6.7 to 9.9)	12.1 (9.5 to 14.8)	6.4 (3.6 to 9.7)	2.9 (1.3 to 4.9)
1-P ₂₀				
Creatinine equation	32.9 (30.1 to 35.7)	37.2 (33.1 to 41.2)	31.1 (25.1 to 37.4)	26.5 (21.7 to 31.4)
Cystatin C equation	33.0 (30.3 to 35.7)	42.1 (38.2 to 46.1)	29.3 (23.6 to 35.4)	19.4 (15.4 to 23.7)
Creatinine-cystatin C equation	22.8 (20.4 to 25.2)	28.6 (25.1 to 32.4)	17.8 (13.3 to 22.9)	16.2 (12.4 to 20.5)
Average of creatinine and cystatin C equations†	23.7 (21.3 to 26.1)	29.1 (25.7 to 32.8)	17.6 (13.2 to 22.4)	18.8 (14.6 to 23.2)

Original Article

Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C

Hans Pottel¹, Pierre Delanaye², Elke Schaeffner³, Laurence Dubourg⁴, Bjørn Odvar Eriksen⁵, Toralf Melsom⁵, Edmund J. Lamb⁶, Andrew D. Rule⁷, Stephen T. Turner⁷, Richard J. Glassock⁸, Vandréa De Souza⁹, Luciano Selistre^{9,10}, Karolien Goffin¹¹, Steven Pauwels^{12,13}, Christophe Mariat¹⁴, Martin Flamant¹⁵ and Natalie Ebert³


$$FAS_{cysC} = \frac{107.3}{\frac{ScysC}{Q_{cysC}}} \times \left[0.988^{(Age-40)} \text{ when } age > 40 \text{ years} \right].$$

$$\begin{split} FAS_{combi} = & \frac{107.3}{\alpha \times \frac{Scr}{Q_{crea}} + (1 - \alpha) \times \frac{ScysC}{Q_{cysC}}} \\ & \times \left[0.988^{(Age-40)} \text{ when } age > 40 \text{ years} \right] \end{split}$$

Group	n	No. of males	No. of females	mGFR	Scr	ScysC
Children ≤ 18 years	368	193	175	89.2 ± 30.4	0.65 ± 0.31	1.15 ± 0.42
Adults 18-70 years	4295	2301	1994	80.2 ± 25.6	1.00 ± 0.50	0.99 ± 0.51
Older adults \geq 70 years	1469	771	698	58.5 ± 20.0	1.13 ± 0.52	1.24 ± 0.51
Total	6132	3265	2867			

n, number of patients; mGFR, measured glomerular filtration rate (mL/min/1.73 m²); Scr, serum creatinine (mg/dL); ScysC, serum cystatin C (mg/L).

Comparaison créatinine/cystatine C

FIGURE 3: P30 as a function of the weighting factor α for the different age groups.

Cystatin C

- Combined
- Better "alone" in pediatrics and very low BMI
- Cost-effectiveness?
- At the individual level, the imprecision remains...

REVIEWS

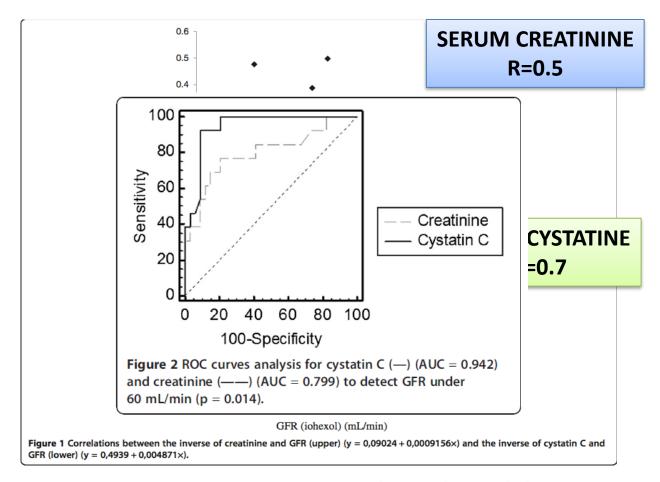
The applicability of eGFR equations to different populations

Pierre Delanaye and Christophe Mariat

Nat. Rev. Nephrol. 9, 513-522 (2013)

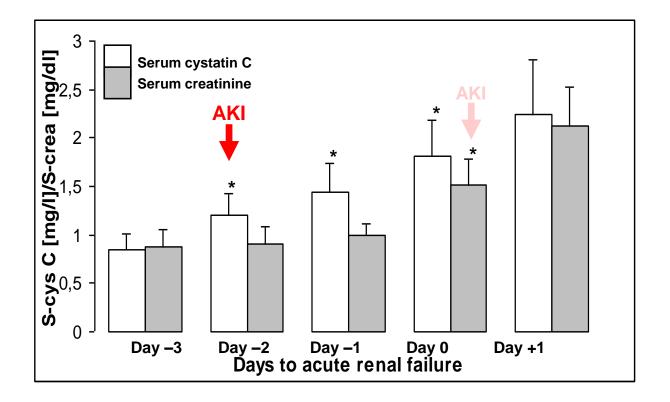
Performance of equations in specific populations

Delanaye et al. BMC Nephrology 2014, 15:9 http://www.biomedcentral.com/1471-2369/15/9


RESEARCH ARTICLE

Open Access

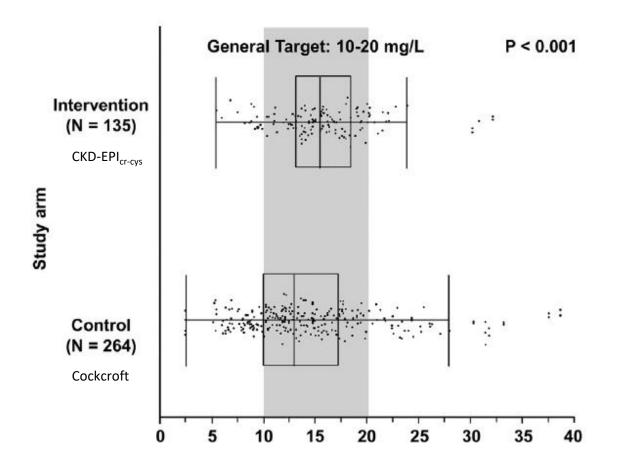
Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C *versus* serum creatinine


Pierre Delanaye^{1*}, Etienne Cavalier², Jérôme Morel³, Manolie Mehdi⁴, Nicolas Maillard⁴, Guillaume Claisse⁴, Bernard Lambermont⁵, Bernard E Dubois¹, Pierre Damas⁶, Jean-Marie Krzesinski¹, Alexandre Lautrette⁷ and Christophe Mariat⁴

47 patients hemodynamiccaly stable Avec Scr <1,5 mg/dL GFR measured by iohexol urinary clearance

Delanaye et al. BMC Nephrology 2014, 15:9

DETECTION OF AKI


Herget-Rosenthal et al., Kidney Int 2004 85 adultes, general ICU, S-creatinine rise > 50%

Original Investigation

Cystatin C–Guided Vancomycin Dosing in Critically III Patients: A Quality Improvement Project

Erin Frazee, PharmD, MS,¹ Andrew D. Rule, MD,^{2,3} John C. Lieske, MD,^{2,4} Kianoush B. Kashani, MD,^{2,5} Jason N. Barreto, PharmD,¹ Abinash Virk, MD,⁶ Philip J. Kuper, PharmD,¹ Ross A. Dierkhising, MS,⁷ and Nelson Leung, MD²

Cystatin C

- Potentially of interest
- Relatively few studies
- There are also non-GFR determinants of cystatin C
- Drug dosage
- More expensive
- Cost-effectiveness not definitively proven

What about eGFR equations?

• They are valid at the equilibrium

Delanaye et al. BMC Nephrology 2014, **15**:9 http://www.biomedcentral.com/1471-2369/15/9

RESEARCH ARTICLE

Open Access

Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C *versus* serum creatinine

Pierre Delanaye^{1*}, Etienne Cavalier², Jérôme Morel³, Manolie Mehdi⁴, Nicolas Maillard⁴, Guillaume Claisse⁴, Bernard Lambermont⁵, Bernard E Dubois¹, Pierre Damas⁶, Jean-Marie Krzesinski¹, Alexandre Lautrette⁷ and Christophe Mariat⁴

Table 3 Predictive performances of the MDRD, CKD-EPI SCF, CKD-EPI SCysC, and combined equations in ICO patients						
GFR estimates	Bias (mL/min)	Absolute Precision mL/min	Accuracy 30%			
MDRD	+35	70	40			
CKD-EPI	+ 1	37	60*			
CKD-EPI Scyst	-26	36	53			
CKD-EPI combined	-12	35	62			

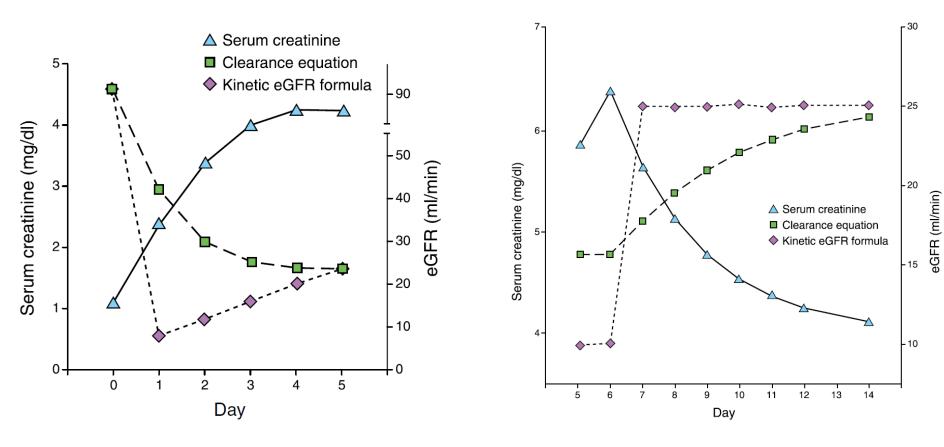
Table 3 Predictive performances of the MDRD, CKD-EPI SCr, CKD-EPI SCysC, and combined equations in ICU patients

*: p < 0.05 versus MDRD study equation.

Retooling the Creatinine Clearance Equation to Estimate Kinetic GFR when the Plasma Creatinine Is Changing Acutely

Sheldon Chen

Division of Nephrology and Hypertension, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Illinois


JAm Soc Nephrol 24: 877-888, 2013.

- Kinetic eGFR: to analyze kidney function in the acute setting
- Initial creatinine content, Vd, creatinine production rate and the quantitative difference between consecutive Scr over a short period of time

Kinetic GFR

$$KeGFR = \frac{SSP_{Cr} \times CrCl}{MeanP_{Cr}} \times \left(1 - \frac{24 \times \Delta P_{Cr}}{\Delta Time(h) \times Max \Delta P_{Cr}/Day}\right)$$

SSPCr= baseline creatinine (the lowest known for the patient) CrCl= MDRD or CKD-EPI Mean PCr= mean of considered creatinine ΔPCr= changes in creatinine Δtime=interval in hours between two creatinine ΔMaxPcr=the maximal change (increase) in the plasma creatinine that can occur per day if renal function is completely lost ~ 1,7 mg/dL

RESEARCH ARTICLE

Kinetic Estimation of GFR Improves Prediction of Dialysis and Recovery after Kidney Transplantation

Timothy J. Pianta^{1,2}*, Zoltan H. Endre^{1,3}, John W. Pickering³, Nicholas A. Buckley⁴, Philip W. Peake¹

1 Prince of Wales Clinical School, University of New South Wales, Sydney, Australia, 2 Melbourne Medical School, University of Melbourne, Melbourne, Australia, 3 Department of Medicine, University of Otago, Christchurch, New Zealand, 4 Clinical Pharmacology, University of Sydney, Sydney, Australia

* timothy.pianta@nh.org.au

PLOS ONE | DOI:10.1371/journal.pone.0125669 May 4, 2015

Kinetic eGFR and Novel AKI Biomarkers to Predict Renal Recovery

Antoine Dewitte,*[†] Olivier Joannès-Boyau,* Carole Sidobre,* Catherine Fleureau,* Marie-Lise Bats,[‡] Philippe Derache,[‡] Sébastien Leuillet,[§] Jean Ripoche,[†] Christian Combe,^{†∥} and Alexandre Ouattara*[¶]

Clin J Am Soc Nephrol 10: 1900-1910, 2015.

USI

- Monitoring diuresis and serum creatinine
- Cystatin C: maybe of interest
- eGFR equations lack of precision
- Kinetic eGFR: simple, based on creatinine, but need to be validated in future studies
- Creatinine: maybe the exception (to be repeated)

The GFR and GFR decline cannot be accurately estimated in type 2 diabetics

Flavio Gaspari^{1,7}, Piero Ruggenenti^{1,2,7}, Esteban Porrini^{1,3,7}, Nicola Motterlini¹, Antonio Cannata¹, Fabiola Carrara¹, Alejandro Jiménez Sosa³, Claudia Cella¹, Silvia Ferrari¹, Nadia Stucchi¹, Aneliya Parvanova¹, Ilian Iliev¹, Roberto Trevisan⁴, Antonio Bossi⁵, Jelka Zaletel⁶ and Giuseppe Remuzzi^{1,2}; for the GFR Study Investigators

¹Clinical Research Center for Rare Diseases 'Aldo & Cele Dacco', Mario Negri Institute for Pharmacological Research, Bergamo, Italy; ²Unit of Nephrology, Azienda Ospedaliera 'Ospedali Riuniti di Bergamo', Bergamo, Italy; ³Research Unit, Hospital Universitario de Canarias, Tenerife, Spain; ⁴Unit of Diabetology, Azienda Ospedaliera 'Ospedali Riuniti di Bergamo', Bergamo, Italy; ⁵Unit of Diabetology, Treviglio Hospital, Treviglio, Italy and ⁶Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center, Ljubljana, Slovenia

- Diabetic
- GFR measured by iohexol
- n=600
- Hyperfiltrating (GFR>120 mL/min/1.73 m²) n=90
- CKD (<80 mL/min/1.73 m²) n=76

	Accuracy		Bias		Precision	
	30%		Mean		SD	
	MDRD	CKD-EPI	MDRD	CKD-EPI	MDRD	CKD-EPI
All	85	91	-16	-13	17	16
Normofiltrating (80-120 mL/min/1.73 m²)	88	96	-15	-11	14	12
Hypofiltrating (lower than 80 mL/min/1.73 m²)	88	82	+0.6	+4	16	16
Hyperfiltrating (over 120 mL/min/1.73 m ²)	68	77	-33	-33	18	13

All hyperfiltrating status are missed...

Conclusions: eGFR a double message ?

 For General Physicians: MDRD (or CKD-EPI or FAS) is probably the best and simplest way to estimate GFR

• For Nephrologists:

MDRD (or CKD-EPI) is not "magic", keep our critical feeling, there are several limitations we have to know

Go back to measured GFR if

necessary

REVIEWS

The applicability of eGFR equations to different populations

Pierre Delanaye and Christophe Mariat

Today the true question is maybe not about which equation is the best

- When is it necessary to measure GFR?
- « Measuring GFR is costly and cumbersome »

Summary

• Estimating GFR (creatinine, eGFR, cystatin C)

• Measuring GFR

Measuring GFR

• WHY?

• How?

Indication = the patient

- Serum creatinine is potentially incorrect
- High Precision required (drug toxicity, kidney donation)

Clin Pharmacokinet (2017) 56:193–205 DOI 10.1007/s40262-016-0434-z

ORIGINAL RESEARCH ARTICLE

Discrepancies between the Cockcroft–Gault and Chronic Kidney Disease Epidemiology (CKD-EPI) Equations: Implications for Refining Drug Dosage Adjustment Strategies

Pierre Delanaye¹ · Fabrice Guerber² · André Scheen³ · Timothy Ellam⁴ · Antoine Bouquegneau¹ · Dorra Guergour⁵ · Christophe Mariat⁶ · Hans Pottel⁷

Males		1															- 1	1										
	Age	50	Length	177																								
	BSA	W/Scr	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3
	1,20	25	-25,4	-29,4	-31,9	-33,4	-34,3	-29,5	-25,7	-22,7	-20,2	-18,1	-16,4	-14,9	-13,6	-12,5	-11,5	-10,7	-9,9	-9,2	-8,6	-8,1	-7,6	-7,1	-6,7	-6,3	-6,0	-5,7
	1,30	30	-19,9	-25,6	-29,1	-31,4	-32,9	-28,2	-24,4	-21,4	-19,0	-16,9	-15,2	-13,8	-12,5	-11,4	-10,5	-9,6	-8,9	-8,3	-7,7	-7,2	-6,7	-6,3	-5,9	-5,5	-5,2	-4,9
	1,39	35	-13,9	-21,1	-25,8	-28,9	-31,0	-26,3	-22,7	-19,8	-17,4	-15,4	-13,8	-12,4	-11,2	-10,1	-9,2	-8,4	-7,8	-7,1	-6,6	-6,1	-5,7	-5,3	-4,9	-4,6	-4,3	-4,0
	1,47	40	-7,3	-16,2	-22,0	-25,9	-28,7	-24,2	-20,7	-17,8	-15,6	-13,7	-12,1	-10,8	-9,6	-8,7	-7,8	-7,1	-6,4	-5,9	-5,4	-4,9	-4,5	-4,1	-3,8	-3,5	-3,2	-3,0
	1,54	45	-0,3	-10,9	-17,9	-22,7	-26,1	-21,7	-18,4	-15,7	-13,5	-11,8	-10,3	-9,0	-8,0	-7,1	-6,3	-5,6	-5,0	-4,5	-4,0	-3,6	-3,3	-2,9	-2,6	-2,4	-2,1	-1,9
	1,62	50	7,0	-5,3	-13,4	-19,1	-23,2	-19,1	-15,9	-13,3	-11,3	-9,7	-8,3	-7,1	-6,2	-5,4	-4,6	-4,0	-3,5	-3,0	-2,6	-2,3	-1,9	-1,7	-1,4	-1,2	-1,0	-0,8
	1,68	55	14,7	0,6	-8,8	-15,3	-20,1	-16,2	-13,2	-10,8	-9,0	-7,4	-6,2	-5,2	-4,3	-3,5	-2,9	-2,4	-1,9	-1,5	-1,1	-0,8	-0,6	-0,3	-0,1	0,1	0,3	0,4
	1,75	60	22,5	6,7	-3,9	-11,3	-16,8	-13,1	-10,4	-8,2	-6,5	-5,1	-4,0	-3,1	-2,3	-1,6	-1,1	-0,6	-0,2	0,1	0,4	0,7	0,9	1,1	1,3	1,4	1,5	1,6
	1,81	65	30,6	13,1	1,2	-7,2	-13,3	-9,9	-7,4	-5,4	-3,9	-2,7	-1,7	-0,9	-0,2	0,3	0,8	1,2	1,5	1,8	2,0	2,2	2,4	2,5	2,6	2,8	2,8	2,9
	1,86	70	38,9	19,6	6,5	-2,8	-9,7	-6,6	-4,3	-2,6	-1,2	-0,2	0,7	1,4	1,9	2,4	2,7	3,0	3,3	3,5	3,7	3,8	3,9	4,0	4,1	4,1	4,2	4,2
	1,92	75	47,3	26,2	11,9	1,7	-5,9	-3,2	-1,1	0,4	1,5	2,4	3,1	3,7	4,1	4,5	4,7	5,0	5,1	5,3	5,4	5,4	5,5	5,5	5,6	5,6	5,6	5,6
	1,97	80	56,0	33,0	17,4	6,3	-2,0	0,4	2,1	3,4	4,4	5,1	5,7	6,1	6,4	6,6	6,8	6,9	7,0	7,1	7,1	7,1	7,1	7,1	7,1	7,0	7,0	6,9
	2,02	85	64,7	39,9	23,1	11,0	2,0	4,0	5,5	6,6	7,3	7,8	8,2	8,5	8,7	8,8	8,9	8,9	8,9	8,9	8,9	8,8	8,7	8,7	8,6	8,5	8,4	8,3
	2,07	90	73,6	47,0	28,8	15,8	6,1	7,8	9,0	9,7																10,0	9,9	9,8
	2,12	95	82,5	54,1	34,7	20,7																						11,2
	2,17	100	91,6	61,4	40,6	25,7																						12,7
	2,21	105	100,8	68,7	46,7	30,8																						14,1
	2,26	110	110,1	76,1	52,8	35,9	23,2	23,5	23,4	23,1	22,7	22,3	21,8	21,3	20,8	20,4												15,6
	2,30	115	119,4	83,6	59,0	41,1	27,7	27,5	27,1	26,6	26,0	25,3	24,7	24,0	23,4	22,8	22,2	21,6	21,1	20,5	20,0							17,1
	2,34	120	128,9	91,2	65,2	46,4	32,3	31,7	30,9	30,1	29,2	28,4	27,5	26,7	25,9	25,2	24,5	23,8	23,2	22,6	22,0	21,4	20,9	20,4				18,6
	2,38	125	138,4	98,9	71,6	51,8	36,8	35,8	34,7	33,6	32,5	31,4	30,4	29,4	28,5	27,6	26,8	26,0	25,3	24,6	23,9	23,3	22,7	22,2	21,6	21,1	20,6	20,2
Males	1		1	1	1																				1			
	Age	60	Length	177																					-			
	BSA	W/Scr	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1.8	1,9	2	2,1	2.2	2.3	2,4	2.5	2.6	2.7	2,8	2,9	3
	1,20	25	-	-29,7					_	_		_		_	_		-11,4		-9,9		-8,6		-7,6					
	1,30	30	-	-26,6			-32,5						-15,3					-9,8	-9,1								-5,4	
	1,39	35		-22,9			-31,0		-22,9				-14,1					-8,8	-8,1						-5,3		-4,6	- 1 C
	1,47	40	-	-18,7			-29,2							-11.4			-8,4	-7,7	-7,0		- C				- 1 C		-3,8	
	1,54	45	-5,1			-24,2										-7,9	-7,1	-6,5	-5,8					- C.		-3,1	1.1	
	1,62	50	1,1	_		-21,2						-10,9		-8,4	-7,4	-6,5		-5,1	-4,6			- C.		- C			-1.8	
	1,68	55	7,7			_	-22,0	_	-15,0				-7,8	-6,7	-5,7	-5,0		-3,7	-3,2						- C		· · · ·	
	1,75	60	14.5		_		-19,2		-12,6			-7,1	-5,9	-4,9		-3,3		-2,2	-1,8		- C.						0,3	0,5
	1,81	65	21,5				-16,3		-10.1			-5,0		-3,0		-1,6		-0,7	-0,3	- C							1,4	
	1,86	70	28,7			_			-7,5	-5,6		-2,8	-1,9	-1,1	-0,4	0,1	0,6	0,9	1,3					2,3	- C.		2,6	
	1,92	75	36,0		5,3			-7,0	-4,7	-3,0		-0,6	0,2	0,9	1,5	1,9	2,3	2,6	2,8					3,6			3,8	3.8
	1,97	80	43,5				-6,7	-4,0	-1.9	-0,4	0,8	1,7	2,4	3,0	3,4	3,8	4,1	4,3	4,5			4,8		4,9			5.0	
	2,02	85	51,1			4,5	-3,3	-0,8	1,0	2,3	3,3	4.0	4,6	5,1	5,4	5,7	5,9	6,0	6,1		- C.	6,3		6,3			6,3	6,2
	2,02	90	58,8						3,9	5,0		6,4	6,9	7,2	7,4	7,6		7,8	7,8					7,7			7.5	
	2,07	95	66,7	-			3,8		6,9	7,8		8,9	9,2	9,4	9,5	9,6		9,6	9,5								8.8	
	2,12	100	74,6				7,5		_			11,4				11.6		11,4				- ,-	10,7	/ -	_		- ,-	
	2,17	100	82,6																									
	2,21	110	90,7			,-																						
	2,20	115	98,9			30,6																						
	2,30	115	107,1							22,6					20,4													
	2,34	120	-	80,9								24,5			22,6			20,9										
	2,38	125	115,5	80,9	57,1	39,8	20,8	20,7	20,2	25,7	25,1	24,5	23,8	23,2	22,0	22,0	21,4	20,9	20,4	19,9	19,4	6,01	10,0	10,1	17,7	17,3	10,9	10,0

17 December 2015 EMA/CHMP/83874/2014 Committee for Medicinal Products for Human use (CHMP)

Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function

5.2. Measures of renal function

In order to have a reference measure of renal function that is independent of clinical practice at the time of conduct of the pharmacokinetic study, it is recommended that a method accurately measuring GFR using an exogenous marker is used to determine renal function in the subjects in the pharmacokinetic study, if possible.

Measuring GFR

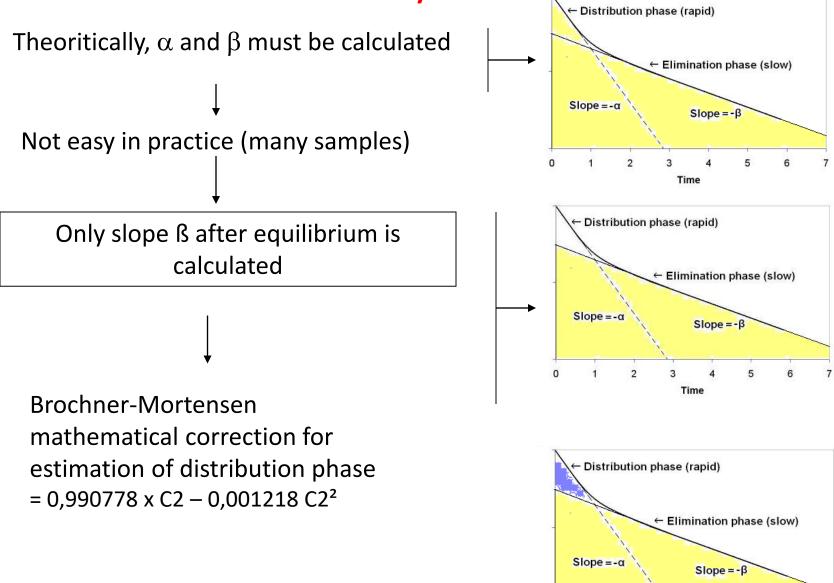
- Why?
- HOW ?

Available on the market...

Markers	Strenghts	Limitations
Inulin		
Iothalamate		
Iohexol		
EDTA		
DTPA		

Stevens LA, J Am Soc Nephrol, 2009, 20, 2305 Cavalier E, Clin Chim Acta, 2008, 396, 80 Delanaye P, Clin Kidney J, 2016, 9, 700

We have biomarkers Now, how to proceed?


• Urinary clearance

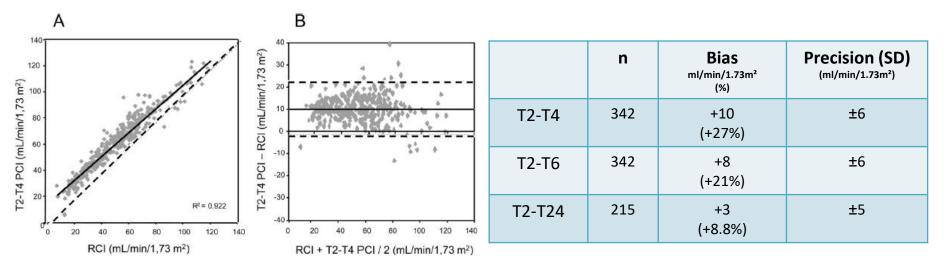
• Plasma clearance

Urinary clearance

- Constant infusion, marker at equilibrium
- Plasma measurement of the marker
- Collect Urine (every half or every hour) and measurement of urine flow, urine measurement of the marker
- Repeated 3 or 4-fold
- CI = [U] x [V]/ [P] (mean of three collections)

Plasmatic Clearance = Dose / AUC

Time


Plasma v urinary: Are they equivalent?

- A lot of studies showing a good correlation...
- Few studies with Bland and Altman analysis

Plasma versus Urinary clearances

Evaluation of Sample Bias for Measuring Plasma Iohexol Clearance in Kidney Transplantation

Arnaud Stolz,¹ Guillaume Hoizey,² Olivier Toupance,¹ Sylvie Lavaud,¹ Fabien Vitry,³ Jacques Chanard,¹ and Philippe Rieu^{1,4,5}

Stolz A, Transplantation, 2010, 89, 440

Urinary and plasma methods: pro-con

- More physiological
- More costly
- More cumbersome
- Less precision, less repeatability (urine recolt!)
- Differences are sytematic

Several plasma clearance procedures are available on the market...

Available on the market...

Markers	Strenghts	Limitations				
Inulin	Gold standard (or historic) Safe	Costly Dosage neither easy nor standardized Doubt with plasma clearance				
Iothalamate	The most popular in USA Isotopic or "cold" method	Tubular secretion Cannot be used if allergy to iodine				
Iohexol						
EDTA	Easy to measure	Only isotopic Not available in USA				
DTPA	Easy to measure	Only isotopic Binding to proteins Short half-time				

Stevens LA, J Am Soc Nephrol, 2009, 20, 2305 Cavalier E, Clin Chim Acta, 2008, 396, 80 Delanaye P, Clin Kidney J, 2016, 9, 700

EDTA versus iohexol

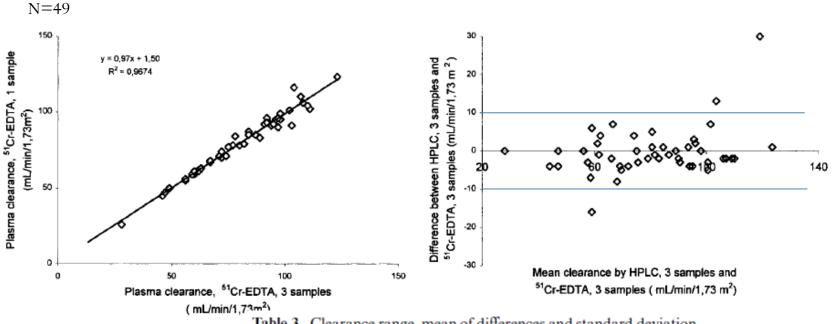
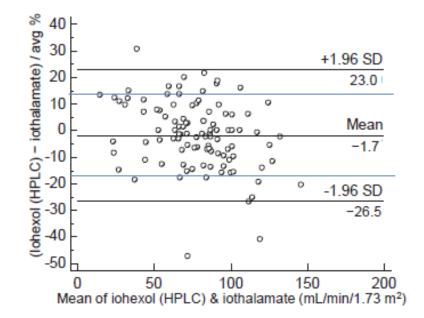


Table 3. Clearance range, mean of differences and standard deviation for multiple-point clearance and single-point clearance measurements


Clearance range	Differen (ml/min	
(ml/min)	Mean	SD

Multiple-point clearance: 3 samples 51C	r-EDTA vs	3 samples i	ohexol
⁵¹ Cr-EDTA vs HPLC	28-134	-0.16	6.17
⁵¹ Cr-EDTA vs X-ray fluorescence	29-134	0.58	4.95
Single-point clearance: 3 samples 51Cr-	EDTA vs 1	sample	
⁵¹ Cr-EDTA vs ⁵¹ Cr-EDTA	26-123	-0.7	3.59
⁵¹ Cr-EDTA vs HPLC	27-125	-1.7	5.94
⁵¹ Cr-EDTA vs X-ray fluorescence	32-116	-1.32	5.78

Brandstrom E, NDT, 1998, 13, 1176

Iothalamate versus iohexol

N=102

Accuracy (concordance): Within 30%: 98% Within 15%: 80%

AJKD Original Investigation

Measuring GFR: A Systematic Review

Inga Soveri, MD, PhD,¹ Ulla B. Berg, MD, PhD,² Jonas Björk, PhD,³ Carl-Gustaf Elinder, MD, PhD,⁴ Anders Grubb, MD, PhD,⁵ Ingegerd Mejare, PhD,⁶ Gunnar Sterner, MD, PhD,⁷ and Sten-Erik Bäck, MSc, PhD,⁵ on behalf of the SBU GFR Review Group*

	No. of Pts/ Studies	Median Bias ^a (95% Cl)	Mean Bias (95 % Cl)	P ₃₀ (95% CI)	P ₁₀ (95% CI)	Sufficient Accuracy	Scientific Evidence	Comments ^b
Criteria for sufficient precision		≤±5%	≤±10%	≥80%	≥50%			
ndex method DTPA								
Renal clearance	126/5	-2 (-4 to 2)	-1 (-6 to 5)	87 (81 to 93)	53 (45 to 62)	Yes	@@ OO	Inconsistency, -1; imprecision, -1
Plasma clearance ⁵¹ Cr-EDTA	89/2	20 (18 to 35)	13 (5 to 22)	56 (47 to 68)	19 (13 to 29)	No	⊕⊕00	Study limitations -1; imprecision -1
Renal clearance	198/9	-5 (-7 to -3)	-2 (-8 to 4)	95 (92 to 98)	56 (50 to 64)	Yes	@@@ O	Imprecision, -1
Diserno else mass	100/5	0 (1 + 0)	0 (1 40 15)	00 (00 to 00)	50 (40 to 50)	Vee	0.000	Improvision 1
Iohexol Renal clearance Plasma clearance	47/2 172/5	-7 (-10 to 0) 3 (0 to 6)	-7 (-16 to 2) 2 (-4 to 9)	100° 86 (81 to 91)	53 (41 to 70) 50 (43 to 58)	Yes Yes	⊕⊕⊕O	Imprecision, -2 Imprecision, -1
Renal clearance Plasma clearance	548/13 61/1	-1 (-2 to 0) 9 (0 to 15)	6 (1 to 11) 11 (-6 to 29)	97 (95 to 98) 82 (73 to 92)	66 (62 to 70) 33 (23 to 47)	Yes	0000	Study limitations, -1; imprecision, -
Inulin Plasma clearance	39/2	2 (-3 to 6)	1 (-9 to 11)	100°	72 (59 to 87)	Yes	@@ OO	Imprecision, -1; indirectness, -1

Table 1. Bias and Accuracy of Index Methods Compared to Reference Method When Measuring Glomerular Filtration Rate

Note: Modified with permission of the Swedish Council on Health Technology Assessment.³ Accuracy and bias expressed as percentage. Renal inulin clearance served as reference method. Mean bias, P₁₀, and P₃₀ were estimated using generalized linear mixed models based on normal distribution (mean bias) or Poisson distribution (P₁₀, P₃₀; log-transformed outcome and robust variance estimation), with a random intercept for each study and a fixed effect for each index method ("unadjusted model results"; see Statistical Methods section). All analyses were weighed with respect to number of participants in each study. Estimates were obtained as marginal means.

Abbreviations and definitions: $\oplus \oplus \oplus \oplus$, strong evidence; $\oplus \oplus \oplus \odot$, moderately strong evidence; $\oplus \oplus \odot \odot$, limited evidence; $\oplus \odot \odot \odot$, insufficient evidence; ${}^{51}Cr$ -EDTA, chromium 51 –labeled ethylenediaminetetraacetic acid; DTPA, diethylenetriaminepentaacetic acid; CI, confidence interval; Imprecision, N < 100 in meta-analysis (-1), P₃₀ lower 95% CI \leq 80%, P₁₀ lower 95% CI \leq 50%, or median bias 95% CI \geq ±5% (-1); Inconsistency, inconsistency in study outcomes that cannot be explained by differences in study design (-1); Indirectness, limited generalizability (-1); P₁₀, percentage of measurements by index method that differed no more than 10% from reference method; P₃₀, percentage of measurements by index method that differed no more than 30% from reference method; pts, patients; Study limitations, risk of bias due to shortcomings in individual studies (-1).

^aMedian bias was calculated directly (using the weights) for each index method together with nonparametric CIs.

^bStrength of scientific evidence.

"The generalized linear mixed model does not yield valid estimates of confidence limits when estimated proportion (eg, P₃₀) is 100%.

Soveri I, Am J Kidney Dis, 2014, 64, 411

Measured GFR: Need for Standardization

Standardization for the marker

- Only cold methods can easily be implemented worldwide
- Iothalamate is difficult to obtain in Europe
- Inulin is expensive and only available as urinary clearance
- Iohexol is available worldwide
- Very stable (central and/or "reference" laboratories)

Standardization for procedure

- Urinary versus plasma
- Number of samples and timing of samples
- Whatever the marker...

Methodology	Indication in clinical practice	Indication in clinical research	Bibliographic examples where the procedure is described into details
Urinary clearance	Increased extracellular volume (oedema, ascites, intensive care units, etc.)	Basic (physiologic) studies Specific populations (cirrhotic, intensive care, nephrotic syndrome, oedema, etc.)	[36, 77, 125, 170]
Plasma clearance			
Multiple samples (first or fast, second or slow exponential curves and calculation of area under the curve)	High GFR values ('hyperfiltrating') subjects	Development of equations to estimate GFR Studies in hyperfiltrating	[52, 93, 171]
		patients	
Multiple samples only for second and slow component (2 h after injection, 4	High precision determination (see text)	Development of equations to estimate GFR	[126, 172]
samples over 5 or 6 h, 1 sample/h) + BM correction		Clinical research with GFR as main endpoint	
Idem + late sample (8 h or 24 h)	Pre-dialysis subjects	Research in pre-dialysis subjects	[52, 77]
Simplified two or three sample method (2 samples: first at 2 or 3 h and second at	CKD or healthy population	Development of equations to estimate GFR	[69, 116]
4 or 5 h) + BM correction		Clinical research with GFR as a secondary endpoint	
Simplified single-sample method + Jacobsson correction [110]	CKD or healthy population	Development of equations to estimate GFR	[14, 173]
,,,		Clinical research with GFR as a secondary endpoint	
		Epidemiological research	

Suggestions (expert opinion-based) according to the clinical or experimental context.

GFR, glomerular filtration rate; CKD, chronic kidney disease; BM, Brochner-Mortensen correction [116].

Iohexol in CHU Liège

- Iohexol (plasma clearance)
- 5 hours
- Samples at 2, 3, 4 et 5 hours
- 150 euros

Nephrol Dial Transplant (2017) 1–7 doi: 10.1093/ndt/gfx323

Iohexol plasma clearance simplified by dried blood spot testing

Sergio Luis-Lima¹, Flavio Gaspari², Natalia Negrín-Mena¹, Fabiola Carrara², Laura Díaz-Martín¹, Alejandro Jiménez-Sosa¹, Federico González-Rinne¹, Armando Torres^{3,4} and Esteban Porrini⁴

¹Research Unit Department, Hospital Universitario de Canarias, Tenerife, Spain, ²Renal Medicine Department, IRCCS- Istituto di Ricerche Farmacologiche Mario Negri, Clinical Research Center for Rare Diseases 'Aldo & Cele Daccò', Ranica (BG), Italy, ³Nephrology Department, Hospital Universitario de Canarias, Tenerife, Spain and ⁴Dermatology, Medicine and Psychiatry Department, Clinical Medicine Department, Instituto de Tecnologías Biomédicas (ITB), Faculty of Medicine, Universidad de La Laguna, Tenerife, Spain

Correspondence and offprint requests to: Sergio Luis-Lima; E-mail: luis.lima.sergio@gmail.com

Conclusions

- Measuring GFR is not so cumbersome
- Standardization (marker, procedure and measurement) might still be improved
- Iohexol is the best balance between physiology and feasibility
- Iohexol is safe
- Iohexol is the only chance for a worldwide standardized mGFR

I thank you for your attention!

Questions?

