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Abstract. A formula for the effective heat conductivity of a nanocomposite with cylindrical 

nanowire inclusions is derived. Both transversal and longitudinal heating along the wires are 

investigated. Several effects are examined: the volume fraction and sizes of the nanowires, the 

type of scattering at the particle-matrix interface and temperature. As illustration, silicon 

nanowires inclusions in a germanium matrix is considered; the results are shown to be in good 

agreement with other models and numerical solutions of the Boltzmann transport equation. 

Our main contribution consists of using extended irreversible thermodynamics to cope with 

the nano dimensions of the wires. 
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1. Introduction. 

 Thermal effects in nanomaterials are the subject of a huge amount of research both 

from theoretical and technological viewpoints. A question of particular and acute interest is 

the determination of the effective heat conductivity in nanocomposites. To apprehend the 

problems, several ways are open: either to solve directly the Boltzmann transport equation [1], 

to construct phenomenological models [2], to use atomistic simulations [3] or to mix both 

macroscopic and microscopic considerations which is the route followed in the present 

approach. More specifically, we consider two-dimensional tubular silicon nanowires 

embedded in a homogeneous germanium matrix; both cases with the heat flux directed 

normally and parallel to the axis of the Si wires are investigated To model heat transport in 

composites, we use a formalism, called the effective medium approximation (EMA), initiated 

by Nan et al [2] and revisited by Minnich and Chen [4]. Since the dimensions of the nano 

materials are comparable to the mean free path of the heat carriers, heat transport is mainly of 

ballistic rather than diffusive nature. Therefore, heat transport can no longer be described by 

Fourier’s law and classical thermodynamics but requires a more sophisticated approach. Here, 

we will follow the line of thought of extended irreversible thermodynamics (EIT) which is 

especially suited to treat problems at sub-scales. The main idea underlying EIT [5,6,7] is to 

upgrade the thermodynamic fluxes, like the heat flux to the rank of independent variable at 

the same level as the classical variables, as the temperature. The consequence is that Fourier’s 

law will be substituted by more complex expressions allowing to deal with high frequency 

and small-scale systems. EIT has been applied in a previous paper [8] wherein we have 

studied heat transport in composites formed by spherical particles distributed randomly in a 

homogeneous matrix. The results were shown to be in good agreement with Monte Carlo 

simulations and other models [9,10] using different schemes. In the present work, we explore 
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further the applicability and limitations of the model developed in [8] by considering wires 

instead of spheres because the former play a critical role in a great number of technological 

applications.  

 The present paper is organized as follows. The model is set up in section 2. It consists 

in a mixing of EMA and EIT, whose main ingredients are briefly recalled. In Section 3, the 

model is applied to the problem of dispersion of Si nanowires in a Ge matrix: influence of 

volume fractions, size of the nano wires and the thermal boundary resistance are discussed. 

Temperature dependence of the overall heat conductivity, a topic ignored in most papers, is 

treated in Section 4. Conclusions are drawn in Section 5. 

 

 2. The thermal conductivity model 

 The basic relation is Maxwell’s one [11] improved by Hasselman and Johnson [12] to 

include thermal boundary resistance and by Nan et al [2] who considered various particle 

shapes. Accordingly, the overall thermal conductivity of the composite in the direction 

perpendicular and normal to the heat flux are respectively given by 
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λ0
m is the heat conductivity of the matrix  and λp   the heat conductivity of the wires.  Unlike 

λ0
m, the quantity λp will incorporate explicitly size effects as made explicit later on in this 

Section 2. Furthermore, φ denotes the volume fraction of the fibers and Kr

r
   is a 

dimensionless parameter taking into account the interface wire-matrix, with r the  radius of 
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the wire of length L and, rK  the so-called Kapitza radius. The latter is expressed by rK= Rλm , 

with R designating  the interfacial  boundary resistance, given by 

1 1
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v v
m m p p
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  ,                                                   (3)         

 

where cv
i and vi (i=m, p) are the volumetric specific heats and phonon group velocities 

respectively, note that the result (3) was derived by Chen [13] for pure diffusive scattering. 

Specularity is taken explicitly into account by introducing a “modified” radius r*=(1+s) r /(1-

s) and a “modified” length L*=(1+s)L/(1-s) wherein the parameter s denotes the probability 

of specular diffusion of the phonons on the particle–matrix interface; s=0 is characteristic of 

diffusive collisions (the quantity  r* reduces then  to  r and L* to L) while s=1 denotes pure 

specular interactions. In the present section and in the next one, we assume that the 

temperature is fixed, the effects of a variable temperature will be delayed to section 4. 

 The bulk heat conductivity of the host medium is given by the classical expression  

0 1

3
v

m m m m T refc v                     (4) 

 

where  is the  reference temperature, say the room temperature. The mean free path Λm of 

the phonons inside the matrix is given by the Matthiessen rule: 

 

.                (5)  

 

with  designating the mean free path in the bulk,   is the supplementary 

contribution due to the interactions at the particle-matrix interface. Note that although the 

relation between the mean free path in the matrix and the average separation between 
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neighboring nanowires does not appear explicitly in this formulation, it is implicitly included 

in the expression of Λm,coll. In the case of wires with their axis oriented  normally and  parallel 

to the heat flux, this supplementary contribution is given by, respectively, [4,14]: 

,
*

21

, 


rcollm


         (6) 

wherein ζ stands for  ζ= √ φ/(√φ+1).  

 

 To emphasize the role of the size effects on the heat conductivity λp of the nanowires, 

we will write λp in the form  

 

0 S
p p p                  (7) 

 

wherein λp
0 contains all the contributions except those linked to the sizes of the nanoparticles 

which are described  by the  correcting factor  λp
S . The quantity λp

0 is given by a relation 

similar to (4) with sub-index m substituted by p but wherein Λp refers only to the bulk 

contribution as the effects of ballistic collisions will be included in λp
S. To determine λp

S, we 

will refer to EIT whose main idea is to upgrade the thermodynamic fluxes, like the heat flux 

and higher order fluxes to the rank of independent variables at the same footing as the energy 

or the temperature.  

For the sake of completeness, let us briefly recall the building up of EIT. The first step 

consists in assuming that the entropy  is not only depending on the internal energy e 

but besides on the heat flux vector q so that the corresponding Gibbs equation will be written 

as 

,                        (8) 

wherein η and e are measured per unit volume, T is the temperature and  a 
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phenomenological coefficient identified later on. Furthermore,  denotes the time derivative. 

However, expression (8) does not account for non-local effects. To introduce such effects, it is 

appealed to a hierarchy of fluxes Q(1),  Q(2), ...  Q(N) with Q(1) identified with the heat flux 

vector q, Q(2) (a tensor of rank two) is the flux of the heat flux, Q(3)  the flux of Q(2), etc. Up to 

the nth-order flux, the Gibbs equation generalizing relation (8) becomes 

,         

(9) 

wherein the symbol   denotes the inner product of the corresponding tensors. The second 

step is the formulation of the entropy flux Js. It is natural to expect that it is not simply given 

by the classical expression T-1q, but that it will depend on higher order fluxes, as 

 ,     (10) 

The next step is the derivation of the rate of entropy production per unit volume σs which is 

defined by  

     .s s
td   J ≥0,      (11) 

and is a positive definite quantity according to the second law of thermodynamics. It is 

checked that, after substituting in (11) the expressions of dt η and Js from (9) and (10) 

respectively and eliminating dt e via the energy conservation law for rigid heat conductors 

( td e . q ), one obtains   
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The above bilinear expression in fluxes and forces (the quantities between parentheses) 

suggests the following hierarchy of linear flux-force relations 
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with μ1, μ2,… μn  being positive phenomenological coefficients to meet the property that σs is 

positive definite.. Equations (13) and (14) can also be seen as time evolution equations for the 

fluxes q, Q(2)…  Q(n). In order to gain insight about the physical meaning of the various 

phenomenological coefficients, let us assume absence of non-locality so that the term in 

(2).Q  will not appear in (13) which reduces to Cattaneo’s relation. If in addition, one 

considers steady situations, the term in dtq vanishes and one recovers Fourier’s law. These 

observations lead to the following identities 1 11/ ², / ²T T      , indicating that µ1 is 

related to the heat conductivity λ and γ1 to the relaxation time  of the heat flux q. The 

identification of the higher order coefficients demands to compare with higher order evolution 

equations, but it is expected by analogy  that the parameters µn and γn  are related to 

coefficients of thermal conductivity λn and relaxation times τn of order n, respectively. 

Moreover, since Q(n+1) is the flux of Q(n), this implies, by the very definition of a flux, that 

. Now, when dividing (13) by γ1 and (14) by γn (n=2,3,…), it follows 

that 1 1 2 2/ 1, / 1,...        or, more generally, γn= - βn, which reduces considerably the 

number of undetermined coefficients. 

We assume now that the system is described by an infinite number of flux variables. Applying 

the spatial Fourier transform  .( , ) ( , ) it t e d
 


 

 k rq k q r r  to relations (13) and (14), with k the 

wave-number vector and r the position vector, one is led to the following Cattaneo-type 

evolution equation of the Fourier transformed heat flux, 

   ,    (15) 
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where  is a wavelength-dependent heat conductivity taking the form of a continued 

fraction expansion [5-7]; 
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where nl  are coefficients analogous to the mean free paths associated with the heat flux of 

order n. Suppose for simplicity [15] that all the ln’s are equal (ln= Λp/2) with Λp the mean free 

path of the phonons, by identifying k as 
   22 *

1

*

1
/2

Lr
k    and defining the Knudsen 

number Kn as  Kn= Λp /    22 *

1

*

1

Lr
  , expression (16) has the asymptotic limit [15] 

1
( 1 4 ² ² 1)

2 ² ²
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p Kn
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   .                        (17)    

Note that for sizes of the order of the “de Broglie” wavelength (about 1 nm for Si, which is 

the limit size for the validity of Eq. (17)), quantum confinement effects should be taken into 

account. Note also that Eq. (17) has been used earlier in a different simplified context by 

Alvarez and Jou [17]. The present work enlarges its domain of applicability by considering a 

more general class of problems. For small values of Kn, heat transport is governed by the 

diffusive regime, i.e. by Fourier’s law, and λp
s  tends to one,  which confirms  that λp  can be 

identified with its bulk value. For Kn ≥1 which is typical of nano configurations with heat 

transport of ballistic nature, within the limit Kn  ∞, λp
s increases linearly with the radius of 

the sample in agreement with experimental observations. After combining expressions (7) and 

(17), one obtains the final expression of the heat conductivity of the nanotubes, namely  
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          (18) 

Substitution of (4) and (18) in relations (1) and (2) will allow us to discuss the behavior of the 

effective thermal conductivity of the nanocomposites in terms of the radial (r) and 

longitudinal (L) dimensions  of the nanowires, their volume fraction φ, the specularity 

parameter s and the matrix-particle interface coefficient α. 

3. Application to Si/Ge nanocomposites   

 Let us first consider a Ge host matrix with Si cylindrical nanowire inclusions whose 

axes are aligned normally to the heat flux. In this Section, the temperature is fixed equal to the 

room temperature. The values of the bulk parameters used in the calculations are given in 

Table 1, and are those corresponding to the so-called Debye and dispersive modes [12, 18]. 

 

Table 1. Numerical values of the parameters at room temperature ( ) 

Material      Model       Heat capacity     Mean free path lb              Group velocity  

                 x 106 J/m³K                           nm               m/s 

_________________________________________________________________________   

Si               Debye                     1.66    40.9    6400 

        Dispersive              0.93                         260.4    1804 

Ge        Debye                     1.67                         27.5                                        3900 

                   Dispersive              0.87                         198.6                                       1042 

 

 In Fig. 1 is represented the dependence of the effective transversal λ┴ heat conductivity 

of wires as a function of the volume fraction for two values of the radius (r=5 and r=25 nm) 

and s=0 (pure diffusive scattering). Comparison with numerical solutions of the Boltzmann 
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transport equation [19] shows an excellent agreement. For a fixed volume fraction, λ┴ 

increases with increasing radii. This is easily understood, as in this case the wire-matrix 

interface decreases and the phonon interface scattering is less important and offers less 

resistance against heat transport. Otherwise stated, at larger dimensions, the boundary 

resistance is weaker and the heat conductivities of both the wires and the matrix become close 

to their respective bulk values characterized by the absence of boundary effects. When the 

radius of the wire is fixed, one observes generally a lowering of the thermal conductivity with 

increasing volume fraction due to the increase of the wire-matrix interface.   

 

 In Fig.2 are plotted the values of the transversal heat conductivity versus the volume 

fraction for two values of the radius (5 and 50 nm). The predictions from our model are 

compared to Fourier’s law. In the latter case, the results are not sensitive to size, as it should, 

and the values of the heat conductivity are systematically overestimated. The effect of the 

thermal boundary resistance, measured through the parameter α is displayed in Fig.2 wherein 

the results of the model are compared with those of a zero Kapitza resistance α=0. One 

notices that the heat conductivity is larger for α=0 which is understandable as it corresponds 

to the weakest boundary resistance. Moreover, the larger is the size of the wire, the greater is 

the difference between a zero and a non-zero α-value, because for larger sizes a change in the 

value of α will have larger consequences, due to the larger wire-matrix interface. Our results 

are of the same order of magnitude as those obtained by Behrang et al [14] who limited their 

analysis to α=0. Moreover, their analysis is not based on extended thermodynamics but 

follows a different route mixing EMA and Boltzmann’s theory. Fig. 2 shows that the effect of 

a non-vanishing α becomes important at large volume fractions and wire sizes. However, 

since in most nanocomposites, the volume fractions of nanoparticles is relatively small, taking 

α ≠ 0 has little impact in actual applications.  
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Fig. 1. Transversal effective thermal conductivity of Si/Ge nanocomposite as a function of the 

volume fraction of the nanowires for two values of the radius (r= 5 and 25 nm) and  s=0. The 

results are compared with Boltzmann‘s solutions represented by circles for r= 5 nm and 

squares for r= 25 nm. 
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Fig. 2. Transversal effective thermal conductivity versus the volume fraction of nanowires for 

r= 5, 50 nm. Comparison with Fourier’s law and with zero Kapitza resistance α=0. 

 

 In the study of transverse heat conduction, it was admitted that the length of the wires 

was infinite, in other words much larger than the radii of the wires. To check the validity of 
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this approximation, we have calculated the effective heat conductivity λ┴ for several lengths 

of the nanowire at various values of the volume fractions and different sizes. Fig. 3(a) 

indicates clearly that for a wire radius of 25 nm, λ┴   remains practically constant whatever the 

length of the wire and the volume fraction. It is true that for large radii, the length has little 

influences on the transversal heat conductivity. Nevertheless, looking more closely to Fig. 

3(b) indicates that for a radius comparable or larger than the length, there is a more significant 

influence, albeit this effect is much smaller than that of the volume fraction or the wire radius. 

It is also worth to stress that all the figures have been limited to φ=π/√12 which corresponds 

to the maximum packing of rigid cylindrical nanowires.  
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Fig.3. Effect of the longitudinal length L on the transversal heat conductivity for (a) several 

volume fractions and r= 25 nm and (b) several wire radii and φ=0.1. 

 

 In the above analysis, it was assumed that the interface was perfect i.e. characterized 

by s=0. In order to appreciate the role of the specularity s, we have presented in Fig. 4 the 

results of the variation of the transversal heat conductivity as a function of the wire length L, 

for several values of s. The volume fraction is fixed at φ=0.1 and three values of the radius 

are investigated (r=5, 25 and 100 nm). 

 

(a) (b) 
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Fig.4. Effect of the longitudinal length L on the transversal heat conductivity for several s-

values with φ=0.1 and r= 5, 25, 100 nm.   

 

As far as the effect of the s-value on the transversal heat conductivity is concerned, we see 

from Fig. 4 that the only visible differences occur between s=0 and s=0.1. No significant 

differences are observed between s=0.1 and s=1. The main reason is that the flow of phonons 

normal to the surface is not greatly affected by the nature of the surface; this is no longer true 

with the longitudinal phonons moving along the interface, as shown below. 

 

The results corresponding to heating in the longitudinal direction are plotted in Fig. 5 for four 

values of the specularity parameter (s= 0, 0.2, 0.5 and 0.9). For s= 0, heat conductivity is 

decreasing with the volume fraction and with decreasing sizes. However, by increasing 

sufficiently either the radius or the s-value (each independently), the heat conductivity 

increases with the volume fraction. Increasing the values of s means a reduction of the 

roughness of the particles-matrix interface whence less obstacles are experienced by the 

phonons and therefore a higher heat conductivity is predicted. Larger wire radii also mean 

smaller interfaces between the wires and the matrix, with, as a consequence, less obstacles for 

the phonons and an increase in the heat conductivity. From a mathematical point of view, a 

larger wire radius and a higher s-value lead to smaller Knudsen numbers, characteristic of the 
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Fourier regime. The heat conductivity is then simply a combination of the bulk heat 

conductivities. Since that of the wires (Si) is larger than that of the matrix (Ge), the heat 

conductivity will increase with larger volume fractions. So, whether the longitudinal heat 

conductivity increases or decreases as a function of the volume fraction depends on the three 

factors: wire radius, surface specularity and bulk heat conductivities.  
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Fig. 5. Longitudinal heat conductivity as a function of volume fraction for four values of the 

radius (r= 5, 50, 100, 500) and various values of s (a) s=0, (b) s=0.2, (c) s=0.5, (d) s=0.9. 

 

 4. Temperature dependence of the thermal conductivity 

 We enlarge the investigations discussed in the previous sections by examining the role 

of temperature.  This is achieved by replacing expression (4) of the heat conductivity by the 

more general relation wherein the frequency ω and temperature-dependence are made 

explicit, namely  

(a) (b) 

(c) (d) 
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The determination of (19) requires the knowledge of ,( , ), ( , ), ( , )v
j j j bc T v T l T    for j = m, p  

and lm, coll(T) in terms of ω and T. The limit of integration, , is the Debye frequency cutoff: 

 = 5.14 1013 s-1 for Ge and 9.12 1013 s-1 for Si. In agreement with earlier works [20-22], we 

assume that the phonon group velocity v is independent of the temperature and the frequency. 

For the specific heat and the mean free path, we take 
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  ,    j= m, p                               (21)  

wherein Bj  and θj are  constant quantities obtained by fitting experimental data: Bm =1.655 10-

22 s²m-1K-1, θm=78.92 K, Bp=5.753 10-23 s² m-1 K-1, θp=199.2 K. In the study of temperature 

dependence, we will use the values of the material data of the Debye model. We have 

reported in Fig. 6, the dependence of λeff as a function of temperature for two values of the 

radius (r = 5 and 50 nm) and different volume fractions, varying from φ =0.01 to 0.5, the 

wires being oriented normal to the heat flux. The heat conductivity is seen to decrease 

significantly with the temperature at fixed radius and volume fraction. This behavior can be 

explained by the fact that the thermal boundary resistance is more important at a lower 

temperature (lower heat capacities) and therefore contributes to a larger reduction of the heat 

conductivity. At large volume fraction and small particle size, the heat conductivity is shown 

to remain almost constant. This is a consequence of the strong particle-matrix interaction that 

prevails on such conditions. In Fig. 7, the overall thermal conductivities in the longitudinal 

direction λ|| are compared with those in the transversal direction λ┴ as a function of the 
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temperature for several values of φ and two different radii. The general behavior is rather 

similar in the two configurations with the difference that higher values for the thermal 

conductivity are observed in the longitudinal direction. This is not surprising as phonons 

experience less boundary scattering while moving in the longitudinal direction. 
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Fig. 6. Thermal dependence of the transversal effective thermal heat conductivity at several 

volume fractions and two values of the radius: r= 5, 50 nm.  
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Fig. 7. Comparison between thermal conductivities in the transversal and longitudinal 

direction respectively as a function of the temperature for different volumes fractions and for 

r=5 nm (a) and r=50 nm (b). 

 

 5. Conclusions 

(a) (b) 
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 This work is devoted to the study of heat conduction in nanocomposites constituted by 

dispersed nanowires in a homogeneous matrix. The thermal conductivity depends on several 

factors as the volume fraction of the nano elements, their size, the nature of the particle-matrix 

interface and the temperature. Two particular situations have been investigated: nanowires 

oriented normal and parallel to the heat flow, respectively. The expression of the heat 

conductivity λm of the matrix is that of the modified EMA model as proposed by Minnich and 

Chen [4], the main originality of the present approach being the derivation of the expression 

of the heat conductivity λp of the nanowires. Because their dimensions are comparable to the 

mean free path of the energy carrier, the classical Fourier law is no longer valid. Instead, we 

propose for λp a relation derived from Extended Irreversible Thermodynamics [5,6,7], 

wherein the dependence with respect to the size of the nano wires is made explicit. Special 

emphasis has been put on the temperature dependence of the heat conductivity, a subject only 

occasionally treated in the literature. Our results are shown to be in good agreement with 

those obtained from Boltzmann’s transport equation and other approaches following different 

routes, which attests of the quality of the present modelling.  An advantage is that it rests on 

simple and explicit mathematical expressions which makes it easily tractable from a 

computing point of view. The above approach was applied to metalloids wherein the phonons 

are the only heat carriers. In a future work, it is forecast to generalize it by including metallic 

materials, wherein the heating is governed by both phonons and electrons. 
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