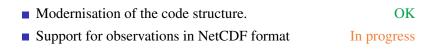
Diva workshop 2013 New developments

Alexander Barth, Aida Alvera-Azcárate, Mohamed Ouberdous, Charles Troupin, Sylvain Watelet & Jean-Marie Beckers

> Acknowledgements: SeaDataNet, EMODnet Chemistry, EMODnet Biology, STARESO



Modernisation of the code structure.

OK

 Modernisation of the code structure. 	OK
 Support for observations in NetCDF format 	In progress
 Multivariate approach 	OK

 Modernisation of the code structure. 	OK
 Support for observations in NetCDF format 	In progress
 Multivariate approach 	OK
 Non-Gaussian distributed variables 	OK

 Modernisation of the code structure. 	OK
 Support for observations in NetCDF format 	In progress
 Multivariate approach 	OK
 Non-Gaussian distributed variables 	OK
4-dimensional generalisation	OK:divand

 Modernisation of the code structure. 	OK
 Support for observations in NetCDF format 	In progress
 Multivariate approach 	OK
 Non-Gaussian distributed variables 	OK
4-dimensional generalisation	OK:divand
 Spatially correlated observations errors 	In progress

New features: from user feedback during Diva workshop 2012 (Roumaillac)

Advection constraint with linear decay rate and local sources

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
 - divacpme: quick & better than original poor man's error
 - divaexerr: almost exact error calculation, much faster than the exact calculation

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests
- Housekeeping of the code (simplifications, error messages, cleaning up of code, further optimisations, elimination of depreciated tools)

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests
- Housekeeping of the code
- Updated user guide (augmented with examples and new tool descriptions)

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests
- Housekeeping of the code
- Updated user guide
- Possibilities to call Diva from other software via system calls

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests
- Housekeeping of the code
- Updated user guide
- Possibilities to call Diva from other software via system calls
- divadoxml adapted to new specifications from IFREMER

Current official version

Current official version

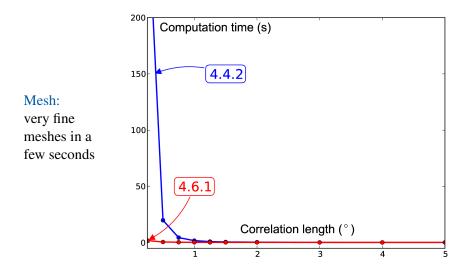
- Two additional solvers
 - parallel version
 - iterative version

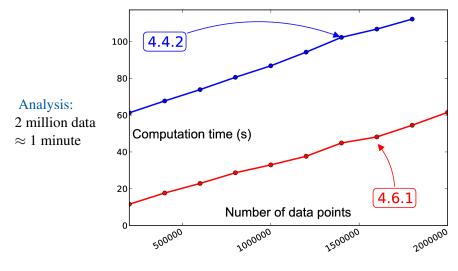
Current official version

- Two additional solvers
 - parallel version
 - iterative version

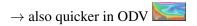
Optimisations for large data sets

Current official version


- Two additional solvers
 - parallel version
 - iterative version
- Optimisations for large data sets
- Optimisations of file exchanges for use with ODV


Current official version

- Two additional solvers
 - parallel version
 - iterative version
- Optimisations for large data sets
- Optimisations of file exchanges for use with ODV
- Highly optimised new version of the grid generator



Solvers:

- Direct
- Parallel
- Iterative

 $\begin{array}{l} \text{Mesh:} \approx 100 \times \text{faster} \\ \text{Analysis:} \approx 5\text{-}10 \times \text{faster} \end{array}$

Beta testers ...

Developed features

Correlated observational errors

Developed features

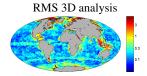
- Correlated observational errors
- Better file structures

(input and driver better separated from command) in 4D loops

- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative) depending on the problem type and size

- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative)
- Retrieval of topographies from Diva-on-web

- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative)
- Retrieval of topographies from Diva-on-web
- Improved version of the almost exact error calculation with boundary effects



- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative)
- Retrieval of topographies from Diva-on-web
- Improved version of the almost exact error calculation with boundary effects
- Incorporation of metadata (EDMO-CDI identifier, space-time location) into 4D NetCDF files of climatologies

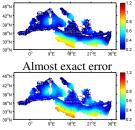
4-dimensional generalisation: divand

- Derivation of the kernel for *n* dimensions
- Additional constraint
- Algorithms (primal and dual formulations)

Released code version available at:

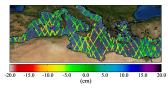
http://modb.oce.ulg.ac.be/mediawiki/ index.php/Divand

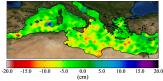
Spatially correlated observations


Ideally: observation errors not correlated Reality: clusters of observations (cruises, ...) Consequence: observations error covariance matrix is not diagonal

New error computation

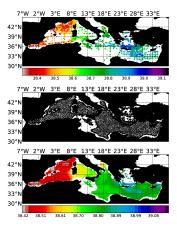
Poor man's error: quick, but error underestimation Real covariance: correct error estimation but very slow Now: two quicker/more accurate methods


Clever poor man's estimate



Adaptation to altimetry data

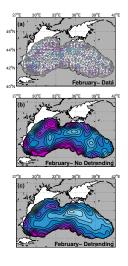
- Particular temporal/spatial coverage
- Input files: NetCDF
- Modified data weights according to time of measurement


Scientific developments - innovations

Python plotting tools

- Free alternative to matlab/octave
- Easily deals with NetCDF
- Publication quality figures with Matplotlib

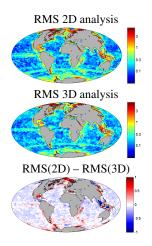
http://modb.oce.ulg.ac.be/mediawiki/ index.php/Diva_python



Publications

Detrending:

Recognizing temporal trends in spatial interpolation : an application to the Black Sea Cold Intermediate Layer and mixed layer depth A. Capet, C. Troupin, J. Carstensen, M. Grégoire & J.-M. Beckers *Ocean Dynamics* Under revision

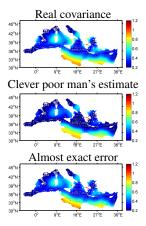


Publications

Diva-nd:

divand-1.0: n-dimensional variational data analysis for ocean observations

A. Barth, J.-M. Beckers, C. Troupin, A. Alvera-Azcárate & L. Vandenbulcke *Geoscientific Model Development* Under revision



Publications

Error field:

Approximate and efficient methods to assess error fields in spatial gridding with Diva (Data Interpolating Variational Analysis)

J.-M. Beckers, A. Barth, C. Troupin & A. Alvera-Azcárate *Journal of Atmospheric and Oceanic Technology* Under revision

Introduction

Purpose : Handling of files with no vertical axis

Introduction

Purpose : Handling of files with no vertical axis

For instance, a BODC file :

```
//Data documentation at http://www.bodc.ac.uk/data/documents/series/7011/
//SDN_parameter_mapping
//<subject>SDN:LOCAL:Chronological Julian Date</subject><object>
SDN:P011::CJDV1101</object><units>SDN:P061::UTAA</units>
//<subject>SDN:LOCAL:CurrDi</subject><object>SDN:P011::
LCDAEL01</object><units>SDN:P061::UAB8</units>
//<subject>SDN:LOCAL:CurrSpd</subject><object>SDN:P011::
LCSAEL01</object><units>SDN:P061::UVB8</units>
//<subject><DN:LOCAL:CurrSpd</subject><object>SDN:P011::
LCSAEL01</object><units>SDN:P061::UVB8</units>
```

Cruise Station Type yyyy-mm-ddThh:mm:ss.sss Longitude [degrees_east] Latitude [degrees_north] LOCAL_CDI_ID EDMO_code Bot.Depth [m] Chronological Julian Date [days] QV:SEADATANET CurrDir [deg T] QV:SEADATANET CurrSpd [cm/s] QV:SEADATANET PBISOP/SB1 B1/328/MB * 1971-08-30T10:31:00.000 -5.6166 54.9833 7011 43 148 2441194.438194 1 280.60 1 4.90 1

Step 1 - Recognition

The script performs several preliminary tests :

- **1** pressure axis $? \Rightarrow$ exit
- **2** depth axis $? \Rightarrow$ exit
- 3 no metadata file $? \Rightarrow exit + warning$
- **4** else $? \Rightarrow$ file with **no vertical axis**

• CurrDir, CurrSpd and a vertical axis $? \Rightarrow$ special case (see later)

Step 2 - Variables averaging

Scalar variables

■ simple arithmetic average

Vectorial variable

- only for current speed (currdir & currspd) (\rightarrow future upgrade)
- polar coordinate system ⇒ Cartesian coordinate system (u_star & v_star)
- simple arithmetic average

Step 3 - Writing a new data file

- A new file...
 - The new file has the extension "_bis.txt" instead of ".txt"
 - There are only two data line left, containing the mean values of the variables
 - Currspd and Currdir become u_star and v_star
 - A column "Depth [m]" is added

Step 3 - Writing a new data file

A new file...

- The new file has the extension "_bis.txt" instead of ".txt"
- There are only two data line left, containing the mean values of the variables
- Currspd and Currdir become u_star and v_star
- A column "Depth [m]" is added

... with a new depth axis

- the average of "minimum instrument depth" and "maximum instrument depth" is computed
- 2 the file "contour.depth" is read and the two nearest depths are written in the new file

Step 3 - Writing a new data file

A new file :

```
//Data documentation at http://www.bodc.ac.uk/data/documents/series/7011/
//SDL_parameter_mapping
//<subject>SDN:DOLL:Chronological Julian Date</subject><object>
SDN:POl1::CJDY1101</object><units>SDN:PO61::UTAA</units>
//<subject>SDN:LOCAL:CurrDir</subject><object>SDN:PO11::
LCDAEL01</object><units>SDN:PO61::UAB8</units>
//<subject>SDN:LOCAL:CurrSpd</subject><object>SDN:PO11::
LCSAEL01</object><units>SDN:PO61::UVB8</units>
//
```

Cruise Station Type yyyy-mm-ddThh:mm:ss.sss Longitude [degrees_east] Latitude [degrees_north] LOCAL_CDI_ID EDMO_code Bot.Depth [m] Chronological Julian Date [days] QV:SEADATANET u_star [cm/s] QV:SEADATANET v_star [cm/s] QV:SEADATANET Depth [m] PBISOP/SB1 B1/328/MB * 1971-08-30T10:31:00.000 5.6166 54.9833 7011 43 148 2441194.438194 1 -10.0233308792929292922 1 3.469439742424242424 1 [150 2441194.445139 1 -10.023330879292929292 1 3.469439742424242424 1 [100]

The following files are also modified :

varlist u_star and v_star are added to the list

datasource the old files are replaced by the new ones ("_bis")

Other features

Tests and warnings

- no depth in the metadata file \Rightarrow exit + warning
- more than one scalar variable \Rightarrow exit + warning (\rightarrow future upgrade)
- time series exceeds the user-defined period \Rightarrow warning

Speed and vertical axis

- Same procedure than "speed without vertical axis"...
- ... except that there is no averaging in this case
- \rightarrow also included in the divaoned epthODV4 script

How to use it?

- DivaonedepthODV4 is called by divadoall (4D analysis) for every data file
- The script is called only if the extraction flag is set to 1 (driver file)

How to disable it ?

2 options :

- **1** set the extraction flag to 0 in the driver file
- **2** set the variable "onedepth" to "no" in divadoall (\sim line 222)

