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ABSTRACT: 

The objective of this paper is to investigate the respective influence of various urban pattern 

characteristics on inundation flow. A set of 2,000 synthetic urban patterns were generated using 

an urban procedural model providing locations and shapes of streets and buildings over a square 

domain of 1 x 1 km². Steady two-dimensional hydraulic computations were performed over the 

2,000 urban patterns with identical hydraulic boundary conditions. To run such a large amount 

of simulations, the computational efficiency of the hydraulic model was improved by using an 

anisotropic porosity model. This model computes on relatively coarse computational cells, but 

preserves information from the detailed topographic data through porosity parameters. 

Relationships between urban characteristics and the computed inundation water depths have been 

based on multiple linear regressions. Finally, a simple mechanistic model based on two district-

scale porosity parameters, combining several urban characteristics, is shown to capture 

satisfactorily the influence of urban characteristics on inundation water depths. The findings of 

this study give guidelines for more flood-resilient urban planning. 
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1. INTRODUCTION 

In literature, most existing studies analyse many aspects of the influence of urbanization on floods 

but generally disregard the impact of the urban pattern geometry on the severity of flooding. 

However, the urban characteristics (e.g. street width, orientation or curvature) may have a strong 

influence on inundation flow since they influence the discharge partition between the streets as 

well as the flow depths and velocities.  

Vollmer et al. (2015) and Lin et al. (2016) investigated the interactions between urbanization and 

inundation flow for the rehabilitation of Ciliwung River in Jakarta, Indonesia. The inundation 

extent and water depths were compared between different rehabilitation scenarios to identify the 

most effective one to mitigate floods. Since these authors considered rehabilitation scenarios 

specific to their case study, their conclusions are difficult to generalize to other urban areas. 

Huang et al. (2014) studied the impact of building coverage on the increase of water depths for a 

rectangular flume with an array of aligned buildings obstructing the flow. They proposed a 

method to update the Manning roughness coefficient according to the blockage effect of buildings 

but consider only one urban characteristic (i.e., building coverage) of an idealized urban network.  

In this paper, we present a more systematic analysis to determine the respective influence of 

various urban planning characteristics on inundation water depths. We followed a three-step 

procedure. First, we used an urban procedural model to generate 2,000 quasi-realistic building 

layouts by varying randomly the values of 10 urban model parameters: average street length, 

street orientation, street curvature, major and minor street widths, parks coverage, mean parcel 

area and building setbacks (i.e. recess of a building from the parcel borders). 

Second, we computed the inundation flow field for each building layout by considering the same 

hydraulic boundary conditions. To make the hydraulic computation tractable for the 2,000 

synthetic urban configurations, we used subgrid models which enable a reduction of the 



computational cost thanks to a coarsening of the computational grid while preserving the essence 

of the detailed topographic information. We opted for an anisotropic porosity model, in which 

fine scale topographic information are preserved at the coarse scale by means of porosity 

parameters involved in the governing equations (Sanders et al. 2008).  

Finally, the influence of nine urban characteristics on the computed water depths were analysed 

based on multiple linear regressions (MLR) and on Pearson correlation coefficients. Additionally, 

a conceptual model was developed to investigate the relationships between the inundation water 

depths and district-scale storage and conveyance porosity parameters, evaluated as a combination 

of the urban characteristics. The results show a good predictive capacity of the model based on 

just the two porosity parameters, with a prevailing influence of district-scale conveyance 

porosity. Hence, this model enables quantifying to which extent flood-related impacts of an 

increase in the building coverage (i.e. new developments) can be mitigated by an appropriately 

chosen layout of the buildings. 

In the present analysis, we decided to keep the terrain slope equal to zero and to consider just one 

steady flooding scenario so as to focus on the influence of the urban planning characteristics. 

Therefore, the conclusions do not apply for floodplains involving steep slopes; but are instead 

representative of floodplains of lowland rivers which are flooded gradually and with moderate 

flow velocity. The steady flow conditions considered here are a valid representation of long 

duration floods (e.g., in lowland rivers such as the Rhine or the Meuse); but not for short duration 

floods in steep rivers nor for flash flood events. 

In section 2, we introduce the procedural modelling used to generate the synthetic building 

layouts, and we briefly describe the hydraulic model used to compute the flow characteristics in 

the urban area. We also present the statistical approach followed to process the modelling results. 

The results are presented in section 3, in terms of generated building layouts, computed flow 

fields and influence of urban characteristics on the flood severity upstream of the urban area. 



Finally, we provide an in-depth discussion of the results (section 4), by testing their sensitivity 

with respect to the number and choice of input variables, the sample size and the model selection, 

as well as by developing a conceptual model (based on district-scale porosity parameters) which 

agrees remarkably well with the results of the detailed numerical simulations. 

2. METHOD 

As sketched in the flowchart of Figure 1, we set up a three-step methodology to analyse the 

influence of the building layout on inundation flow: 

 first, procedural modelling was used to generate about 2,000 synthetic urban layouts 

considering ten input parameters, including typical street length, width and curvature, 

mean parcel area, setbacks … (section 2.1); 

 second, by means of a porosity-based hydraulic model, the flow characteristics were 

computed for each urban layout, considering identical hydraulic boundary conditions 

(section 2.2); 

 finally, based on Pearson correlation coefficients and on multiple linear regression, we 

highlight the sensitivity of inundation flow to the input parameters (section 2.3). 



  

Figure 1 : Methodology for the determination of the influence of building layout on inundation 

characteristics. 

2.1. Procedural modelling of urban layouts 

Procedural modelling of urban layouts consists in automatically generating urban layouts based 

on a set of rules and parameter values (Prusinkiewicz and Lindenmayer 1990). The output of 

procedural modelling is a collection of locations and shapes of streets and buildings. 

Here, we used an upgraded version of the method originally proposed by Parish and Müller 

(2001), as described in Vanegas et al. (2009) to support more variations in the street networks. 

The procedural modelling technique used is deterministic, in the sense that, for a given set of 

values of the input parameters, it generates a single urban layout. 

We considered ten input parameters, which are all of practical relevance for urban planning. They 

include street characteristics (typical length, orientation, curvature and width), park coverage, 

mean parcel area and setbacks (Table 1). 

As sketched in Figure 2, the procedural modelling involves mainly three steps: 

 generation of a “skeleton” of the network of streets (i.e. the street centrelines), based on 

the typical street length Ls, orientation  and curvature Figure 2a); 



 calculation of parcels based on the widths W and w of major and minor streets, the park 

coverage Pc and the mean parcel area Ap Figure 2b); 

 creation of the building footprints based on values for the front setback sf (recess of a 

building from the street, as shown in Figure 2c), rear setback sr (recess of a building from 

the parcel border on the backyard side) and side setback ss (recess of a building from the 

lateral parcel borders, which relates to building separation). 

To ensure the representativity of real-world urban configurations, plausible ranges of variation 

of the input parameters were determined from cadastral data of urban areas in the Walloon region, 

Belgium (Table 1). By selecting randomly parameter values in their respective ranges of 

variation, we generated 2,000 urban layouts, covering each a square area of 1 km by 1 km. In 

Table 1, the minimum value of the side setback is 1 m. Therefore, configurations with a free 

space enclosed within a building (ss = 0) are not considered. However, the findings the study can 

be extended to these specific urban patterns by increasing the building coverage to reproduce the 

lack of access of the flow to the enclosed free-spaces. 



 Urban parameter Minimum Maximum 

Ls Average street length 40 m 400 m 

α Street orientation 0° 180° 

χ Street curvature 0 km-1 10 km-1. 

W Major street width 16 m 33 m 

w Minor street width 8 m 16 m 

Pc Park coverage 5% 40% 

Ap Mean parcel area 350 m2 1,100 m2 

sf Building front setback 1 m 5 m 

sr Building rear setback 1 m 5 m 

ss Building side setback 1 m 5 m 

Table 1: Input urban parameters for the urban procedural modelling. 

   

(a) Definition of the tensor 

field of the streets. 

(b) Definition of the parcels 

and park areas. 

(c) Definition of building 

footprint in each parcel. 

Figure 2 : Main steps of procedural modelling of urban layouts. 

Only the building footprints have an influence on the performed hydraulic computations. This 

enables merging some of the parameters listed in Table 1. For instance, parameters W (or w) and 

sf  should not be considered independently. Indeed, urban layouts characterized by distinct values 



of the street width W (or w) and front setback sf, but with the same value of the sum W + 2 sf (or 

w + 2 sf) would lead to the same distance between the buildings located on either sides of a street. 

This distance should be retained as the parameter which actually controls the flow conveyance 

through this street, instead of W (or w) and sf independently. Therefore, although the parameters 

listed in Table 1 are the real inputs of the procedural modelling, we performed the statistical 

analysis of the results by considering a slightly modified set of variables (Table 2): 

 Parameters W, w and sf were replaced by just two variables: x4 = W + 2 sf and 

x5 = w + 2 sf. 

 To account for the periodicity in the street orientation resulting from the symmetry of the 

domain and boundary conditions, the orientation parameter  was replaced by variable 

  2 sin 2 45x     (Figure 3). 

 The park coverage Pc was not kept alone; but lumped into an overall building coverage 

ratio x9, evaluated as the ratio between the total area of building footprints and the area of 

the whole district (1 km2). Variable x9 is a function of all input parameters. 

 All other variables were each kept equal to one of the remaining input parameters listed 

in Table 1. 



Variable definition Minimum Maximum 

x1 = Ls 40 m 400 m 

  2 sin 2 45x     0 1 

x3 = χ 0 km-1 10 km-1 

x4 = W + 2 sf 18 m 38 m 

x5 = w + 2 sf 10 m 21 m 

x6 = Ap 350 m2 1,100 m2 

x7 = sr 1 m 5 m 

x8 = ss 1 m 5 m 

x9 = f(Ls, α , χ, W, w, Pc, Ap, sr, sf, ss) 0% 43% 

Table 2: Variables used for the statistical analysis of the modelling results. 

 

Figure 3 : Relation between variable x2 and street orientation parameter α. 

2.2. Porosity-based hydraulic modelling 

In a second step, we applied an efficient hydraulic model to compute the flow characteristics for 

each of the 2,000 building layouts, under the same hydraulic boundary conditions. The terrain 



was assumed horizontal and infiltration in the soil was neglected because it has a limited influence 

on river flooding in urbanized floodplains. 

2.2.1. Model description 

Two-dimensional shallow-water hydraulic models are considered state-of-the-art for the 

simulation of inundation flow in urban areas (El Kadi Abderrezzak et al. 2009, Ghostine et al. 

2015). In such model, the buildings are idealized as impervious obstacles sufficiently high for 

not being overtopped by the flood. In general, three approaches can be considered to account for 

obstacles in inundation modelling (Schubert and Sanders 2012, Dottori et al. 2013): (i) increasing 

the roughness parameter, (ii) representing the obstacles as holes in the mesh or (iii) using a 

porosity-based model. The first one is particularly crude and requires calibration on a case-by-

case basis. In the second one, each building needs to be explicitly resolved in the computational 

mesh, which makes this approach not suitable to investigate efficiently the 2,000 building layouts. 

In contrast, Schubert and Sanders (2012) showed that porosity-based models lead to the best 

balance between accuracy and run-time efficiency. They enable a coarsening of the mesh size by 

roughly one order of magnitude while preserving a good level of accuracy (Schubert and Sanders 

2012, Kim et al. 2014, 2015, Özgen et al. 2016b, Bruwier et al. 2017a). Therefore, we opted here 

for this third option. 

The shallow-water model with porosity used here was described in section 5.2 of Arrault et al. 

(2016) as well as in Bruwier et al. (2017a) and a comprehensive validation is presented in Bruwier 

et al. (2017b). It involves two types of porosity parameters: a storage porosity, defined at the 

centre of each cell, represents the void fraction in the cell while anisotropic conveyance 

porosities, defined at the edges of the computational cells, reproduce the blockage effect due to 

obstacles (Sanders et al. 2008, Chen et al. 2012, Özgen et al. 2016a). The values of these porosity 

parameters were determined geometrically from the building footprints. 



The momentum equations involve the same drag loss term as in the formulation of Schubert and 

Sanders (2012). The drag coefficient cD was set to the standard value cD = 3.0. Bottom friction is 

modelled by Manning formula with a uniform roughness coefficient n = 0.04 sm-1/3. This value 

of the roughness coefficient is comparable with the values suggested by Bazin (2013) and Mignot 

et al. (2006) to account for the various sources of flow resistances in urban areas such as bottom 

friction and small scale obstacles (debris, cars, urban furniture, etc.). 

The numerical discretization is based on a conservative finite volume scheme and a self-

developed flux-vector splitting (Erpicum et al. 2010). We used a Cartesian grid with a grid 

spacing of 10 m, which is comparable to the typical size of the buildings (> 15 m) but the porosity 

parameters enable the fine-scale geometric features to be accounted for. 

To enhance computational efficiency in the presence of low values of the storage porosity , we 

used a merging technique which consists in merging each cell having a low value of storage 

porosity ( < min = 10%) with a neighbouring cell (Bruwier et al. 2017a). 

As detailed in Arrault et al. (2016) and Bruwier et al. (2017a, b), the model was successfully 

validated against fine scale computations and against experimental data for flow conditions 

similar to those prevailing here. The model is part of the academic code Wolf2D which was used 

in multiple flood risk studies (Ernst et al. 2010, Beckers et al. 2013, Bruwier et al. 2015). 

2.2.2. Boundary conditions 

The west and south sides of the computational domain are the upstream boundaries, while the 

east and north sides are the downstream ones. Along the upstream sides of the computational 

domain, a 30-m wide strip was kept free of buildings. 

A total steady inflow discharge of 200 m3/s, uniformly distributed, was prescribed as boundary 

condition along the upstream sides (unit discharge of 0.1 m2/s). Along the downstream sides, the 



outflow discharge qj in each cell j was prescribed as a function of the computed water depth hj in 

the cell by using a rating curve: 

  
3

1 22j jq C x g h C    (1) 

with x the grid spacing, g the gravity acceleration and constants C1 and C2 respectively equal to 

0.5 and 0.3.  

These boundary conditions are somehow arbitrary; but they lead to flow conditions in the network 

of streets which are representative of typical flooding in floodplains of lowland rivers. The 

duration of flood waves in such rivers may be as long as two to three weeks (e.g., de Wit et al. 

2007), which enables describing the inundation flow in the floodplains as quasi-steady, 

consistently with the approach adopted here. Also, the downstream boundary conditions 

expressed by Eq. (1) leads to Froude numbers in our simulation domain ranging between 0.1 and 

0.4, which matches detailed flow computations performed for typical real-world floodplains of 

lowland rivers (Beckers et al. 2013, Detrembleur et al. 2015). 

2.3. Statistical analysis 

The outcome of steps 1 and 2 of the methodology (Figure 1) consists in a set of 2,000 gridded 

flow characteristics data, representing the water depth and the two components of horizontal flow 

velocity in the 10,000 cells of the computational mesh. To make the subsequent analyses 

tractable, we synthetized the dataset by means of a single indicator y of flood severity for each of 

the 2,000 building layouts. We focused on the increase of the 90th percentile of the computed 

water depths along the upstream boundary of the domain (noted Δh90) compared to a 

configuration without any buildings (h90 = 61 cm). This quantity is representative of the overall 

flow resistance (or loss of flow conveyance) induced by the layout of buildings and, hence, of the 

increase in flood levels that the presence of the buildings causes upstream of the considered area. 



If the buildings result from new development, indicator y = Δh90 reflects the impact of this 

development on flood danger upstream. 

We performed the statistical analysis of the results by considering standardized variables, noted 

ix  (i = 1 to 9) and y , defined as: 
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with N being the number of building layouts. 

The influence of each of the nine variables xi on the inundation indicator y was determined using 

a multiple linear regression (MLR). The outputs of the regression are the least square linear 

coefficients  1 2 9, , ...,
T

a a aA , computed from Eq. (4) and representing the sensitivity of y with 

respect to each variable xi: 

  
1

T T


A X X X Y .  (4) 

We also used Pearson correlation coefficients i (section 4.1.4), defined as: 
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3. RESULTS 

In this section, we first describe examples of synthetic building layouts obtained by procedural 

modelling (section 3.1). Next, we discuss the results of the hydraulic simulations (section 3.2) 

and, finally, we detail the outcomes of the statistical analysis of the simulation results (section 

3.3). 

3.1. Urban layouts 

Figure 4 displays six of the 2,000 generated building layouts to enable the reader to appreciate 

the influence of the main input parameters (Table 1 and Table 2). The variables x1 to x9 

corresponding to the six building layouts of Figure 4 are given in Table  3. 

Layout (a) and (b) in Figure 4 correspond to the same input parameters, except for the average 

street length x1 and street curvature x3. In layout (a), the average street length is about 3.4 times 

higher than in layout (b). This results in a more “fragmented” urban pattern in layout (b) 

compared to layout (a). Indeed, apart from the change in street curvature, layout (a) shows 

substantially larger building blocks than in layout (b). This observation also applies when layouts 

(c) and (d) are compared, as the average street length x1 in layout (c) is almost three times higher 

than in layout (d). Layout (d) exemplifies an urban pattern characterized by a high value of the 

street curvature x3. Comparing the building layouts (c) and (d) also reveals that the mean parcel 

area x6 has a significant influence on the size of the building footprints, as x6 takes a value roughly 

three times larger in the case of layout (c) than for layout (d). 

The street orientation (x2) has a strong influence on the connectivity between the different faces. 

For instance, in layout (a) (x2 = 0) the building alignment tends to guide the flow entering through 

the west (resp. south) upstream face towards the north (resp. east) downstream face. In contrast, 



layout (f) (x2 ≈ 1) seems to promote flow connection from the west (resp. south) upstream face 

towards the east (resp. north) downstream face. 

The building rear setback x7 is of little significance in our analysis as it mainly controls the 

distance between the back of the buildings and the limit of the corresponding plot of land. This 

distance has no direct influence on the flow computation. In contrast, the side setback x8 plays a 

major part since it controls the distance in-between adjacent buildings and hence the possibility 

for water to penetrate inside a block of buildings. This is exemplified by building layouts (e) and 

(f). The side setback x8 in the former layout is twice smaller than in the latter. 

 

Figure 4: Building footprints for six out of the 2,000 layouts generated by procedural 

modelling. 

 

(a) (b)

(e) (f)

(c)

(d)

1 building block

Upstream faces Downstream faces



Table 3: Variables x1 to x9 characterizing the six building layouts displayed in Figure 4. 

3.2. Hydraulic simulations 

3.2.1. Calibration / validation of the porosity-based model 

The coarse model errors on the water depths are expected to be lower than 5% without any drag 

loss term while a reduction up to only 0.5% error can be obtained with an optimal calibration of 

the drag coefficient (Bruwier et al. 2017a). Based on very different building layouts, it was shown 

that the range of variation of the optimal drag coefficient falls between 2.0 and 3.0 for the urban 

configurations considered in this study. Therefore, using a constant drag coefficient 
,0 3.0b

Dc   

for all computations, the coarse model error on the water depths should not exceed a few percent. 

3.2.2. Computed water depths and velocity fields 

The results of the hydraulic simulations are 2D maps of computed water depths and velocity 

fields. Figure 5 shows examples of hydraulic modelling results for the building layouts (c), (d) 

and (f) defined in Figure 4. The white areas in the maps of Figure 5 correspond to holes in the 

computational domain, i.e. cells which are inactive because they are mostly included within a 

building and therefore excluded from the computation. For layouts (c) and (f), virtually all 

buildings are reproduced explicitly by holes in the computational domain and the porosity 

parameters enable improving the geometric description of inclined boundaries. In contrast, much 

of the urban pattern of layout (d) is reflected only through the porosity parameters because in this 

case the buildings have a typical size comparable to the grid spacing. This results from the 

relatively low value of the mean parcel area x6 in layout (d) (Table 3). 

The computed water depths are minimum close to the downstream faces (north and east) and 

maximum along the upstream faces (west and south), due to the overall flow resistance induced 

by the buildings. The selected flood level indicator h90 along the upstream faces varies between 



0.61 m and 1.14 m. Hence, for the tested configurations, varying the building layout may change 

the upstream flood level by a factor of almost two.  

Overall the flow remains relatively slow within the urban area, with a Froude number  

F = ||v|| / ( g h )0.5 of the order of 0.1 (||v|| represents the velocity magnitude). The maximum 

value of F does not exceed about 0.4. The velocity increases at local contractions. This is 

particularly visible in layout (f), which is characterized by a side setback x8 more than twice larger 

than for layouts (c) and (d), enabling hence more intense flow exchanges between the streets and 

the void areas inside building blocks (“courtyards”). This is also remarkably shown by the higher 

flow velocity computed inside the building block in layout (f) (velocity magnitude ~ 0.20 m/s) 

compared to layout (c) (velocity magnitude ~ 0.1 m/s). This results also from the higher side 

setback value (x8) in the former layout compared to the latter (Figure 4), making the void area 

within the building blocks more accessible to the flow in layout (f). The absolute velocities are 

high around the top-left and bottom-right corners where the flow avoids passing through the 

building area. 



 

Figure 5: Representation of water depths and flow fields for some urban patterns. 

3.3. Influence of urban characteristics on inundation water depths 

Figure 6 shows the regression coefficients ai computed with Eq. (4) for an inundation indicator 

y = Δh90 computed based on the 90th percentile of the computed water depths along the upstream 

boundaries of the domain (section 2.3). A positive value for a regression coefficient ai indicates 

that an increase in the corresponding variable xi leads to an increase in the water depths, and 

conversely for a negative value of the regression coefficient. Using the regression coefficients of 

Figure 6, the Δh90 values can be predicted with a mean absolute error and a root mean square 

error of, respectively, 2.3 cm and 2.9 cm. This represents less than 15% of the mean value of Δh90 

(21.3 cm). 

The results of the multiple linear regression (MLR) show that the building coverage (x9) is by far 

the most influential urban characteristics. Besides the building coverage, the average street length 

(x1) has also a substantial influence on the water depths, because it controls the size of the building 



blocks. As shown in section 3.1, the lower the value of the average street length is, the more 

“fragmented” the urban patterns are. This contributes to avoid the creation of void areas 

surrounded by buildings, which are therefore not easily accessible to the flow. In a more 

fragmented urban pattern, a larger portion of void area contributes to the flow conveyance. 

Similarly, reducing of the building side setback (x8) leads to higher water depths (section 3.2), 

due to the reduction of the conveyance capacity between adjacent buildings. This is consistent 

with the negative value obtained for coefficient a8. 

The increase in building size resulting from an increase in the mean parcel area (x6) leads to 

higher water depths, as reflected by the positive value of a6. The street orientation (x2) and 

curvature (x3) seem to have no significant influence on the water depths. This is certainly a result 

of the relatively low values of flow velocity in the considered urban area (F ~ 0.1), which are 

typical of lowland rivers. This finding is expected not to apply in the case of floodplains 

characterized by steeper topographic gradients, where the flow velocity would be higher and 

more dynamic effects would prevail. 

The insignificant influence of the rear setback (x7) can be explained by the weak influence of this 

variable on the flow conveyance since it mainly describes the void area within building blocks, 

which contribute anyway only very little to the overall flow conveyance through the urban area. 

While the results of the MLR show no influence of the major street width (x4) on the inundation 

water depths, a slight influence is shown for the minor street width (x5). This should be explained 

by the high number of minor streets in the urban domain compared to only two major streets. 



 

Figure 6: Regression coefficients ai of the urban characteristics for Δh90. 

4. DISCUSSION 

The results are discussed here, based on a comprehensive sensitivity analysis (section 4.1) and 

by comparing them with those of a simple conceptual approach (section 4.2). 

4.1. Sensitivity analysis 

4.1.1. Indicator of inundation water depths 

The performed analysis is based on the increase of the 90th percentile of the water depths 

computed along the upstream boundaries of the urban area: Δh90. Here, we test to which extent 

the conclusions of the analysis remain valid when another indicator of flood severity is chosen 

instead of Δh90. To do so, we repeated the analysis by considering percentiles from 50th to 90th 

with a constant step of 5th and these percentiles were evaluated either along the upstream 

boundaries of the domain, or throughout the whole domain. 

In Figure 7a, the sensitivity of the results of the MLR to the selection of the indicator of flood 

severity is shown through boxplots representing the variation of each coefficient ai when all 

options described in 3.3 are tested. This sensitivity remains low for all coefficients ai. Coefficients 

a1 and a6 corresponding to the influence of the average street length (x1) and the mean parcel area 

(x6) show the highest sensitivity with values ranging respectively from 1.3 × 10-1 to 2.1 × 10-1 

and from 1.0 × 10-2 to 8.3 × 10-2. Nonetheless, the findings described in section 3.3 remain 



generally valid whatever the choice of the indicator of flood severity. Comparing Figure 7b and 

Figure 7c, the sensitivity of the results to the percentiles is higher when they are evaluated 

throughout the whole domain than along the upstream boundary. 

 

Figure 7: Sensitivity of the regression coefficients to choice of the indicator of flood severity by 

considering percentiles from 50th to 90th computed (a) either along the upstream boundaries of 

the domain, or throughout the whole domain and (b) along the upstream boundaries of the 

domain and (c) throughout the whole domain. 

4.1.2. Sample size 

We investigated whether the sample size (2,000 building layouts) is large enough to produce 

robust and reliable results. For this purpose, we selected randomly 1,500, 1,000, 500 and 250 

configurations out of the initial sample. For each sub-sample, the random selection was 

performed 10,000 times to assess the sensitivity of the results to the selected configurations.  

Like in Figure 7, we display the results in the form of boxplots obtained from the sets of 

regression coefficients corresponding to the 10,000 different sub-samplings (Figure 8). Again, 

the findings of section 3.3 are hardly affected by a reduction of the sample size, at least when the 



subsample size remains above 1,000 (Figure 8). In all cases, the most influencing urban 

characteristic remains the building coverage (x9) and only variables x1, x5, x6, x8 and x9 show a 

significant influence on the computed water depths. Even for a sample size lower than 1,000, 

most of the results remain consistent with the findings of section 3.3, and only some coefficients 

show substantial variations. Hence, the sample size of 2,000 different building layouts is deemed 

sufficient. 

 

Figure 8: Sensitivity of the absolute values of the regression coefficients of the urban 

characteristics for Δh90 to the sample size (N). 

4.1.3. Number of urban characteristics used in the regression analysis 

The respective influence of each of the nine selected urban characteristics on the computed water 

depths was shown to be very different, suggesting that some of the urban characteristics could be 

neglected in the regression analysis. Here, we compare the predictive capacity of regressions 

based either on all urban characteristics (variables x1 to x9) or just on the most influential ones. 

The predictive capacity of each regression is assessed through the resulting root mean square 

error. 



Using only the building coverage (x9) for the linear regression leads to a root mean square error 

roughly 37% higher than with the MLR based on all variables (Table 4). The prediction of Δh90 

based on the five most influential variables (x1, x5, x6, x8 and x9) gives an accuracy similar to the 

one obtained with all nine variables. 

Considered variables x9 x1, x5, x6, x8 and x9 x1 to x9 

Root mean square error (cm) 4.01 2.93 2.93 

Table 4: Root mean square errors on the estimation of Δh90 for sets of urban characteristics 

used in the MLR. 

4.1.4. Model choice 

In all analyses above, a linear relationship was assumed between the rise in water depth y = Δh90 

and variables x1 to x9: 
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Here, we check whether our findings are affected by the choice of another model. For this purpose, 

we tested two approaches: 

 First, we used an alternate model, assuming that Δh90 can be predicted by means of a power 

law involving all parameters x1 to x9: 
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in which b0 to b9 are coefficients to be calibrated. Coefficients bi certainly do not take the 

same values as parameters ai; but still their relative values provide an indication on which 

of the variables xi have more influence on the determination of Δh90. 



 Second, we computed Pearson correlation coefficients i, which also reflect the link 

between variables, but it does so independently of the choice of a particular model. 

In practice, the estimation of coefficients bi in Eq. (7) is performed by means of a MLR, after 

applying a logarithmic transformation to variables xi and y: 
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The configurations involving a street orientation (x2) equal to zero were disregarded; but they 

represent only 2.5 % of all building layouts in the sample. 

Coefficients ai, bi and i are compared in Figure 9. Each set of coefficients has been scaled so that 

the sum of the nine absolute values is one. The following observations can be made. 

 In all three approaches, variables x9 is shown to have a substantial influence on, or be 

strongly correlated with, the flood severity indicator Δh90. The prevailing influence of the 

building coverage is therefore a robust outcome of the analysis. 

 A difference between the different approaches is found for the mean parcel area (x6). The 

Pearson correlation coefficients suggest that the importance of x6 is similar to that of the 

building coverage (x9), while has some influence in the standard MLR and multiple linear 

regression with logarithmic transform, but of a lower magnitude than that of x9. This 

difference may result from the existing positive correlation between x6 and x9, as revealed 

in Figure 10. Given this correlation, the lower weight given to x9 by the Pearson correlation 

compared to the standard MLR is simply compensated by a higher weight given to x6. 

 In all approaches, the coefficients assigned to the minor street width (x5) and the building 

side setback (x8) are consistently negative and of substantial magnitude. This confirms that 

considering variables x5 and x8 as strongly controlling the flow through the urban area is a 

robust outcome of the analysis. 



 Similarly, the coefficients associated to the major street width x4 (x4) and the building rear 

setback (x7) take consistently negative values of small magnitude, while those related to 

x2 (street orientation) are also consistently small but positive. Therefore, these variables 

may safely be disregarded, as shown also in Table  4. 

 The regression coefficients related to the average street length (x1) and the street curvature 

(x3) (a1, a3 and b1, b3) have an opposite sign compared to the corresponding Pearson 

correlation coefficients (1 and 3). This is a result of the significant negative correlation 

between x1 and x3, as revealed in Figure 10. Although this correlation makes sense from 

an urban planning point of view, as a stronger street curvature implies more short streets 

in the inner area of the curved streets, it somehow hampers drawing truly robust 

conclusions on the relation between the street length and the upstream flood severity. 

 Another interesting finding obtained from the Pearson regression coefficients is that 

several variables have a similar importance to x9, while according to the standard MLR 

and the MLR with logarithmic transform, only x9 seemed to be of prevailing influence. 

This result is consistent with those presented in the next section, which indicate that the 

building coverage is of lower importance than another composite indicator of flow 

conveyance at the scale of the urban area (district-scale), while x9 is stricto sensu a proxy 

for the storage capacity (and not the conveyance capacity) in the urban area. 



 

Figure 9: Comparison of regression coefficients ai and bi obtained from multiple linear 

regression, without and with logarithmic transform, and with Pearson correlation coefficients 

i. Each set of coefficients has been scaled so that the sum of the nine absolute values is one. 

 

Figure 10: Pearson correlation coefficients between all variables x1 to x9. 

 

4.2. Conceptual approach 

The set of input variables x1 … x9 were selected for their significance in terms of urban planning. 

However, as such, they are neither optimal for statistical analysis (Figure 9) nor of direct relevance 



for hydraulic analysis. Therefore, we present here a simple conceptual model, which relates these 

urban planning parameters to just two parameters of direct relevance for hydraulic analysis: a 

district-scale storage porosity D , and a district-scale conveyance porosity 
D . 

The district-scale storage porosity is straightforward to evaluate from the building coverage 

D 9( 1 )x   , while the district-scale conveyance porosity was estimated based on an idealization 

of the geometry of the considered urban layouts. Despite a number of simplifying assumptions, 

we show that these two district-scale porosity parameters explain amazingly well the results 

obtained in section 3 for the whole set of 2,000 quasi-realistic urban configurations. 

4.2.1. Conceptualization 

First, we aim to derive an expression relating the district-scale conveyance porosity 
D  to the 

input parameters of relevance for urban planning, as listed in Table 1. To do so, we introduce the 

following simplifying assumptions, which enable obtaining analytical expression for 
D  (Figure 

11): 

 the street orientation and curvature are neglected ( =  = 0), so that all streets are straight 

and aligned either along the west-east direction or the north-south direction; 

 these streets are separated by building-blocks of identical size; 

 the size of a building-block is given by the average street length Ls; 

 all minor (resp. major) streets have the same width equal to w (resp. W); 

 each building-block is split into several identical square parcels of length equal to the 

square root of the mean parcel area Ap; 

 the size of a building is determined from the parcel area and the three setbacks sf, sr and 

ss; 



 we estimate the conveyance porosity as the minimum void fraction in a section normal to 

the west-east direction (as if the flow as aligned with this direction). 

Consistently with the procedural modelling presented in section 2.1, the idealized building 

layouts considered here also comply with the following rules: 

 one single major street is introduced in each direction; 

 only the external parcels of the building-blocks are urbanized while the others remain 

undeveloped. 

 

Figure 11: Idealized urban pattern at the district-scale (a) and block-scale (b). 

Under these simplifying assumptions, the number n of building-blocks over the length LD of the 

urban area can be derived from the urban parameters by: 
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The number nb of buildings (or parcels) over the length Ls of a building-block is simply equal to: 

s pL A . 

The block-scale conveyance porosity 
B  is estimated as the ratio between the minimum free 

length along the north-south or east-west direction and the total length of the building-block Ls: 
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Similarly, the district-scale conveyance porosity 
D  is computed as: 
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 (11) 

4.2.2. Results 

Based on the district-scale storage and conveyance porosities, D  and 
D , a regression analysis 

was performed using Eq. (12): 

    90 D D1 1
b c

h a     (12) 

Since Δh90 = 0 for D D 1   , Δh90 in Eq. (12) is logically expressed as a function of 1 - D

and 1 - 
D . The values of parameters a, b and c were determined by minimizing the root mean 

square error between Δh90 derived from Eq. (12) and the corresponding values extracted from the 

hydraulic simulations of the 2,000 building layouts (section 3.2.2). 

Figure 12 shows the remarkable correlation obtained between Eq. (12), with calibrated 

coefficients a = 1.63, b = 0.75 and c= 2.24, and the reference values. The mean absolute and root 

mean square errors on the prediction of Δh90 from Eq. (12) over the 2,000 computed urban 

patterns are respectively equal to 2.0 cm and 2.6 cm.  

Considering only the district-scale storage porosity in the regression analysis (c = 0) gives 

optimal coefficient a = 1.00 and exponent b = 0.91. The mean absolute and root mean square 

errors increase by respectively 47% and 57% when neglecting the district-scale conveyance 



porosity in the regression analysis. Neglecting the district-scale storage porosity (b = 0), the 

errors increase dramatically by more than a factor 3. 

 

Figure 12: Relationships between the optimal regression analysis of the district-scale porosities 

D  and 
D  and the inundation indicator Δh90 for the 2,000 computed urban patterns. 

4.2.3. Interpretation 

Although the conceptual model is based on an idealization of the building layouts and on 

relatively crude assumptions, the results obtained with this simple model are very promising. 

While the minimum value of the root mean square error computed with a regression analysis 

based on the nine urban characteristics is 2.9 cm (section 3.3), this error is found here to drop to 

2.6 cm when only the two district-scale porosity parameters are used. 

The standard MLR analysis indicates that the storage porosity (i.e. the building coverage) is by 

far the urban characteristic influencing most the water depths (section 3.3); but this is somehow 

misleading since we find here, based on parameters of direct hydraulically significance, that the 

conveyance porosity has actually an even stronger influence (exponent c = 2.24 

~ 3 × exponent b). This aspect was already suggested in section 4.1.4, which highlighted that 

other parameters than the building coverage (x9) seem to have a similar importance when a 



logarithmic transformation was applied to all variables, as well as based on Pearson regression 

coefficients. 

However, the storage porosity is a key parameter to capture the influence of urban patterns on 

inundation water depths. While the accuracy of the conceptual model decreases by around 50% 

when neglecting the conveyance porosity, it drops by a factor 3 when the storage porosity is not 

considered. 

4.2.4. Implication for urban planning 

Figure 13 provides two examples of pairs of building layouts leading to similar water depths 

upstream, although they are characterized by significantly different building coverage ratios, i.e. 

different values of the district-scale storage porosity ( D ~ 0.6 vs. D ~ 0.8). In both cases, the 

higher value of the building coverage is compensated by a higher value of the district-scale 

conveyance porosity. 

These results are fully consistent with Eq. (12), which highlights that potential detrimental effect 

of reduction of the storage porosity (i.e. new developments increasing the building coverage) can 

be mitigated by means of a suitable layout of the buildings which increases the conveyance 

porosity. This finding is of high relevance to guide more flood-resilient urban developments. 

Eqs (10) and (11) reveal that the district-scale conveyance porosity can be increased mainly in 

two ways: 

 at the district-scale, increasing the fragmentation of the urban pattern (i.e. increasing the 

value of n) by reducing the average street length Ls or by favouring a high number of 

narrow streets to a low number of large ones; 

 at the building-block-scale, increasing the building side setback ss or reducing the building 

size (i.e. reducing the mean parcel area 
pA ). 



 

Figure 13 : Urban patterns with different district-scale porosity values leading to similar 

upstream water depths. 

 

The findings described above were obtained based on fixed hydraulic boundary conditions. 

Nonetheless, the overall conclusions would certainly remain unchanged if, for instance, the 

inflow magnitude was varied. Indeed, we expect that increasing (resp. decreasing) the inflow 

discharge would mainly magnify (resp. shrink) the water level differences between the upstream 

and downstream faces of the urban area for all configurations, without changing substantially the 



flow distribution within the street network. This effect was shown by Arrault et al. (2016) based 

on a laboratory model of an urban district, in which the inflow discharge was varied 

systematically over one order of magnitude (see Figure S1 in Supplement to Arrault et al. 2016). 

Consequently, varying the inflow discharge is unlikely to substantially modify the ranking of the 

various building layouts in terms of flood-resilience. Similarly, Arrault et al. (2016) demonstrated 

that varying the inflow partition between the upstream faces has a limited influence on the flow 

within the urban area. In contrast, introducing a bottom slope would promote higher flow velocity 

so that parameters which play a little part in the configuration considered here (flat bottom) would 

become far more important (e.g., street orientation and curvature, as mentioned in Section 3.3). 

5. CONCLUSION 

This paper presents a unique systematic study of inundation flow in quasi-realistic urbanized 

areas, which links hydraulic modelling results to parameters of direct significance for urban 

planning. Based on porosity-based hydraulic computations of inundation flow for a set of 2,000 

different building layouts, the relative influence of nine urban characteristics (average street 

length, street orientation and curvature, major and minor street widths, mean parcel area, rear and 

side building setbacks and building coverage) on inundation water depths were assessed. We 

focused on the water depth upstream of the considered urban area, as it reflects the impact of the 

developed area on the severity of flooding upstream. The terrain slope was neglected, so that the 

analysis results apply mostly to floodplains of typical lowland rivers. 

The most influential parameters were found to be the building coverage, the mean parcel area 

(controlling directly the building size), the building side-setbacks, and to a lesser extent, the 

length and width of the streets. For the tested configurations, the more fragmented the urban 

pattern is (relatively small parcel sizes and street length), the lower the upstream water depths. 

This aspect is related to urban design at the district and building-block scales. Additionally, 



increasing the voids in-between the buildings (i.e. larger side setbacks) was shown to also 

contribute to a decrease in the upstream waterdepth. This aspect relates to urban planning at the 

local level of a single parcel. 

We also built a simple conceptual model based on storage and conveyance porosity parameters 

determined at the district-scale. Although particularly simple, the model was shown to provide 

surprisingly accurate predictions of the influence of the building layout on upstream water depths. 

The model parameters reveal that an increase in building coverage in an urban area (i.e. new 

developments, leading to a decrease in the district-scale storage porosity) can be compensated by 

a suitable location of the buildings so that the district-scale conveyance capacity increases. 

This study paves the way for more quantitative approaches in water-sensitive urban design, based 

on process-oriented modelling of the interactions between complex urban systems and flooding 

mechanisms, enabling more flood-resilient urban developments. 

Further research is needed to reach a deeper understanding of the influence of environmental 

parameters, such as the terrain slope and imperviousness, man-made structures (sewage system, 

underground structures …) and obstacles (cars, trees …) as well as varying hydraulic conditions 

(unsteady flood waves, pluvial flooding …). 
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