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ABSTRACT ARTICLE HISTORY
Today, there is a collection of a tremendous amount of bio-data because of the computerized Received 13 February 2017
applications worldwide. Therefore, scholars have been encouraged to develop effective methods Accepted 4 August 2017
to extract the hidden knowledge in these data. Consequently, a challenging and valuable area for KEYWORDS

research in artificial intelligence has been created. Bioinformatics creates heuristic approaches and Bioinformatics; data mining;
complex algorithms using artificial intelligence and information technology in order to solve artificial intelligence;
biological problems. Intelligent implication of the data can accelerate biological knowledge intelligent knowledge
discovery. Data mining, as biology intelligence, attempts to find reliable, new, useful and discovery; bio-data analysis;
meaningful patterns in huge amounts of data. Hence, there is a high potential to raise the heuristic algorithms
interaction between artificial intelligence and bio-data mining. The present paper argues how

artificial intelligence can assist bio-data analysis and gives an up-to-date review of different

applications of bio-data mining. It also highlights some future perspectives of data mining in

bioinformatics that can inspire further developments of data mining instruments. Important and

new techniques are critically discussed for intelligent knowledge discovery of different types of row

datasets with applicable examples in human, plant and animal sciences. Finally, a broad perception

of this hot topic in data science is given.
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Put  putrescine nique [2]. Techniques developed by computer scientists
QTL  quantitative trait loci have provided the opportunity for researchers to
ROC  receiver operating characteristic sequence approximately 3 billion base pairs (bp) of the
ROS  reactive oxygen species human genome. Currently, achievements generated from
SMG  selection marker gene the application of next-generation DNA sequencing (NGS)
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technologies have inaugurated genomics science, and
facilitated critical progress in various areas such as epide-
miology, biotechnology, forensics, biomedical sciences
and evolutionary biology [3].

Bioinformatics as an interdisciplinary area explores
new biological insights from biological data [4]. Biologi-
cal databases are the heart of bioinformatics [5,6], and
represent an organized set of a huge variety of biological
data from past research conducted in laboratories
(including in vivo and in vitro), from bioinformatics (in sil-
ico) analysis and scientific articles. Databases related to
‘omics’ (e.g. genomics, transcriptomics, proteomics and
metabolomics) collect experimental data and can be
browsed with designed software [7]. Recently, it has
been revealed that analysis of large volumes of biologi-
cal data through traditional database systems is very
troublesome and challenging [8], whereas biological
knowledge discovery can be accelerated by intelligent
use of the data. Such action is called data mining (DM)
and can include simple, complex and/or combinational
queries. Consequently, numerous techniques of genomic
DM have been created for experimental and computa-
tional biologists [9]. DM methods can be used in bioin-
formatics studies because bioinformatics is data-rich,
while no comprehensive theory of life organization can
be detected at the molecular level [8].

The question is how to converge the two domains, Al
and DM, for successful mining of bio-data. The present
paper argues how Al can assist bio-data analysis. Then,
an up-to-date review of different applications of bio-
data mining is presented. It also highlights some future
perspectives of DM in bioinformatics that can inspire fur-
ther developments of DM instruments.

Intelligent knowledge discovery in
bioinformatics

A challenging and hot research area for Al was gener-
ated when the Human Genome Project and other large-
scale biological studies collected a huge quantity of data
[10]. Hunter's sentinel article [10] entitled ‘Artificial Intelli-
gence and Molecular Biology’ appeared in Al Magazine
25 years ago. Today, bioinformatics is involved in ‘big
data’ and encounters such challenges as sequence,
expression, structure and pathway analyses [11]. For the
present and future developments of bioinformatics, Al
and heuristic approaches are highly essential. Today, it is
widely agreed that these two potential domains are con-
verging [12].

Bioinformatics is a highly new interdisciplinary and
strategic area of study integrating and interpreting the
complexity of any biological data through information
technology and computer science. This area of science

attempts to develop novel algorithms and software, data
storage methods and new computer architectures in
order to fulfil the computational requirements [13]. Algo-
rithm architecture is a step-by-step process (a list of well-
defined instructions) for calculation, data processing and
automated reasoning. In fact, an algorithm is applied to
calculate a function. For instance, Hilbert et al. [14] intro-
duced a partial formalization of the concept in order to
figure out the Entscheidungsproblem. Bioinformatics
basically copes with four aspects of analysis, including
DNA sequence analysis, protein structure prediction,
functional genomics and proteomics, and systems biol-
ogy, through the development and application of inno-
vative algorithmic methods [3].

Finding solutions to the biological issues is in the area
of bioinformatics where the DM approaches could be
used efficiently. Both DM and bioinformatics are fast
developing fields of research [8]. The growth of informa-
tion storage technology has generated a vast volume of
raw data considering two aspects: algorithm develop-
ment and rise of modern storage equipment. These raw
data include important information. In the 1990s,
researchers used knowledge discovery from data (KDD)
in order to extract knowledge from databases. As Piatet-
sky-Shapiro and Frawley [15] argue, ‘Knowledge discov-
ery is the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data.’
Of course, reasonable time complexity, accuracy, com-
prehensibility and useful results are necessary features
that should be considered for the extraction of new
knowledge. Furthermore, according to Fayyad et al. [16],
DM is synonymous with KDD. DM can be applied in bio-
informatics for areas such as gene finding, function motif
detection, protein function domain detection, protein
function inference, protein and gene interaction network
reconstruction, protein sub-cellular location prediction,
disease diagnosis, disease treatment optimization, dis-
ease prognosis and data cleansing [17]. For instance, a
novel learning algorithm (KODAMA package) can be
used for knowledge discovery and DM [18].

The process of DM has three levels, including (i) data
pre-processing, (ii) data modelling and (iii) data post-
processing (Figure 1). In the first phase, raw data are pre-
pared for mining. Because of the widely distributed,
uncontrolled generation and utilization of numerous
bio-data, data cleaning, data pre-processing and the
semantic integration of such heterogeneous and highly
distributed databases have become significant in sys-
tematic and coordinated analyses of bio-databases [19].
As indicated in Figure 2, the second phase discovers rela-
tionships between different data for extraction of signifi-
cant new patterns [20]. In this regard, prediction and
description are the primary goals of DM [17]. The
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Figure 1. Basic concepts of data mining. The DM process includes three levels: (1) data pre-processing (raw data is prepared for min-
ing), (2) data modelling (discovers relationships between different data for extraction of significant new patterns), and (3) data post-
processing (extracted data and pattern are evaluated and then verified as knowledge).

predictive models (such as classification, regression,
Time series analysis, prediction, etc) can predict
unknown data values using the known values. On the
other hand, the descriptive models (such as clustering,
sequence discovery, association rule and summarization)
can detect the patterns in data and discover the proper-
ties of the data assessed [21]. In the final phase, post-
processing, the extracted data and patterns are evalu-
ated and then verified as knowledge. Background knowl-
edge can also be used to verify the extracted knowledge
[22].

DM systems are classified based on criteria such as: (i)
the type of data source mined (e.g. text, image, audio,
video, etc), (ii) the data model (e.g. Object Model, Rela-
tional data model, Object Oriented data Model, Hierar-
chical data Model/W data model), (iii) mining techniques
(e.g. machine learning, genetic algorithms (GA), statistics,
neural networks, visualization, database oriented or data
warehouse-oriented, etc.), and (iv) the kind of knowledge
discovered (such as classification, clustering, association,
characterization, discrimination, etc.). The classification
can also consider the degree of user interaction engaged
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Figure 2. Schematic overview of possible inputs for DM process and subsequently possible predictions and outputs from DM algo-
rithms leveraging many genome-scale datasets. The upper side of the circle shows different selected inputs/datasets including single
nucleotide polymorphisms, structures of biological molecules, chromosomal mapping, phylogenetic data, gene expression profiles,
DNA/RNA/protein sequence data and biochemical pathways. In the heart of the circle, the most popular DM algorithms and techniques
are presented. On the lower side of the circle, different types of possible outputs extracted from DM approaches are displayed. These
outputs include protein characterization, dataset characterization, pathway characterization, DNA and RNA sequence characterization,

and interaction characterization.

in DM. A comprehensive system can provide different
DM approaches be appropriate in various conditions
and options, and represent various levels of user interac-
tion [21].

DM approaches and techniques can be categorized
into three key groups: (i) supervised learning techniques,
(ii) unsupervised learning techniques, and (iii) other. The
first group involves classification and prediction tasks.
Clustering and association rules mining are in the second

category. On the other hand, some tasks are not classi-
fied either as supervised, or as unsupervised learning
techniques. Hence, they are assigned into the third cate-
gory. Yet, there is not a comprehensive list of DM tasks.
Nevertheless, according to Piatetsky-Shapiro [23], the
most common DM approaches are (a) sequence mining,
(b) clustering, (c) decision trees and decision rules (classi-
fication), (d) support vector machine (SVM), (e) neural
networks (classification), (f) Bayes classification,
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(g) regression, (h) link analysis, (i) descriptive statistics
and (j) visualization. DM tasks include the selection of
suitable algorithms. Both the selection of DM approach
and algorithm, and parameterization of the optimal algo-
rithm depend on the goals of the analysis and features of
the available data [24]. A couple of DM activities such as
manipulation, mining of sequence data, string searching
algorithms, machine learning and database theory have
been considered seriously. The developed methods for
such tasks have led to the extensive progress in com-
puter science [8].

Sequence mining

DM can be used in such fields as text mining, sequential
pattern mining, image mining and web mining [8].
Among these areas, sequence data mining (SDM) is the
most primitive operation in computational biology [17],
and helps to discover the sequential relationships and
knowledge hidden in the ocean of sequence data [8].
For example, by mining of DNA sequences alone, the
BiRen algorithm predicts enhancers using a deep-learn-
ing-based model [25]. Lim et al. [26] also presented an
automated information extraction system (@Minter)
based on Support Vector Machines for text-mining of
microbial interactions. SDM has a broad range of applica-
tions such as web access patterns, the analysis of cus-
tomer purchase patterns, business, security, weather
observations, medical data, DNA/RNA/protein sequenc-
ing, and so on [8]. In bio-data analysis, the most critical
search problems are similarity search and comparison
among bio-sequences and structures [19]. In fact, the
sequence analysis refers to subjecting a DNA, RNA or
peptide sequence to sequence alignment, sequence
databases, repeated sequence search, or other bioinfor-
matics approaches on a computer [17].

With the reducing costs, rapid advancements in NGS
and related bioinformatics computing sources, and the
generation of complete genome sequences of various
organisms, bioinformatics provides both conceptual
bases and practical approaches for discovering systemic
functional behaviours of cells and organisms [27]. In the
area of DNA, RNA and protein sequence analysis, SDM
approaches are utilized for sequence alignment,
sequence searching and sequence classification. Protein
sequence classification is the favourite area of many
researchers [8].

Sequence alignment is essential in solving such issues
as prediction of the secondary and tertiary structures of
proteins, prediction of the ancestral sequence or tracing
the common genes in two organisms [28], prediction of
gene function, sequence divergence, sequence assem-
bly, database searching and so on [29]. However,
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sequence alignment is a highly complicated task
because of the high number of possible combinations
and searches. This complexity rises exponentially along
with the size of the sequence. Therefore, sequence align-
ment is considered a highly computationally intensive
problem [28]. Thus, both software and hardware
advancements have the potential to improve the accu-
racy and speed. Consequently, new algorithms have
emerged. These algorithms are classified as optimal and
heuristic. Although optimal algorithms are efficient in
alignment sensitivity, they are computationally expen-
sive. In modern computational biology, the computa-
tional cost of all dynamic programming algorithms
aforementioned is prohibitive especially for large-scale
applications such as database searching. As a result, sci-
entists have shifted their attention to heuristic algo-
rithms. Heuristic approaches are faster algorithms that
do not guarantee delivery of the optimal solutions [28].
Furthermore, pairwise sequence alignment is catego-
rized into local and global. Local sequence alignments
discover the best approximate sub-sequence match
within two given sequences. Local sequence alignments
find extremely similar areas within the two sequences.
Some popular local sequence alignment algorithms
include Smith-Waterman [30], FASTA [31], BLAST (Basic
Local Alignment Search Tool) [32], Gapped BLAST [33],
BLAT (BLAST Like Alignment Tool) [34], BLASTZ [35] and
PatternHunter [36]. BLAST is the most popular bioinfor-
matics algorithm worldwide that has been developed at
the National Center for Biotechnology Information
(NCBI) for fast sequence alignment [32]. The strategy uti-
lized in BLAST for raising the speed is basically fulfilled
by two shortcuts: do not bother finding the optimal
alignment, and do not search all of the sequence space.
Efficiently, BLAST tends to rapidly find the areas with
high similarity, without checking every acceptable local
alignment [29]. On the other hand, global sequence
alignments detect the best alignment of both sequences
in their entirety. Therefore, they look for global mapping
between entire sequences. Some popular global
sequence alignment algorithms include Needleman-
Wunch [37], MUMmer (Maximal Unique Match-mer) [38],
GLASS [39], AVID [40] and LAGAN [41] (Table 1). All pair-
wise algorithms are different in terms of indexing step,
identifying seeds/anchors and the final step. Some algo-
rithms seem to be more suitable to homologous sequen-
ces, whereas others target divergent sequences [28].
Besides pairwise alignments, Multiple Sequence
Alignments (MSAs) have been used to align closely
related sequences, distantly related sequences or both
[42]. MSA algorithms are an interesting field of study
since the 1980s. Traditionally, the most common method
is the progressive alignment procedure, exploiting the
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Table 1. Categorized pairwise alignment algorithms.

Type of pairwise Algorithm Characteristics References
alignment
Optimal Local ~ Smith-Waterman Dynamic programming [30]
Global Needleman-Wunch Dynamic programming [37]
Heuristic Local FASTA Disadvantages: if the sequences possess more than one area of homology (two [31]
optimal diagonals), just the area around init1? could be found, while the area
contributing to initn® will be discarded. Advantage: speed over optimal
algorithm.
BLAST Disadvantages: it cannot find seeds® smaller than the minimum length ‘I regarded [32]
for the precise match seed (DNA alignment) and reports just local alignments.
Also it can find too many seeds per sequence; therefore, decreasing speed
(protein alignment) and allows no gaps in sequence.
BLAST2 It was developed to overcome the disadvantages of BLAST. [33]
BLAT Same as BLAST and FASTA. BLAT is different from BLAST in that which sequence it [34]
indexes. BLAT is confined as it does not find small homologous areas due to the
small seed length.
PatternHunter It introduces spaced seed to increase the sensitivity. Also, its performance is [36]
higher than that of the above-mentioned algorithms regarding sensitivity. The
speed is not higher than BLAST, as it is performed in Java and induces memory
problems for very long sequences.
BLASTZ It is the fastest algorithm in the BLAST series. To speed up the algorithm, all [35]
repeats should be removed in the sequences.
MASAA (Multiple anchor staged MASAA employs the searching methods (suffix tree) utilized in global sequence [28]
alignment algorithm) alignment algorithms to identify long common substrings in both sequences.
The simulations show that this algorithm outperforms BLASTZ when the
sequences are divergent and sometimes generates an alignment when BLASTZ
does not return any alignment. On homologous sequences, the performance is
comparable. Overall, MASAA finds the alignment faster than BLASTZ.
Global MUMmer It is one of the first global alignment algorithms that align two long genomes. [38]
GLASS It aligns long genomic sequences. It aims to remove the limitations of standard [39]
dynamic programming (SDP) approaches which had running time problems
and to increase the sensitivity when aligning the sequences in their entirety.
AVID It balances sensitivity and speed when aligning very long sequences. [40]
LAGAN More sensitive than previous algorithms. An effective pairwise aligner which can [41]

be appropriate for genomic comparison of distantly related organismes. It is not
faster than MUMmer and BLASTZ. It is not also sensitive in detecting
transpositions.

FASTA refers to a diagonal, scoring the highest value, ‘init1.’

® In FASTA algorithm, the maximum weighted graph is chosen and the best alignment identified is marked as ‘initn.’

¢ A pair of highly similar areas is known as ‘seed.’

idea that homologous sequences are evolutionarily
related. Later, various alignment programs including
global and local methods have been developed [43].
CLUSTA, an extremely common and effective heuristic
algorithm for multiple alignments, was developed by
Higgins and Sharp [44]. Then, it was extended into the
current version, CLUSTALW, by Higgins et al. [45]. Addi-
tionally, evolutionary-based inference systems are highly
crucial in such fields, as epidemiology and virulence [46],
elucidation of the life tree [47], biodiversity [48], drug
designs [49], human genetics [50] and cancer [51]. MSA
and its subsequent analysis are the requirements for
such evolutionary-based research [52-54]. Also, MSAs
are very important in determining particular traits,
known as ‘specificity determining positions’, modulating
protein’s function in a particular context, for instance,
interaction areas, targeting signals in different cell
machineries, pathways or compartments, or post-transla-
tional modification regions (cleavage, phosphorylation,
etc.) [55-571.

Numerous genetic diseases are due to mutation var-
iants of a gene or cluster of genes, or the overlapping

features of various genetic diseases mapped to near or
distant loci [3]. Consequently, mutation analysis has
become highly significant because of its association with
different diseases [42,58]. Hence, various computational
approaches are being developed to forecast the function
of missense mutations and to detect residues having an
important impact on maintaining wild-type function.
These approaches are, sequence-based algorithms [59],
structure-based algorithms [60,61] and a combination of
both [62]. MSAs highlight two main trends that are par-
ticular to disease-associated mutations [42]. In addition
to forecasting the function of mutant gene products,
low throughput sequencing of known target genes facili-
tates the discovery of new mutations, thus helping scien-
tists understand the evolving characteristics of some
genetic diseases. Bioinformatics is able to predict such
substitution impacts [3]. A three-phase analysis of 1514
missense substitutions in the DNA-binding domain
(DBD) of TP53 (the most frequently mutated gene in
human cancers) confirmed the utility of the Align-GVGD
approach (http://agvgd.iarc.fr) for functional classifica-
tion of missense mutant variants for any genes with
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adequate available sequences [42]. Additionally, the dis-
covery of single nucleotide polymorphisms (SNP) in
numerous model and non-model plant species is the
result of bioinformatics progress [13]. In a recent study,
Huang et al. [63] offered a framework that is able to dis-
cover long, single point mutations across multiple
sequences. However, this framework could not detect
co-mutations involving multiple positions. Other
researchers have attempted to use the translation proba-
bility matrix to evaluate the future amino-acid composi-
tion [64,65]. However, they have only considered the
mutation in one position and are unable to analyse the
geographical dissemination of mutations over time.
Later, a different algorithm was proposed to mine co-
mutations across multiple sequences [66]. However, the
framework did not consider the three-dimensional (3D)
structure of proteins. Recently, Wei [67] suggested an
effective algorithm based on 3D-structure for discover-
ing non-contiguous mutations in biological sequences.
Furthermore, high-throughput aligners can help in map-
ping the sequence reads to the reference sequences.
Sequence alignments have numerous functions. How-
ever, there is pressing need for highly efficient algo-
rithms due to the large volume of the short sequence
reads produced by NGS [68]. The Maq algorithm utilizes
hashing methods [69]. In order to align reads, techniques
based on the Burrows-Wheeler transformation can also
be applied. Such techniques include BWA [70], Bowtie
[71] and Soap [72]. Although these algorithms are faster
than Maq [72], they are limited to split reads in order to
achieve gapped alignments. Moreover, a Smith and
Waterman algorithm [30] is employed in the Mosaik
aligner [73] for aligning the short reads [68].

Clustering

By applying heuristic approaches, the clustering algo-
rithm can classify objects into a default number of clus-
ters based on the data similarity. Distance metrics which
are usually utilized as a scale for similarity evaluation of
the objects include Euclidean, Jacquard, Manhattan, etc.
The similarity measure can be chosen based on the fea-
tures of the objects [24]. Based on a machine learning
view, clusters correspond to hidden patterns, the search
for clusters is unsupervised learning, and the resulting
system presents a data concept [74]. However, cluster
analysis attempts to determine the number of clusters in
a dataset. This is an open issue in cluster analysis. For
example, highly utilized iterative methods, such as the k-
means algorithm, ask the user to determine the number
of clusters in the data before running the algorithm.
Algorithms which can discover the number of clusters
are categorized in unsupervised clustering algorithms
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[75]. Hierarchical and partitional clusterings are the most
popular clustering approaches (Table 2). Practically, clus-
tering is highly important in DM applications such as
information retrieval, text mining, scientific data explora-
tion, spatial database applications, web analysis, market-
ing, customer relationship management (CRM),
computational biology and medical diagnostics [74].

Exploring the hidden patterns in the gene expression
microarray data is challenging for functional proteomics
and genomics. DM methods can be used for addressing
this task [75]. In gene expression data, clustering is a sig-
nificant approach for deriving underlying information
[20] such as biologically relevant grouping of genes and
samples, gene regulation, gene function and gene
expression differentiation in different circumstances [75].
For instance, Engreitz et al. [77] mined significant infor-
mation from transcriptional modules in microarray data
for acute myelogenous leukemia. Tasoulis et al. [75] also
examined the application of the proposed k-windows
clustering algorithm on gene expression microarray
data. Besides determining the clusters present in a data-
set, this algorithm can also define their number. Further-
more, the DBSCAN (density-based spatial clustering of
applications with noise) clustering algorithm was used
to screen colon cancer data [78]. On the other hand, a
supervised fuzzy clustering approach discovered poten-
tial protein biomarkers to recognize individuals at high
risk of bladder cancer [79].

Additionally, Frey and Dueck [80] proposed the Affin-
ity Propagation (AP) algorithm, which is a state-of-the-
art clustering approach. It has been used in wide fields
of computer studies and bioinformatics since it has
higher performance than traditional approaches such as
k-means. In order to achieve high quality sets of clusters,
real-valued messages are passed between all pairs of
data points until convergence by the original AP algo-
rithm. Like agglomerative clustering, AP is able to mea-
sure similarities between data samples.

The AP clustering algorithm is not dependent on a
vector space structure, in contrast to other prototype-
based techniques, and the clusters are selected from the
detected data samples and not calculated as hypotheti-
cal averages of cluster samples [81]. As outlined by Bod-
enhofer et al. [81], AP is especially appropriate for
bioinformatics purposes because: (i) numerous similarity
scales applied in bioinformatics are not associated with
explicit vectorial features; and (ii) detecting a small set of
clusters can offer the opportunity for exploration in bio-
logical datasets. So far, AP algorithm has been demon-
strated to be effective for the purpose of for microarray
data analysis [80-85], Network analysis [86-88] structural
biology studies [89-91], and sequence analysis [92]. For
review, see [81]. Although AP has many applications,
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Table 2. Most popular data-mining algorithms along with their most prominent characteristics (Modified from Li et al. [76]).

DM approaches Algorithm Features
Clustering Hierarchical Prototype-based, graph-based, bottom-up, non-parametric, less susceptible of initial value, sensitive to noise,
time and space complexity.
k-means Fast, simple, popular, prototype-based, optimization problem, centre-based, partitioning problem, parametric,
inappropriate for data different in density and size, sensitive to noise, susceptible initial value, different
outputs in each run.
Affinity propagation Works for any meaningful measure of similarity between data samples; independent of a vector space

Fuzzy c-means

structure; the clusters are chosen from the data samples observed; detects a small set of clusters, identifies
clusters with minimum errors; low speed due to the necessary quadratic CPU time in the number of data
points to calculate the messages.

Determines membership of each object to the clusters; fast, simple, prototype-based, optimization problem,
centre-based, parametric and unsuitable for data that are different in size and density.

Density-based, non-complete and partitioning problem; handles arbitrary size and density; resistant to noise,

Dynamic; investigates the particular distance of transactions; retrieves lost patterns through moving forward;
Popular, uses prior knowledge; simple, iterative method; searches in all variables, reviews entire database at
Using hash table; reducing the number of candidate patterns; collision problem in the hash table; relation

Dynamic, appropriate for parallel process and distributed database, differential optimization; reduces time
and space complexity; self-adaptive; removing the empty bits.

Using lattice-theoretic, bottom-up method; exploring large length patterns; decreasing 1/0 complexity;
discovering all sequential objects; inappropriate for large data; space complexity.

Eager approach; unstable; mathematical based; optimization; global minimum; diagonal separation line;
appropriate for high dimensional data and little training data, parametric, black box, SVMs use kernels to
learn complex functions. However they are very slow and there are multiple parameters to be chosen by the

DBSCAN
time and space complexity.
Association rules DIC
decreases I/0 complexity; sensitive to data homogeneity.
Apriori
each stage, time and I/0 complexity.
DHP
between runtime and database size.
D-CLUB
Eclat
Classification SVM
user.
ANN

Decision trees

k-nearest neighbours
(KNN)
Rule-based

Random forest

Naive Bayes
Performance ROC graph
evaluation
ROC curve
Cost-lines
Lift graph

Precision-recall curve
Reliability diagram
Discrimination

Eager approach; multi-layer network with at least one hidden layer, resistant to replication, diagonal
separation line, ability to complex relation, parametric, black box, increases time by increasing hidden
layers, sensitive to noise and missing values. The output of ANNs cannot be read and the training of the
model is very slow.

Eager approach; partitioning, stable, greedy, recursive, interpretable, non-parametric, resistant to noise and
replication. The output from decision trees can be easily interpreted, but it depends on the algorithm
employed and the complexity of the tree. It is also well-suited to datasets with missing values, sensitive to
inconsistent data, separation line parallel to axis x, y.

Instance based, lazy approach, required similarity measurement, simple, prediction based on local data,
parametric, flexible, arbitrary decision boundaries, sensitive to noise and replication.

Eager approach, interpretable, partitioning, resistant to noise and imbalance data; produces if ... .then rules;
separation line parallel to axis x, y. The rules are easily readable and proper for identification of putative
biomarkers. However there is a possibility of over-fitting.

Efficient on large datasets and can handle large numbers of attributes; not very sensitive to outliers.

Eager approach, nondeterministic, statistical based, resistant to noise, fast and easy to implement, missing
value and irrelevant features, required to determine initial probability, accuracy degraded by correlated
attribute; it assumes attributes are independent of each other.

Independent of class distribution, comparing performance of two or more predictive models.

Independent of class distribution, able to rank positive and negative samples.
Evaluating error rate based on the different costs.

Identifying relations between true positive rate and profanity of positive classification.
Evaluation and ranking each sample based on positive class.

Investigating probability of true calibration of model.

Showing discrimination between each class prediction.

Identifying regions of model that degrade performance compared with reference models with constant

diagram
Attributed diagram
performance.
AUC Area under the ROC curve.
Accuracy Rate of correct classification.
Specificity Rate of true negative classification.
Sensitivity Rate of true positive classification.

one of its most significant research problems is its speed,
particularly for large-scale datasets, since it needs qua-
dratic CPU time in the number of data points to calculate
the messages [93]. In order to solve this issue, the FSAP
(fast sparse affinity propagation) algorithm was sug-
gested for AP [94]. However, the efficiency of this fast
algorithm is at the expense of the clustering result accu-
racy. In fact, its clustering outputs are different from the

outputs of the original AP algorithm. Thus, Fujiwara et al.
[93] suggested an effective AP algorithm pruning unnec-
essary message exchanges in the iterations and calculat-
ing the convergence values of pruned messages after
the iterations to identify clusters. While it can guarantee
exactness of the clustering outputs, it is quite faster than
other algorithms. Furthermore, unlike FSAP, any inner-
parameters are not required to be set by users. In
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addition, for clustering extremely large sequencing data,
Jiang et al. [95] reported a Dirichlet Process Means
(DP-means) algorithm. This algorithm (DACE) follows a
random projection partition approach for parallel
clustering.

Association rules mining

For the first time, Piatetsky-Shapiro and Frawley [15] pro-
posed the association rules mining technique (a market
basket analysis approach), which is another area of DM.
This method can detect non-trivial patterns in the data,
and define the relationships among the binary variables
utilized to characterize a set of objects [96] (Table 2). The
most common a-priori algorithm offers two input param-
eters: rule support and confidence. The proportion of
dataset providing the rule condition is association rule
support, and the proportion of the dataset to which this
rule can be applied is association rule confidence [24]. In
spite of the solid nature of association analysis and its
potential applications, such approach is not as popular
as clustering and classification, particularly in the area of
bioinformatics. However, some researchers have
employed association rules techniques in their work [97-
100]. For instance, Mohanty et al. [101] created a predic-
tion model by association rules in order to discover
breast cancer masses in mammograms.

Regression

The regression tree is a machine-learning approach for
creating prediction models from data by recursively sub-
setting the data space and fitting a prediction model
within each subset. Accordingly, a decision tree can be
created graphically from the subsetting [102]. In fact,
regression analysis is a statistical method estimating and
predicting relationships between variables [20]. Regres-
sion trees are for dependent variables taking continuous
or ordered discrete values, with a prediction error [102].
Regression algorithms are simple linear, multiple linear,
logistic and fuzzy. In DM, regression algorithms predict
hidden data based on continuous training data. In this
method, the behaviour of the dependent variable (y) is
estimated by independent variables (x) [20]. For example,
relationships between vaccination and risk of preterm
birth can be revealed by a regression algorithm [103].

Classification

Classification, as a supervised learning technique, is a
very popular task in DM. It predicts the class of a user-
specified goal feature based on the class of other fea-
tures, known as the predictive features [104]. Therefore,
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it assigns objects to the predetermined classes. The clas-
sification process has two steps, including training and
testing. The training phase involves the algorithm that
analyses the data meant for learning and generates a
classification model (Table 2). The testing phase checks
the accuracy of the model through another data set.
Although Naive-Bayes Classifier, SVM, K-Nearest Neigh-
bour (KNN) and Genetic algorithm (GA) are popular
methods of classification for gene expression and pro-
tein data, decision trees, Bayes classifications and artifi-
cial neural networks (ANNs) are the most common
classification approaches [24].

Supervised machine learning can be utilized for classi-
fication. For example, a group of machine learning meth-
ods is SVMs which are based on the linear separation
between groups. The features determining SVMs include
(i) the principal assigning the optimal linear classifier
based on separation margin maximization, (ii) detection
of the support vectors, and (iii) utilizing kernels to
change the initial variables into a greater-order non-lin-
ear space in which the linear separation takes places.
One of the most common SVM algorithms is Sequential
Minimal Optimization (SMO) [105]. Furthermore, decision
trees are machine-learning models structuring the
knowledge utilized to differentiate between instances in
a tree-like structure. Novel examples are categorized by
pursuing the tree alongside the related branches, based
on the features of the sample. Approaches (e.g. C4.5)
begin with an empty tree and repetitively divide the
data, generating branches of the tree, until they define
exemplars of a branch to a leaf of the tree [106]. The Ran-
dom Forest approach is based on decision trees,
whereas multiple trees are based on the training data.
Each tree has only access to a randomly sampled subset
of the traits of the problem. Subsequently, by the class
prediction of the test samples, each tree can predict a
class and the majority class predicted is utilized [107].
Furthermore, Bayesian classifiers are statistical
approaches based on Bayes theorem [108]. Naive Bayes
[109] is the simplest one calculating the probability that
each sample input belongs to each of the classes. Naive
Bayes is a highly competent machine learning approach
across various application domains and has perfect scal-
ability. As reviewed in Swan et al. [105], ANNs are
inspired from the function of the brain. They include a
set of neurons (computational elements) interlinked via
a vast diversity of interconnectivity patterns. Depending
on the received signal, the connections of a neuron
define its activity. Each individual neuron is a variant of a
linear classifier. However, the presence of various layers
and neurons can lead to the creation of elaborate nonlin-
ear classifiers allocating their function to complicated
issues [110]. Furthermore, rule-based learners involve
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BioHEL [111] as well as JRip [112]. They aim to automati-
cally produce collections of meaningful principles that
determine the allocation of a particular cluster to a giv-
enclassof a problem [113]. Rule learning encompasses a
variety of approaches. Their distinctions are based on (i)
the kind of rule sets they create and (ii) how to establish
the rules and the rule sets [105].

Sequence data analysis is very important in bioinfor-
matics. This task can be dealt with using prediction and
classification methods. For example, the research goal
may be to assign a protein of interest to a family in order
to elucidate the evolution of this protein and to reveal
its biological function [8]. Additionally, the investigation
of proteins is highly beneficial in biological and medical
domains. In biology, for instance, putative amino-acid
sequences are often analysed for discovery of enzyme
active sites, or nucleotide sequences, in order to identify
coding or non-coding regions of DNA or to identify the
function of particular nucleotide sequences [8,114].
Thus, it is essential to develop an intelligent system for
bio-data classification and behaviour prediction (For
review see [8]). To briefly outline some of the more nota-
ble techniques, the Rough Set Classifier technique [115]
has been suggested as a novel model for classification of
large volumes of protein data based on protein func-
tional and structural characteristics. This model is consid-
ered an effective classification tool due to its accuracy
and fast speed. Another, three-phase model for the clas-
sification of unknown proteins into known families has
been reported [116], in which the noisy sequences are
first omitted in order to improve the accuracy through
minimizing the computational time; second, the impor-
tant features are acquired and a feature ranking algo-
rithm is used to classify the sequences; and third,
neighbourhood analysis is used to classify the sequence
of interest into a particular class or family. This rule can
mine significant relations between a protein sequence
and protein classes, subclasses and families. This kind of
classification, in addition to data analysis, generates
knowledge-based information [8]. Another method for
classification of protein sequences is the feature hashing
technique [117], which has the advantage of reducing
the dimensionality on protein sequence classification
tasks. Alternatively, a hybrid GA/SVM algorithm for classi-
fication of protein sequences has been proposed [118],
in which the protein features that carry precise and suffi-
cient discriminative information are selected for classify-
ing and training the SVM classifier simultaneously. Based
on experimental outputs, the hybrid GA/SVM system has
been demonstrated to outperform the BLAST and
HMMer (Hidden Markov Model-based sequence search)
methods [8,118]. Furthermore, Leung et al. [104] used a
DM framework for predicting hepatitis B virus (HBV)

positive patients and analysing key mutation sites in the
HBV DNA sequences. In this approach, two new algo-
rithms were developed based on Rule Learning (RL) and
Nonlinear Integral (NI). The NI algorithm performs well
using the fuzzy measure and the nonlinear integral
because the non-additivity of the fuzzy measure shows
the significance of the individual features and their
inherent interactions. The authors also used GA for opti-
mization providing multimodal solutions involving sets
of best solutions. Moreover, a regularization approach
was applied to achieve a solution with the fewest non-
zero fuzzy measure values [104].

Besides, bioinformatics opens a new window for
understanding cancer biology through intelligent sys-
tems. For instance, Banwait and Bastola [119] employed
supervised and unsupervised techniques for precise clas-
sification of cancer types and sub-types. The supervised
classifier models based on ANN, random forest and SVM
have addressed the cancer sub-type classification issues
[120,121]. Combining the cancer biology knowledge
with influential computational and statistical tools has
the potential to discover miRNAs as new biomarkers to
detect cancer and cancer sub-types. Also, combining
gene and miRNA expression data with computational
analysis techniques could help to determine the role of
miRNAs in cancer development and metastasis and their
capacity in acting as therapeutic agents in cancer treat-
ment. Additionally, a challenge in classification of cancer
tissue samples based on gene expression data is to cre-
ate an influential approach selecting a parsimonious set
of informative genes [122]. In this regard, Wang et al.
[123] introduced a novel algorithm (Chisquare-statistic-
based Top Scoring Genes (Chi-TSG) classifier) for binary
and multi-class cancer classification and informative
genes selection based on numerical molecular data. On
the other hand, classification of gene expression data is
highly important in prediction of disease related genes.
Thus, an influential statistical feature selection method
for classification of gene expression data set was
enhanced based on statistically defined efficient range
of traits for every class termed as ERGS (Effective Range
based Gene Selection) using naive Bayes (NB) and SVM
Classifiers [120]. Furthermore, classification of RNA struc-
ture change by ‘gazing’ at experimental data was pro-
posed by Woods and Laederach [124].

Neural networks

The term neural network originally refers to a circuit of
biological neurons. However, its contemporary use is in
the context of ANNs, which comprise programming solu-
tions resembling the function of artificial neurons, or
nodes. Electrical signalling and other types of signalling
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Table 3. Neural network techniques and their applications.

Applications References
Back-propagation artificial neural networks [127]
Bayesian networks 128
Bayesian confidence propagation neural networks 129
Feed forward neural networks 130

[128]

[129]

[130]

Flow networks [131]
Fuzzy recurrent neural networks [132]
[133]

[134]

[135]

[136]

[137]

Gene regulatory networks 133
General regression neural networks 134
Neural classification 135
Neural nets 136
Radial basis function networks 137

emerge from neural transmitter diffusion. Hence, neural
networks are highly complicated [125], and have
become one of the vital techniques in the bioinformatics
field since the development of various biological data-
bases storing DNA/RNA sequences, protein structures
and sequences, and other macromolecular structures.
Prediction is the most commonly discovered ability of
neural networks in bioinformatics, especially in cases of
a limited volume of available raw data that can be uti-
lized to extract the prediction model [126]. Table 3 lists a

Support Vector Machine

Neural Network
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number of applications for neural networks in
bioinformatics.

Machine-learning methods can be used in different
areas of bioinformatics: support vector machine for protein
fold recognition, hidden Markov model (HMM) for
sequence and profile alignment, Bayesian networks for
gene regulatory networks [138] and ANNs for protein sec-
ondary structure prediction [138], disease classification
and biomarkers identification [139] (Figure 3). Due to gene
collaboration in functional molecular networks [140-142],
network-based analyses have been highly used in cancer
research to provide a molecular stratification of cancer
patients [141], to predict disease outcome [143,144], to
understand tumourigenesis [145] and the mechanism of
action of tumour-inducing viruses [146], to predict the car-
cinogenicity of chemical compounds [147] and to priori-
tize the damaging effects of cancer mutations [148]. Thus,
Horn et al. [149] harness the fundamental wiring of genes
into functional networks to develop a powerful statistical
framework complementing gene-based tests to produce
new hypotheses about driver-gene candidates. Several
new methods using degree-of-interest (Dol) functions

Hidden Markov Model
D1

Begi M1 End

12

Bayesian Network

Figure 3. Schematic overview of machine-learning applications in bioinformatics. These applications include Hidden Markov Model
(HMM) for sequence and profile alignment, Artificial Neural Networks (ANN) for protein secondary structure prediction, disease classifi-
cation and biomarkers identification, Support Vector Machine (SVM) for protein fold recognition and Bayesian networks for gene regu-

latory networks.
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Table 4. Strengths and weaknesses of ANNSs.

Strengths Definition

Weaknesses

Definition

Adaptive learning Learns new tasks with relatively small

amount of training data

Design difficulty ~ ANN is challenging to design and train particularly with complex

issues

Self-organization Organizes its data to obtain pattern Suboptimal If the number of neurons is high, ANN will be computationally
recognition speed slow and challenging

Fault tolerance Retains performance with destruction of Lack of Is not as easy to comprehend as other machine-learning systems
parts of the infrastructure transparency

Real-time operation ~ Computations can be performed efficiently ~ Overfitting Overfits particularly if the training data are small and cannot be
in parallel tendency generalized well into the unseen data

Computationally Predicts complex biological patterns with Data pre- ANN has better performance if there is data normalization as part

powerful training processing of pre-processing

have been reported [150]. They use Dol-based filtering,
graph layout and a network comparison method. Further-
more, the RenoDol framework has been developed as an
application to untangle huge and dense networks through
Dol function, and has been integrated in the network visu-
alization framework Cytoscape [150]. Topological network
analysis of gene-disease associations can reveal significant
properties of the nature of Mendelian diseases [151].
Hence, four different bipartite networks including OMIM,
CURATED, LHGDN and ALL have been employed to exam-
ine human diseases at a global scale [152]. For further
exploration of the diseases and disease-related genes,
gene and disease centric views of the data are produced
through projecting the bipartite gene—disease networks to
monoparite networks [152]. Godinez et al. [153] also
reported a multi-scale convolutional neural network for
phenotyping high-content cellular images. A syntax con-
volutional neural network (SCNN) based DDI extraction
approach has been proposed for extraction of drug—drug
interaction information from biomedical literature [154].
On the other hand, knowledge about protein second-
ary structure can help to understand human diseases
and to develop therapeutic enzymes and drugs. Hence,
various Al techniques are applied for prediction of pro-
tein secondary structure. Standard statistical approaches
such as discriminant analysis and generalized linear
models have limitations when there are highly nonlinear
and complicated interactions. Currently, machine learn-
ing makes computer programming enable to increase
performance with biological data sets [138]. Because of
the high capability of ANN to reveal complicated pat-
terns, categorize big data and make precise predictions
in huge complex amino acid/protein data sets, ANNs
have become a key technique in computational molecu-
lar biology issues such as DNA and RNA nucleotide
sequence analysis, sequence correlations, sequence
encoding and result interpretation, and protein structure
prediction. Of course, it has its own strengths and weak-
nesses (Table 4). Current developments in accuracy
using statistical context-based scores (SCORPION) [155]
and incorporating tertiary structure information with the
ROSETTA de novo tertiary structure prediction approach

[156] have shown continual improvements in the ANN
method for protein structure prediction. Table 5 shows a
comparison of ANN with other machine-learning
approaches in protein structure prediction. Additionally,
Uziela et al. [167] proposed a model for assessment of
protein quality using deep learning neural network
approach. Moreover, forecasting the errors of predicted
local backbone angles and non-local solvent- accessibil-
ities of proteins using deep neural networks are valuable
for prediction, evaluation, and refinement of protein
structures [168]. Zeng et al. [169] also reported a system-
atic exploration of CNN architectures predicting DNA-
protein binding.

Performance evaluation and visualization

Because of numerous descriptive and predictive algo-
rithms for knowledge mining, various performance
assessment approaches are required (Figure 1 and
Table 2). Performance assessment techniques generally
include single scalar and graphical approaches [170].
Specificity, sensitivity and accuracy are in the first group.
Simplicity in implementation but lower efficiency in
assessment is the major feature of this group. The sec-
ond group considers Receiver Operating Characteristic
(ROQ) Curve, Cost-Line and Lift. This group has a compli-
cated implementation but it makes good sense. A sys-
tem was suggested for fast extraction of important
knowledge about cancer by summarization and visuali-
zation [171]. The model employs clinical trial registries
and analyses data related to cancer vaccine trials. The
system output is used as key information regarding can-
cer vaccine trials and can be utilized for future vaccine
development [171].

After information evaluation, scientific data represen-
tation plays an important role. Different techniques of
data representation can sometimes influence the expla-
nation of the results or even change the conclusion of
some experiments [172]. However, along with techno-
logical developments, data visualization is becoming a
bottleneck, as in the postgenomic era, data visualization
tools are necessary [173]. Consequently, Information
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Table 5. Comparison of ANN with other machine-learning approaches in terms of protein structure prediction.

Machine learning
methodologies

Description of the methodology

versus ANN

Bayesian networks The first machine-learning method in protein structure prediction Less opaque [158]
(BN) was partly based on Bayesian statistics [157]; BN performs well

over huge databases.
Hidden Markov
models (HMM)
than that of the other machine-learning methods.
Support vector
machines (SVM)

modelling diverse types of data; high accuracy.

Other -

HMM (a probabilistic model) can provide relevant information
about the sequence-structure relation [158]; its accuracy is less

ANN is more successful [159]

A supervised learning model; associated with learning algorithms SVM is superior in predicting the location of turns [160]; in
and classification and regression analysis in its construction of a  ubiquitin protein structure prediction, SVM is superior to both
hyperplane; can handle high-dimensional data; flexibility in

ANN and HMM [161]; SVM requires a relatively small training set
to avoid overfitting of the data [162]; ANN have much better
accuracy and take much less training and computation time
[163]; SVM require much larger memory and powerful processor
[163]; SVM outperformed ANN with an overall accuracy of 89.3%
in identification of lipid-binding proteins (LPBs) from non-LBPs
[164]

Nearest-neighbour method had an overall three-state accuracy of
72%, higher than neural network [165]; nonlinear dimensional
reduction in protein secondary structure prediction yielded
similar results compared to ANN [166]

Visualization (IV) is highly vital in presenting experimen-
tal results in the bioinformatics area [172]. Furthermore,
visualization, as an advantage for an algorithm, is very
important in DM [20]. IV methods are accepted as com-
puterized techniques such as data selection, data trans-
formation and data representation in a visual form
facilitating human interaction for discovering and under-
standing the data (reviewed in [174]). IV approaches are
based on two main functions of the human visual sys-
tem: first, a human visual system with a broad band-
width that can process a huge amount of information at
one time; second, a human visual system with the ability
to distinguish trends and patterns within visual areas,
such as shape, location, size, and colour of objects. Thus,
IV techniques have two major objectives: first, they con-
sider a huge amount of information at a time which
would not be readily perceivable by humans otherwise;
second, they retrieve useful knowledge from a huge
amount of information by recognizing patterns and
trends [174].

There is a wide variety of IV methods. Thus, various
classifications have been developed from different
angles. For instance, Shneiderman’s taxonomy [175],
which is based on data types and tasks, includes seven
data types, namely, temporal data, tree data, multidi-
mensional data, network data, 1-D linear data, 2-D planar
or map and 3-D data, and also seven tasks, namely,
zoom, history, details-on-demand, filter, overview,
extract and relate [174]. On the other hand, IV
approaches are categorized into six groups based on
data visualization methods including pixel-oriented, geo-
metric, hierarchical, hybrid, icon-based and graph-based
techniques. Besides these dimensions of IV techniques,
other aspects can also be used in IV taxonomy such as
distortion, data preprocessing and dynamic/interaction

techniques [176]. Another taxonomy has been proposed
based on a ‘data state reference model’, describing four
steps of data state in IV and three transformation opera-
tors between every two adjacent steps [177]. A unified
taxonomic framework in the perspective of IV system
designers has also been proposed [178], including fur-
ther perspectives such as display dimensions, data rela-
tionships, user’s skill level and context factors [174].
Hérisson and Gherbi [179] suggested a method for
the three-dimensional visualization of the DNA mole-
cule. Their method is based on a biological 3D model
predicting the complex spatial trajectory of big naked
DNA. This method could help to achieve a general view
of the sequence instead of the textual presentation.
Thus, a novel vision and an original method emerge.
This method is appropriate for conducting original bio-
informatics research and for analysing the spatial archi-
tecture of the genome [172]. Moreover, a new visual
method and software for analysing residue mutations
has been developed. This approach can combine vari-
ous biological visualizations such as one-dimensional
sequence views, three-dimensional protein structure
views and two-dimensional views of residue interaction
networks and aggregated views [180]. A method for
analysing the huge and complicated datasets is to gen-
erate integrated data-knowledge networks allowing
biomedical researchers to analyse the results of an
experiment in the context of existing knowledge.
Hence, Vehlow et al. [181] proposed a visual analytics
method integrating interactive filtering of dense net-
works according to degree-of-interest functions with
attribute-based layouts of the resulting sub-networks.
Comparing multiple sub-networks with different analy-
sis facets was provided through an interactive super-
network that could integrate brushing-and-linking
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methods for highlighting components across networks
[181]. Additionally, for multivariate data visualization,
Kuntal and Mande [182] offered a web-based platform
(Web-Igloo) which is useful for visual DM.

Future perspectives

In spite of great advances in the area of bioinformatics,
various issues still remain to be addressed. High-
throughput sequencing, with its increasing tools and
decreasing expenses, has been widely used. Scientists
have been able to sequence entire genomes, analyse
DNA sequence variation, quantify transcript abundance
and understand mechanisms such as alternative splicing
and epigenetic regulation using the first (Sanger) and
the second (next) generation sequencing technologies
[183]. However, yet, NGS has important challenges, such
as data processing and storage. Genome interpretation
is also another major challenge, which involves not only
the analysis of genomes for functional elements, but the
understanding of the importance of variants in individ-
ual genomes on phenotypes and disease. On the other
hand, the next generation of modern and effective
sequencing technologies can determine a huge deal of
elusive knowledge regarding the repetitive and noncod-
ing elements. Developments in TGS (Third Generation
Sequencing) promise synergies with NGS technologies
to raise our understanding of human/animal/plant geno-
mics and genetics. NGS made a revolution in genomics-
related research, and it is believed that the NGS discover-
ies will be continuing in near future.

Constant developments in Pool-seq (whole-genome
sequencing of pools of individuals) will raise its implica-
tions in the future. First, the availability of novel software
will accelerate the analysis of Pool-seq data. Then, analy-
ses of low-frequency variants will become typical
through the use of new tools. The third development
considers the haplotype phasing of Pool-seq data [184].
Although existing methods are based on sequence infor-
mation of founder haplotypes, an extension relaxing this
requirement to only a subset of the haplotypes in the
pool will make this method more general and lead to
more precise estimates. Ultimately, the availability of lon-
ger sequencing reads will accelerate the reconstruction
of haplotype information from Pool-seq data. This can
be achieved through technological developments (such
as Nanopore and PacBio sequencing), and through new
library preparation protocols (such as lllumina’s Syn-
thetic Long-Read technology), allowing haplotype
sequencing for DNA fragments of up to 10 kb with the
current sequencing technology. Such technological
advances, along with the wide variety of biological
research questions requiring huge sample sizes, mean

that Pool-seq will continue to complement the sequenc-
ing of individual genomes in future [185].

Single-cell sequencing technologies have two main
weaknesses: low genome coverage and high amplifica-
tion bias. Despite the existence of some bioinformatics
tools, new algorithms and software should be developed
in order to analyse single-cell genomics data. Particularly,
tools are required to assess the function of different sin-
gle-cell sequencing technologies. Additionally, technical
standards are needed for evaluation of the genome cov-
erage and amplification biases. In spite of the limitations,
we expect the nucleic acid sequence analysis of single-
cell genomic DNAs and RNAs will be resolved in future
via novel advancements in microfluidics and NGS
technologies.

Various plant genomes have been sequenced at dif-
ferent levels of completion and many plant genome
projects are underway [186-188]. Consequently, SNP dis-
covery has become possible even in complex genomes.
However, at present, there are limited SNPs from crops.
Hence, there is a wide scope for production of reference
genome sequences and discovery of such SNPs using
NGS technologies for further understanding of plant
genetics and genomics. Moreover, other issues that
should be addressed are the ascertainment bias of popu-
lar bi-parental populations and the low validation rate of
some array-based genotyping platforms. On the other
hand, the area of epigenetic regulation of many genome
components can be understood comprehensively by
achieving deeper and more accurate sequencing [13].

What is more, various studies on protein classification
algorithms show that no method has been developed
for the classification of the proteins based on their
amino-acid sequence. Therefore, novel methods could
be created for the classification of the proteins based on
their sequences, rather than their functional and struc-
tural features. Moreover, new ANN-inspired approaches
and strategies can be used to offer predictions for higher
levels of protein structures (tertiary and quaternary).
Thus, protein function can be revealed and drug/enzyme
therapy could be considered in the future.

Assessing the efficiency of bioinformatics methods is
very important in the future improvement of the present
applications and tools. For example, a comprehensive
assessment is essential for obtaining insight into the
effect of mutations, how they should be best mapped
onto the sequence, structure, and network presenta-
tions, and how they should be combined into the visual
layout [180]. Furthermore, the aggregation of network
areas is another issue that can reduce the visual com-
plexity. In fact, identifying areas of particular interest for
evaluation of the potential influence of mutations could
make mutation patterns with specific functional
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consequences more apparent, especially, in the analysis
of multiple proteins [180]. Additionally, it is thought that
improving the software integration of various applica-
tions in an automated way would involve better syn-
chronization over linked views and automated retrieval
of external data [180]. Lastly, based on the present evi-
dence, it is our belief that the discoveries in the wide
range of bioinformatics domains will continue in the
next decade.

Conclusions

The developments of omics technologies have led to
flourishing of high throughput genome-wide scanning
data. Consequently, both bioinformatics and DM is a very
fast ongoing research area. They need various skills for the
gathering and storing, managing and analysing, interpret-
ing and spreading of biological information. Furthermore,
high performance computers (HPC) and innovative soft-
ware are required to handle and organize tremendous
guantities of genomic and proteomic data. Besides low
cost and high speed, another motivating reason for wide-
ranging computational screens of genomic data is the fact
that the complexity and extent of biological systems might
best be discovered by simultaneous consideration of a
broad range of genome-scale data. Hence, it is essential to
explore the hot research issues in bioinformatics and
enhance innovative and intelligent data-mining techni-
ques for effective and scalable bio-data analysis.
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