A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women


ICOS Research Group, School of Computing, Newcastle University, UK
D-BOARD Consortium, An FP7 Programme By the European Committee
Erasmus University Medical Center Rotterdam, the Netherlands, Dept. of General Practice
Nordic Bioscience, Copenhagen, Denmark
Erasmus University Medical Center Rotterdam, the Netherlands, Dept. of Orthopedics
University of Liège, Belgium
Artialis SA, Liège, Belgium

Objective:
Knee osteoarthritis (OA) is among the higher contributors to global disability. Despite its high prevalence, currently, there is no cure for this disease. Furthermore, the available diagnostic approaches have large precision errors and low sensitivity. Therefore, there is a need for new biomarkers to correctly identify early knee OA.

Method:
We have created an analytics pipeline based on machine learning to identify small models (having few variables) that predict the 30-months incidence of knee OA (using multiple clinical and structural OA outcome measures) in overweight middle-aged women without knee OA at baseline. The data included clinical variables, food and pain questionnaires, biochemical markers (BM) and imaging-based information.

Results:
All the models showed high performance (AUC > 0.7) while using only a few variables. We identified both the importance of each variable within the models as well its direction. Finally, we compared the performance of two models with the state-of-the-art approaches available in the literature.

Conclusions:
We showed the potential of applying machine learning to generate predictive models for the knee OA incidence. Imaging-based information were found particularly important in the proposed models. Furthermore, our analysis confirmed the relevance of known BM for knee OA. Overall, we propose five highly predictive small models that can be possibly adopted for an early prediction of knee OA.

© 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
adipokines have been suggested as predictive biomarkers for early onset post-traumatic knee OA.

Machine learning has already been used to elucidate the underlying biological processes related to OA\(^a\). In the present study, we use a pipeline (a set of machine learning-based computational procedures) to analyse a cohort of women at high-risk for knee OA development with the aim of identifying novel biomarkers that can contribute to the early detection of knee OA. The core of this pipeline is represented by Ranked Guided Iterative Feature Elimination (RGIFE)\(^{10}\), a machine learning-based heuristic designed to generate small yet highly predictive models from complex biomedical data. Different than many presented works, we used five distinct outcome measures of incident knee OA to generate small predictive models (at most eight variables) that provide high classification performance. Furthermore, we investigate the contribution and the direction of each variable within the predictive models. Finally, we contrast the performance of the proposed models with state-of-the-art approaches available in the specialised literature. Our method results effective in identifying relevant factors that are related with knee OA incidence. More importantly, although focused on the analysis of data associated with knee OA, the proposed methodology is generic enough to be applied to a variety of biomedical data. It possesses the potential to discover and analyse the role of novel biomarkers for many different conditions and can help in understand their mechanisms.

**Method**

**Dataset and individuals**

The data used in this work came from the PROOF study; a preventive randomised controlled trial including 407 middle-aged women with a BMI \(\geq 27\) kg/m\(^2\) free of clinical knee OA at baseline\(^{11}\). After 30 months, the preventive effects of a diet & exercise program and of oral glucosamine sulphate were evaluated. Since no intervention effects were found, data were here treated as a cohort, with five different outcome measures of incident knee OA after 30 months:

- incidence of ‘combined radiographic and clinical ACR-criteria’
- incidence of frequent knee pain
- lateral JSN of \(\geq 1.0\) mm
- medial JSN of \(\geq 1.0\) mm
- incidence of KL \(\geq 2\)

Each individual was characterised by the value of 186 heterogeneous baseline variables (the full list of variables is available in the Supplementary Material). Data were derived from baseline questionnaires (including demographics, menopausal status, knee complaints, physical activity level, quality of life, habitual nutritional intake, and KOOS questionnaire), radiographs (for obtaining baseline KL grade, medial alignment angle, and knee joint shape using active shape modelling), MR images (scored with semi-baseline KL grade, medial alignment angle, and knee joint shape), and questionnaires (including demographics, menopausal status, knee complaints, physical activity level, quality of life, habitual nutritional intake, and KOOS questionnaire), radiographs (for obtaining baseline KL grade, medial alignment angle, and knee joint shape using active shape modelling), and questionnaires (including demographics, menopausal status, knee complaints, physical activity level, quality of life, habitual nutritional intake, and KOOS questionnaire). The RGIFE heuristic

The aim of this study was to identify biomarkers that can discriminate between incidence and non-incidence for five different outcomes measures of knee OA. RGIFE is a machine learning heuristic able to select few biomarkers with high predictive power\(^{10}\), using an iterative process, discards features if their removal does not decrease the overall predictive performance of the computational model. By sequentially repeating the reduction process and performing other optimisation decisions, the method has been proven to select small sets of variables with high predictive power when analysing complex transcriptomics dataset\(^{11}\).

RGIFE has been designed to deal with challenging and difficult biomedical data, often characterised by a small number of samples that are likely to be defined in a high-dimensional space (that is described by thousands of variables). With specific optimisation techniques (e.g., oversampling, cost-sensitive learning, etc.), RGIFE can converge to reduced panels of biomarkers.

In our analysis, RGIFE used the random forest algorithm\(^{15}\) to build the predictive models. A random forest consists of a collection of simple decision trees, where each of them is generated using a random (different) subsets of training samples and variables. The prediction for each individual is made with a majority vote of the set of trees. That is, each sample is assigned to the class predicted by the majority of the decision trees. The PROOF data represented a difficult task from a machine learning point of view due to: 1) presence of many missing values and 2) imbalance distribution of the samples (much more non-incidence than incidence). The missing values were imputed using the K-means algorithm, while the imbalanced class distribution problem was tackled using the SPIDER oversampling method\(^{16}\). For both methods we used the implementation available in the KEEL machine learning package\(^{17}\).

**Identification of the best model**

RGIFE is a flexible and fine tuneable algorithm, we used 30 different configurations to perform a full search in the space of all the optimal solutions (set of biomarkers) for each OA definition. The configurations differed in terms of maximum depth of the random forest and misclassification costs (penalisation when misclassifying incidence samples during the learning phase).

The best performing configuration was selected with a 10-fold cross-validation, a typical approach used in machine learning to evaluate the performance of a predictive model. A \(n\)-fold cross-validation (in our analysis \(n=10\)) randomly divides the dataset into \(n\) equally-sized disjoint subsets (folds), each of them having the same distribution of positive and negative samples as in the complete dataset. In turn, each set is used as test set while the remaining \(n-1\) are used as training set. By calculating the performance obtained using the test sets we can assess how the model will generalise to an independent dataset. In our analysis the 10-fold cross-validation was repeated 10 times to minimise the bias introduced by the data being split into training and test set. Afterwards, using RGIFE on the complete dataset, we identified the best performing models (highest AUC calculated with a new \(10 \times 10\)-fold cross-validation) with at most 10 variables. The overall analytical process is presented in Fig. 1. Because of this pipeline, in the Results section, we will report two different AUC values, namely AUC-CV and AUC-Full. AUC-CV refers to the AUC obtained by the best performing configuration using a \(10 \times 10\)-fold cross-validation. AUC-Full, indicates the performance, calculated using a new
10 × 10-fold cross-validation, of the best selected model generated when considering to the complete set of samples (with RGIFE using the best performing configuration).

Finally, we used a permutation test to assess if our models perform better than random ones. We contrasted the performance of 100 random models, generated from 100 permutated datasets (where the labels incidence and non-incidence were randomly assigned) to the AUC obtained from the original data. An empirical p-value was estimated by counting the number of times in which a model provides better performance when trained with random data rather than the original data.

Model interpretation

We analysed the role of the variables, within the models, by assessing both their (additive) value and their association with the outcome (incidence of knee OA in this instance). The additive value was obtained from the generation of sub-models of decremental sizes, named decremental analysis. That is, from the original set of variables, we iteratively identified the one whose removal caused the smallest drop of AUC, hence contributing the less to the prediction task. The variable direction indicates how the value assumed by a variable influences the presence of the disease (condition). This was accomplished by performing a partial dependence analysis, a method to visualise the partial relationship between the outcome and the predictive variables. The method evaluates the variations in predictions when the values of the variables are changed, thus it determines the relationship of the biomarkers with the outcome measure (see Section 2 of the Supplementary Material for a more detailed description).

Results

Out of all the subjects included in the PROOF study, 365 had follow-up data and were selected for the present analysis. The baseline characteristics of the individuals are presented in Table I. A different total number of subjects was available for different knee OA outcome measures. The ACR criteria and chronic knee pain after 30 months occurred in 39 out 354 (11%) and in 51 out of 351 (15%) women respectively. The incidence of lateral JSN 1.0 mm was assessed in 41 (12%) out of 352 women, while medial JSN was seen in 38 (11%) women out of 352. Finally, the incidence of KL 2 was measured in 27 (8%) out of 321 individuals. A supplementary analysis was performed by using an outcome measure that combines four of the outcome measures: ACR criteria, KL score, lateral and medial JSN. The aim was to check if a combined measure could help in generating better models. The results of this analysis are available in Section 3 of the Supplementary Material.

Best predictive models

In Table II, we report the models generated from the different OA definitions. The variables are grouped based on their source of information: OA information (OA), clinical information (CI), imaging-based data (IM), BM, pain (PQ) and food questionnaire (FQ), all coming from the baseline assessments. Fig. 2 shows the ROC curves generated from each of the generated models.
using only five variables (smallest model). The second best performing model is associated with the ACR criteria and provided an AUC-Full of 0.788, however, it also contains the largest number of variables (8 in total). Finally, the JSN outcome measures led to the two lowest performance, respectively 0.731 for the lateral and 0.737 for the medial compartments. It is important to highlight how the rank of the models, created with different outcome measures, does not change while considering AUC-Full or AUC-CV.

Table II shows that all the models incorporate variables of diverse categories, each one is defined by at least four different categories of variables. The imaging-based variables are important for the ACR criteria model as well for JSN lateral. In particular the Active Shape Models, statistical shape models constructed after placing 75 landmark points along the contours of the tibia, fibula, femur and medial femoral condyle on each radiograph and using Principal Component Analysis to create independent modes of shape variation. More details are provided in [19,20]. OA information play a relevant role in the prediction of knee OA development when considering the chronic pain as outcome measure. Food information in the ACR criteria measures (whether at baseline is OA or not) might provide insights about the development of knee OA baseline) might provide insights about the development of knee OA (reported in Table II).

Model interpretation

The models generated from different knee OA outcome measures were interpreted in terms of both additive value and direction of their components (variables).

The additive value of each variable, within the predictive models, was assessed performing a decremental analysis. In Fig. 3 we show the results of the analysis when using the Knee pain and KL incidence models (the only two models comparable with the literature findings). The full set of results, model by model, is available in Section 1 of the Supplementary Material. The y-axis of Fig. 3 represents the AUC values of each submodel, while the variables defining the submodels are represented over each bar. The least important variables are highlighted in white, that is the variables that are not present in the following submodels. The KL scores (whether at baseline is ≥1 or ≥2) are the most valuable information in the Knee pain model, by themselves, the two variables get a good AUC of 0.663. From the KL incidence measure models we see that the two largest decreases in performance are associated with the removal of the fruit intake per week and the knee grinding/clicking information. As for the Knee pain, the one variable model (presence of OA on MRI at baseline) can lead to an interesting AUC of 0.617.

With the variable direction analysis, we determine if the change in intensity (value) of a variable corresponds to an increase of the probability to be affected by knee OA. That is, if a biomarker has a positive or a negative association with the OA outcome measure. Figure 4 shows the direction of two variables for the Knee pain and KL incidence models. Each data point corresponds to the average probability to belong to the positive (incidence) class. For binary variables (e.g., KL grade ≥2) we report the distribution of the probabilities of the two possible values. As expected, a baseline KL grade ≥2 increases the probability for the knee OA incidence. We also see that difficulties when jumping (high pain) might indicate higher chance develop the condition. Conversely, at the bottom plots of Fig. 4, is illustrated a negative association between the frequency of apples and pears eaten per week and the knee OA outcome measure. Finally, we observe how the analysis of MRI (at baseline) might provide insights about the development of knee OA in the individuals (overweight women in this instance) given its positive association.

<table>
<thead>
<tr>
<th>OA measure</th>
<th>Biomarkers</th>
<th>Cat.</th>
<th>AUC-Full/AUC-CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR criteria</td>
<td>• KL grade ≥ 1 in one or both knees</td>
<td>OA</td>
<td>0.788/0.692</td>
</tr>
<tr>
<td></td>
<td>• Maximal isometric quadriceps strength</td>
<td>CI</td>
<td>Conf.Int.</td>
</tr>
<tr>
<td></td>
<td>• Mode 10, Mode 15, Mode 11 (Active Shape Modelling)</td>
<td>IM</td>
<td>0.712-0.863</td>
</tr>
<tr>
<td></td>
<td>• Presence of knee pain in the last month, Difficulties when kneeling</td>
<td>PQ</td>
<td>0.712-0.863</td>
</tr>
<tr>
<td></td>
<td>• C2M concentration</td>
<td>BM</td>
<td>0.712-0.863</td>
</tr>
<tr>
<td>Knee pain</td>
<td>• KL grade ≥ 1 in one or both knees, KL grade ≥ 2 in one or both knees, WOMAC function score</td>
<td>OA</td>
<td>0.755/0.637</td>
</tr>
<tr>
<td></td>
<td>• Maximal isometric quadriceps strength</td>
<td>CI</td>
<td>Conf.Int.</td>
</tr>
<tr>
<td></td>
<td>• Mode 11 (Active Shape Modelling)</td>
<td>IM</td>
<td>0.680-0.830</td>
</tr>
<tr>
<td></td>
<td>• Difficulties when jumping</td>
<td>PQ</td>
<td>0.680-0.830</td>
</tr>
<tr>
<td></td>
<td>• Frequency biscuits (raisins)/week</td>
<td>PQ</td>
<td>0.680-0.830</td>
</tr>
<tr>
<td>Lateral JSN</td>
<td>• Fat percentage</td>
<td>CI</td>
<td>0.731/0.549</td>
</tr>
<tr>
<td></td>
<td>• Mode 1, Mode 10, Mode 11 (Active Shape Modelling)</td>
<td>IM</td>
<td>Conf.Int.</td>
</tr>
<tr>
<td></td>
<td>• Frequency of fruits/week</td>
<td>PQ</td>
<td>0.659-0.814</td>
</tr>
<tr>
<td></td>
<td>• Concentration of Coll2-1NO2 adj. for creatinine</td>
<td>BM</td>
<td>0.654-0.808</td>
</tr>
<tr>
<td>Medial JSN</td>
<td>• Quality of life, Nr. years since menopause, Waist circumference</td>
<td>CI</td>
<td>0.737/0.539</td>
</tr>
<tr>
<td></td>
<td>• Mode 15 (Active Shape Modelling)</td>
<td>IM</td>
<td>Conf.Int.</td>
</tr>
<tr>
<td></td>
<td>• Freq. bananas/week</td>
<td>PQ</td>
<td>0.659-0.814</td>
</tr>
<tr>
<td></td>
<td>• C1M concentration</td>
<td>BM</td>
<td>0.659-0.814</td>
</tr>
<tr>
<td>KL incidence</td>
<td>• BMI, HbA1c concentration</td>
<td>CI</td>
<td>0.823/0.699</td>
</tr>
<tr>
<td></td>
<td>• Presence of OA on MRI</td>
<td>IM</td>
<td>Conf.Int.</td>
</tr>
<tr>
<td></td>
<td>• Grinding/clicking sound when moving the knee</td>
<td>PQ</td>
<td>0.753-0.893</td>
</tr>
<tr>
<td></td>
<td>• Frequency of apples and pears/week</td>
<td>PQ</td>
<td>0.753-0.893</td>
</tr>
</tbody>
</table>

Variables are baseline measures divided according to the type of information provided: OA information (OA), clinical information (CI), Imaging-based information (IM), pain questionnaire (PQ) and food questionnaire (FQ). The AUC column includes the AUC-CV, the AUC-Full and the 95% Confidence Interval (Conf.Int.) of the AUC-Full.
Discussions

In this work, we developed five models that can be used to predict the incidence of knee OA in overweight and obese women. Different than the traditional approaches, mostly based on the combination of univariate (where one variable at the time is analysed) and multivariate (where multiple variables are analysed together) logistic regression, we employed multivariate machine learning techniques. We showed that using a small subset of the available information (each model is defined by at most eight variables) is possible to accurately predict the incidence of knee OA.

We searched the specialised literature to identify models that can be compared with the predictive models generated using our machine learning approach. In Tables III and IV we report a summary of the literature findings. We searched for models generated using data where the OA definition was similar to ours. Comparable models were found only for the Knee pain and KL incidence outcome measures. For a fair comparison, we report, for each literature study, only the AUC obtained using an internal validation (some studies also used external data to assess the performance). If multiple models (defined by different subset of variables) were available, we considered only the best performing. We want to highlight that these studies used a population that is different to the one associated with the PROOF study. Hence, the comparison of AUC values is just approximate. Nevertheless, such a comparison provides an idea if the presented models perform in line with the state-of-the-art literature. All the models found in the literature were generated with the same statistical approach: a univariate analysis followed by a multivariate logistic regression method.

In Fig. 2, ROC curves of the presented models. The ROC curves generated by the best performing models using five knee OA outcome measures. The AUC values refer to the AUC-Full.

Fig. 3. Decremental models analysis. The decremental models generated using the Knee pain (left plot) and the KL incidence (right plot) measure for the knee OA definition. The variable highlighted in white represents the least important one, not present in the subsequent decremental model.
strategy has been used as a feature selection strategy, however, is not specified if the reported AUCs are associated with such strategy. Our internal validation indicated an AUC of 0.823 for the KL incidence model and an AUC of 0.755 for the Knee pain model.

Table III shows that our model for the prediction of KL incidence obtains higher performance than the models available in the literature while using the same or fewer variables. A superior performance also emerged when comparing the Knee pain model (see Table IV). However, differently than for the KL incidence, our Knee pain model is always larger (7 attributes) and more heterogeneous (imaging-based information, food (FQ) and pain questionnaire (PQ) data, OA and clinical information).

Table III Summary of the KL incidence models identified in the specialised literature

<table>
<thead>
<tr>
<th>Reference</th>
<th>AUC</th>
<th>OA definition</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>0.790</td>
<td>KL grade $&lt; 2$ B/L and KL $\geq 2$ at F.U.</td>
<td>Gender, age, BMI, knee pain and KL score at B/L</td>
</tr>
<tr>
<td>22</td>
<td>0.690</td>
<td>KL grade $&lt; 2$ B/L and KL $\geq 2$ at F.U.</td>
<td>Gender, age, BMI, occupational risks, family osteoarthritis, previous knee injury</td>
</tr>
<tr>
<td>23</td>
<td>0.740</td>
<td>KL grade $&lt; 2$ B/L and KL $\geq 2$ at F.U. (5 year)</td>
<td>Gender, age, BMI, minimum JSW, osteophyte</td>
</tr>
</tbody>
</table>

JSW: Joint Space Width, B/L: baseline, F.U.: follow-up.

Within our models, imaging-based variables contain valuable information for the risk for knee OA incidence. Every model of Table II includes a variable from the imaging category (IM). In addition, such an importance is confirmed by Fig. 4, where is illustrated a positive association between the presence of OA on MRI at baseline and the incidence of knee OA. Overall, these results suggest a need in re-evaluating a proper use of imaging information.
in primary care settings, especially when treating subjects at risk for future knee OA development. However, it needs to be stressed that not all imaging-based variables included in the final models are easy to obtain in primary care; such as the outcomes of statistical shape modelling (‘Mode x’ variables). This warrants further attention. Furthermore, we hope that the relevant role of MRI features for the prediction of knee OA incidence in our model might direct the design of new studies that focus on early detection or early treatment of knee OA among a high-risk group of overweight and obese women.

The models generated with different knee OA outcome measures do not share many biomarkers. This is primarily due to the lack of overlap between incident individuals across different OA definitions. The Venn diagram included in Section 5 of the Supplementary Material illustrates this. There is no common agreement between all the measures for any single incident individual. The largest similarity occurs between ACR criteria and knee pain, the two measures that also generated the most analogous predictive models (this occurs because the ACR criteria can only be positive in presence of knee pain). However, this low overlap might also be a signed that potentially different factors play a role in different aspects of the disease (radiographic onset, clinical onset, etc.). Hence each panel of biomarkers exists of unique factors. A more tailored analysis in future works will be necessary to thoroughly characterise the potential link between models.

The proposed biomarkers can be grouped into two predictive categories: early signs (e.g., pain while jumping) as well as risk factors (e.g., BMI or waist circumference). The analysis performed for this manuscript used all the data collected by the PROOF study without discarding or filtering any of the available variables, this was to avoid any loss of relevant information. However, in future, we would like to apply the same approach by considering either only the early signs or the risk factors. Such an approach will give us the opportunity to propose different models that can be applied according to the information available for each possible individual been tested for the prediction of knee OA.

Several variables based on “wet” biomarkers of extracellular matrix tissue turnover also provided information on the risk of knee OA incidence. Both ACR criteria, medial and lateral JSN based prediction models all contained blood or urine-based biomarkers. C1M and C2M seemed to be negatively associated with the incidence OA defined by ACR criteria and medial JSN, in a similar way, COL2-1NO2 showed a negative relationship with incidence OA defined by lateral JSN. Previous studies have found correlations between OA severity and C1M and a difference in C2M levels between OA and healthy subjects. Furthermore, the negative association between COL2-1NO2 and OA incidence is in line with a previous study also performed using the PROOF cohort with a focus on the extracellular matrix in body fluids which may provide valuable information on the development OA and prediction of disease incidence in high-risk groups.

The presented models perform quite well in the discrimination of incidence and non-incidence knee OA among overweight and obese women. Their performance can be considered as “fair” (AUCs is between 0.70 and 0.80) and “good” (AUCs between 0.80 and 0.90). However, it will be necessary to evaluate the predictive power of each model using an independent set of individuals (external validation). Given that it will be extremely unlikely to obtain new validation data that will include all the variables employed by our models, the role of the decremental analysis will be fundamental. Based on the variables available in the new data, the performance of the best fitting submodel will be easily extracted from the decremental analysis, illustrated as in Fig. 3, and compared with the AUCs obtained from the new external samples.

**Contributions**

Conception and design of the study (NL, JB, JR). Performed the experiments (NL, JB). Analysis and interpretation of the data (NL, JB, JR, AB, CS, SZ, YH). Drafting of the article and final approved of the submitted version (NL, JB, JR, AB, CS, SZ, YH).

**Conflict of interest**

Yves Henrotin is CEO, President and Founder of Artialis SA (Spin-off company of the University of Liège, Belgium). Anne-Christine Bay-Jensen owns stocks in Nordic Bioscience.

**Role of the funding source**

This work was supported by the European Commission through the D-BOARD Consortium funded by European Commission Framework seven programme (EU FP7; HEALTH.2012.2.4.5–2, grant 305815, Novel Diagnostics and Biomarkers for Early Identification of Chronic Inflammatory Joint Diseases) and by the UK Engineering and Physical Sciences Research Council (grants EP/M020576/1, EP/N031962/1).

This work was partly supported by a program grant of the Dutch Arthritis Foundation for their centre of excellence “Osteoarthritis in primary care” (grant LLT.19).

None of the study sponsor was involved with the design of the study, analysis and interpretation of data nor in the writing of the manuscript.

**Acknowledgement**

This work made use of the facilities of N8 HPC Centre of Excellence, provided and funded by the N8 consortium and EPSRC [EP/K000225/1]. The Centre is co-ordinated by the Universities of Leeds and Manchester. We acknowledge the HPC facility at the School of Computing of Newcastle University for providing the necessary framework for the experiments.

**Supplementary data**

Supplementary data related to this article can be found at https://doi.org/10.1016/j.joca.2017.09.001.

**References**


