EXTRAIT
NOTICE SUR
GUSTAVE MAGNEL
MEMBRE DE L'ACADÉMIE

Né à Esschen le 15 septembre 1889,
décédé à Gand le 5 juillet 1955.

par
Ferdinand CAMPUS

BRUXELLES
PALAIS DES ACADÉMIES
Rue Ducale, 1

BRUSSEL
PALEIS DER AKADEMIËN
Hertogsstraat, 1

MCMLXX
NOTICE SUR
GUSTAVE MAGNEL
MEMBRE DE L'ACADÉMIE

Né à Esschen le 15 septembre 1889,
décédé à Gand le 5 juillet 1955.

Sa commune natale est la dernière localité située en Belgique près de sa frontière avec les Pays-Bas, sur la grande voie ferrée qui relie Paris à Amsterdam. Il y avait là, à l'époque de sa naissance, un service de douane important, auquel appartenait le père de Gustave Magnel. J'ai oublié dire que ce fonctionnaire consacrait ses loisirs à la botanique. Il devait être plus qu'un bon amateur, car selon les mêmes informations, il devait être assez apprécié pour qu'un Membre de l'Académie, probablement Émile De Wildeman, ait assisté à ses obsèques. J'ai éprouvé quelque surprise que ces circonstances n'aient pas été mentionnées ni précisées dans aucun des nombreux éloges qui ont été prononcés ou publiés après le décès de Gustave Magnel.
Son terroir natal a dû laisser dans sa sensibilité d'enfant une assez profonde empreinte, car j'ai également oui dire qu'il aurait déclaré, dans les derniers temps de son existence, que le caractère sans aucun relief de ce pays l'avait fait rêver, dans son enfance, d'élever quelque jour une haute tour. C'était à l'époque où, en vue de l'Exposition Universelle de Bruxelles de 1958, il avait fait connaître un projet d'édification d'une tour de 500 m de hauteur, surmontée d'un pylône émetteur de télévision et que l'on avait appelée la Tour Magnel.

Ce projet avait suscité beaucoup d'intérêt. Mais le grand bonheur, qu'est, dit-on, la réalisation à l'âge mûr d'un rêve d'enfance, ne lui fut pas accordé. Sa mort imprévue mit fin à l'entreprise.

Gustave Magnel obtint en 1912, après de brillantes études à l'Université de Gand, dont l'enseignement se faisait encore en langue française, le diplôme du grade légal d'ingénieur des constructions civiles. En 1910, les Annales de l'Association des Ingénieurs sortis des Écoles Spéciales de Gandpubliaient de lui une note de géométrie descriptive appliquée et, jusqu'en 1914, il fut, peut-on dire, un collaborateur permanent du Bulletin Scientifique de l'Association des Élèves-Ingénieurs des Écoles de Gand, qui publièrent six notes sous sa signature, dont quatre dans un même numéro.
Après une courte période d’assistanat à l’Université de Gand chez le Professeur Fr. Keelhoff, la déclaration de guerre de 1914 le fit partir à Londres, où il commença sa carrière d’ingénieur civil dans la firme d’entreprises D. G. Sommerville. D’après le Professeur R. H. Evans de l’Université de Leeds, il fut un des membres d’une équipe d’ingénieurs du Continent qui furent employés par D. G. Sommerville pour former des diplômés britanniques, à une époque à laquelle les Universités de Grande-Bretagne accordaient peu d’attention au béton armé et à laquelle il existait aussi peu de traités sur ce sujet. L’effort prévoyant de Sommerville en créant dans son office des cours de spécialisation bien rémunérés fut d’une inappréciable valeur pour les ingénieurs qui reçoivent leur formation de la sorte et qui se souviennent avec gratitude de lui et de Magnel. En 1917, ce dernier était nommé ingénieur en chef chez Sommerville et il reçut ensuite la charge du bureau de Sommerville à Paris pour l’étude des constructions en béton armé.

Cependant en 1919 il retourna à Gand, où il commença une nouvelle carrière consacrée à l’enseignement universitaire des ingénieurs, en exerçant d’abord les fonctions de chef de travaux de la chaire de résistance des matériaux du Professeur Fr. Keelhoff ; il s’occupa notamment du modeste laboratoire fondé par ce professeur.
De 1920 jusqu’en 1925, il fut répétiteur du cours d’algèbre et de géométrie analytique.

Mais l’expérience qu’il avait vécue en Angleterre lui avait inspiré un dessein qu’il poursuivit opiniâtrement, qu’il parvint à réaliser malgré les obstacles inhérents aux Universités de l’État en Belgique, qui n’étaient pas moindres alors que maintenant, et qui finalement le conduisit à la renommée.

Les notions abrégées générales et théoriques sur le béton armé, que lui avait enseignées son maître Fr. Keelhoff, constituaient le modeste bagage qu’il avait apporté à Londres chez D. G. Sommerville et qui avait servi de base à un cours de spécialisation en Angleterre. Il en était revenu imbu de l’idée anglo-saxonne du cours de spécialisation, qui était alors étrangère à la conception belge de la formation universitaire des ingénieurs, et qui l’est encore dans une large mesure. En 1922, il fut autorisé, par un arrêté ministériel, à faire à la Faculté des Sciences de l’Université de Gand un cours libre sur la « Pratique du calcul du béton armé ». En 1927, ce cours fut intégré au programme légal des cours de la section des ingénieurs des constructions civiles et Gustave Magnel l’enseigna dès lors en qualité de chargé de cours. D’autres charges lui échurent ensuite de 1928 à 1930, celle du cours d’Architecture industrielle et celle du cours de Mécanique rationnelle, reprise

Dans toute cette activité académique, c'est le béton armé qui est le sujet essentiel, tant en soi que par l'initiative de la création en dehors de l'Université, d'un laboratoire spécialisé en béton armé. Le Ministère des Sciences et des Arts n'avait pas accueilli les demandes instantes de Gustave Magnel de création d'un laboratoire de béton armé, qu'il jugeait indispensable à son enseignement spécialisé. Un des premiers étudiants de son cours libre avait été le fils du Ministre des Chemins de fer de l'époque, M. Ed. Anseele père, gantois très attaché à sa ville. Le Ministre autorisa Gustave Magnel à installer, aux frais des Chemins de fer belges et dans un de ses bâtiments, un laboratoire de béton armé. Il fut établi dans les caves et au rez-de-chaussée d'un ancien hôtel, dénommé « Flandria Palace », proche de la gare de Gand-Saint-Pierre et occupé par des services des chemins de fer. Des industriels clairvoyants
participèrent à l'installation qui, par bien des aspects, était peu satisfaisante. Ce laboratoire fut racheté par l'Université de Gand en 1930, dans la situation dans laquelle il se trouvait alors. Au mois de juin 1937, le laboratoire fut transféré dans les nouveaux locaux de l'Université appelés Technicum, où il put être développé et où il se trouve encore et a reçu le nom de son fondateur.

Gustave Magnel avait ainsi, en quinze années d'efforts contre vents et marées, édifié une institution non seulement unique en Belgique, mais rare aussi ailleurs : un enseignement spécialisé de béton armé, avec cours magistral, travaux pratiques et laboratoire, ce qu'on aurait pu appeler un Institut du Béton Armé. Il délivra des certificats qui furent pendant longtemps recherchés par de nombreux diplômés d'autres Écoles d'ingénieurs et techniques, dans lesquelles l'enseignement du béton armé était resté peu développé ; beaucoup en firent mention dans leurs titres. Ces circonstances ne pouvaient durer en raison de l'avancement général des études. Mais cet avancement même donnait aux créations du Professeur Gustave Magnel un nouveau lustre, par les travaux de plus en plus nombreux de son laboratoire, surtout après le développement du béton précontraint. Son Institut accueillit nombre d'ingénieurs diplômés, souvent étrangers, en quête d'un post-graduat officieux sinon officiel,
conduisant le cas échéant à des travaux de doctorat ou du moins de recherches.

Aussi la réputation de ces institutions et de leur auteur n’est-elle pas restée confinée à la Belgique, mais s’est aussi largement répandue à l’étranger et plus particulièrement dans les pays anglo-saxons, en raison des attache avec l’Angleterre dont lui étaient venues les inspirations premières.

Au cours des années précédant la dernière guerre, des tentatives déjà anciennes d’amélioration du béton armé par mise en tension préalable des armatures eurent un regain important d’actualité. En France, l’Ingénieur Eugène Freyssinet mettait au point, après des études approfondies, le béton postcontraint, c’est-à-dire comportant des armatures mises sous tension préalable dans des poutres en béton déjà durci, cependant que le système de béton précontraint proprement dit, à armatures mises sous tension avant le bétonnage, p. ex. du système Hoyer, trouvait déjà de nombreuses applications d’envergure limitée.

La spécialisation de Gustave Magnel devait le rendre très attentif à ces tendances nouvelles et, dès 1937, il effectuait déjà dans son laboratoire de premiers essais sur de petites poutres précontraintes par adhérence. Ces essais ont dû luimontrer l’intérêt supérieur de la postcontrainte adoptée par Eug. Freyssinet et il mit au
point un nouveau système de disposition et d’ancrage des armatures de précontrainte, appelé Blaton-Magnel, qui avait comme caractéristiques :

des câbles à fils séparés et classés ;
des ancrages à doubles plaques « sandwich » ;
la mise en tension par paires de fils.

Gustave Magnel devint dès lors un des pionniers du béton précontraint, non seulement en Belgique, mais aussi dans d'autres pays, surtout anglo-saxons. Il devint directeur de la Stressed Concrete Design Ltd à Londres et de la Precompressed Concrete Engineering Co. Ltd à Montréal (Canada). Le premier pont en béton précontraint aux États-Unis, celui de Walnut Lane à Philadelphie, fut construit selon son système. Le Franklin Institute of Philadelphia lui décerna en 1950 la Frank P. Brown Medal.

L'activité scientifique et pratique du Professeur G. Magnel fut dès lors très grande dans le domaine du béton précontraint, tant en Belgique qu'à l'étranger. Il fonda en 1952 le Groupement belge de la Précontrainte, dans le sein de l'Association belge pour l'Étude, l'Essai et l'Emploi des matériaux ; il fut tout naturellement le premier président de ce groupement. Il fut le premier vice-président de la Fédération Internationale de la Précontrainte, fondée vers la même époque,
dont le premier président fut Eug. Freyssinet (qui assista aux obsèques de Gustave Magnel).

Tels sont les titres principaux de Gustave Magnel, homme de volonté opiniâtre et d'activité inlassable poursuivant un but unique avec ardeur, qui déjà léguent son nom à la postérité ; il figure dans une édition récente du dictionnaire Larousse L3 (en trois volumes), en qualité d'inventeur du système belge de béton précontraint.


Mais, travailleur infatigable, ses titres à l’élection académique résident principalement dans ses très nombreuses publications dont la liste
figure en annexe à cette notice. Il faut y relever surtout ses nombreux traités :

Pratique du Calcul du Béton Armé :
Volume I, 5ᵉ édition 1949.
Volume II, 5ᵉ édition 1949.
Volume III, 3ᵉ édition 1946.
Volume IV, 3ᵉ édition 1953 (cet ouvrage est le premier de langue française sur le béton pré-contraint).

Stabilité des constructions :
Volume I, 3ᵉ édition 1948.
Volume II, 3ᵉ édition 1948.
Volume III, 2ᵉ édition 1948.
Volume IV, 2ᵉ édition 1948.


Gustave Magnel était un brillant professeur, qui faisait grande impression sur les étudiants. A leur avis, son enseignement était d'une remarquable clarté et animé d'un grand esprit pratique ; il était stimulant. Il a formé de nombreux praticiens, qui se réclament de lui. L'opinion d'un de ses anciens étudiants au sujet de ses ouvrages est qu'il existe probablement des livres plus savants
que ceux du Professeur Magnel, mais qu'il serait difficile d'en trouver de plus pratiques.

C'est en 1945 qu'il fut élu correspondant de la Classe des Sciences de l'Académie Royale de Belgique, au fauteuil rendu vacant par le décès en 1940 d'O. Colard, qui avait été son Collègue à l'Université de Gand. Il fut titularisé en 1946.

Son énorme activité lui avait valu de nombreuses distinctions. Lauréat du Prix Ch. Lemaire de la Classe des Sciences de l'Académie Royale de Belgique en 1926 ; l'Association des Ingénieurs-Docteurs de France lui avait décerné sa Grande Médaille et la qualité de membre d'honneur. La même qualité lui avait été attribuée par l'Association des Ingénieurs sortis de l'Université de Liège. Il était membre de très nombreuses sociétés techniques belges, étrangères et internationales et il occupait des positions plus ou moins importantes dans grand nombre d'entre elles. Il exerçait aussi des fonctions actives dans des groupements professionnels et des sociétés d'entreprise. Toutes ces activités seraient trop longues à détailler, de même que toutes ses distinctions honorifiques. Il était grand-officier de l'Ordre de Léopold II, commandeur de l'Ordre de Saint-Sava de Yougoslavie, chevalier de la Légion d'Honneur. Il portait aussi la Médaille de la Reconnaissance française et celle du Prisonnier Politique. Son enseignement avait été suspendu par
l’occupant pendant la dernière guerre et il connut le régime des prisons allemandes.

La tendance très spécialisée de son activité n’avait pas limité son ouverture d’esprit, elle avait au contraire laissé celui-ci disponible, comme on le constate souvent chez les hommes bien doués par la nature. Il était éclectique et sociable. Il s’intéressa à l’Unesco, fut président du Rotary Club de Gand et aussi de l’Association des Amis de l’Église Saint-Nicolas de Gand, association ayant pour but la restauration de ce joyau d’architecture et sa préservation de la ruine complète. Ses amis conservent de lui le souvenir de son extraordinaire capacité de travail, mais aussi d’un homme au grand cœur et aimant à faire le bien. Après avoir donné quelques signes de fatigue les jours précédents, il décéda inopinément à son domicile à Gand, le 5 juillet 1955. Ses funérailles furent célébrées en présence d’une très grande assistance.

Bruxelles, le 4 octobre 1969.

Ferdinand Campus.

Références :

In Memoriam Gustave Magnel, 1889-1955. (Compte rendu de la manifestation d’hommage du 13 octobre 1956.)
Je dois aussi des remerciements à Monsieur le Professeur F. Riessauw, successeur du Professeur G. Magnel à la chaire de béton armé et à la direction du Laboratoire Gustave Magnel du béton armé de l'Université de Gand, pour la documentation qu'il a bien voulu aimablement me faire parvenir.

F. C.

LISTE DES PUBLICATIONS DE GUSTAVE MAGNEL

1910

1 — Composition de l'ombre sur le congé d'une colonne. «Annales de l'Association des Ingénieurs sortis des Écoles Spéciales de Gand» - 1910 - 1er fascicule.

1911/1912


1912/1913


9 — Cours de métallographie de M. Renaud.
1913/1914


1917

13 — Stresses in rectangular frames. "Concrete and Constructional Engineering" N°s 10 et 11 - Volume XII - October-November 1917.

1918

14 — Influence lines for continuous beams. "Engineering" - February 1918.
15 — Lignes d'influence pour une poutre Vierendeel. "Le Génie Civil" - N° 18 - November 1918.

1919

16 — Influence lines applied to arch design. "Engineering" - December 1919.
1921

17 — Expériences sur le retrait du béton pendant le durcissement. « Annales de l'Association des Ingénieurs sortis des Écoles Spéciales de Gand » - 1921 - 3e fascicule.

1922

18 — Influence de la raideur des colonnes sur les tensions des poutres continues en béton armé. « Congrès scientifique International de Liège » - 1922.


20 — Calcul pratique des poutres en béton armé en tenant compte de la raideur des colonnes. (livre).


1923


— 18 —


25 — Pratique du calcul du béton armé. (Livre) - 1re Partie - 1re édition - 1923.

26 — Étude expérimentale sur le ciment de laitier. « La Technique des Travaux » - 1923.

27 — Notes complémentaires sur la théorie des plaques hyperstatiques. (autographie).

1924

28 — Calcul de poutres courbes situées dans un plan normal aux forces sollicitantes. « Le Constructeur de Ciment Armé » - N° 52 - janvier 1924.


1925

31 — Les ciments à prise lente, durcissement rapide et haute résistance. « La Technique des Travaux » - N° 6 - juin 1925.

32 — Comment calculer un arc encastré. « La Technique des Travaux » - N°s 1 et 2 - 1925.


1926


36 — Comment calculer un arc à deux rotules. « La Technique des Travaux » - N° 12 - décembre 1926.

1927

37 — Le dosage scientifique des bétons. « La Technique des Travaux » - N°s 8, 9 et 10 - août/septembre/octobre 1927.

— 20 —
38 — Le nouveau Laboratoire de Béton Armé installé à Gand. « La Technique des Travaux » - No 9 - septembre 1927.

39 — Note sur un pont en béton armé construit à Hemixem-lez-Anvers. « La Technique des Travaux » - No 3 - mars 1927.

40 — Prescriptions nouvelles pour le dosage des bétons - Nouveau bâtiment en béton armé des Tuileries de Beauvais. « Le Génie Civil » - No 8 - août 1927.


1928

42 — Pratique du calcul du béton armé. (Livre) - 1re partie - 2e édition - 1928.

43 — Praktijk der berekening van gewapend beton. (bök) - Eerste deel - 2e uitgave - 1928.


45 — Pratique du Calcul du Béton Armé. (Livre) - 2me partie - 2e édition - 1928.

46 — Encore le dosage scientifique des bétons. « La Technique des Travaux » - No 10 - octobre 1928.

1929


49 — Het Laboratorium voor Gewapend Beton te Gent. « Het Bouwbedrijf » - № 10 - november 1929.

50 — La poutre considérée comme cas limite d'un arc à flèche nulle. « La Technique des Travaux » - № 10 - octobre 1929.


1930

52 — Pratique du calcul du béton armé. (livre) - 3e partie - 1930.


56 — Pratique du calcul du béton armé. (livre) -
1ʳᵉ partie - 3ᵉ édition.
57 — Recherche expérimentale des lignes d’influ-
ence relatives aux constructions hyperstatiques
planes. « 1ᵉʳ Congrès International du Béton
et du Béton Armé ». - Liège - Septembre 1930.
58 — Rapport général sur la question VI au 1ᵉʳ
Congrès International du B.A. - septembre -
1930.
59 — L’Influence du chlorure de calcium sur les
bétons. « Bulletin de l'Association Belge pour
l'essai et l'emploi des matériaux » 1930.
« Annales de l'Association des Ingénieurs sortis
des Écoles Spéciales de Gand » - 1930 - 3ᵉ fasci-
cule.
60 — Stabilité des Constructions. (autographie) -
1ʳᵉ partie - 2 volumes.

1932

61 — Poutre Vierendeel - Perfectionnement du
calcul et comparaison du calcul à l’expérience.
« Procès-Verbal de l'Association Belge pour
l'Essai et l'Emploi des Matériaux » - Nº 9bis -
1932.

1933

62 — Calcul pratique de la poutre Vierendeel.
(Livre).

1934


1935

66 — Cours de Stabilité des constructions. (Livre) - deux volumes - 1935.

1936


— 24 —
1937


71 — The modular ration. (Discussion on Dr K. Hajnal-Konyi’s paper). « Concrete and Constructional Engineering » - N° 10 - octobre 1937.


1938


74 — La poutre de longueur finie sur un terrain élastique. « Técnicas » - Lisbonne - N° 89 - 1938.

1939

79 — L'effort tranchant en béton armé. « La Technique des Travaux » - mars 1939.
80 — Le contrôle des chantiers. « Revista da Faculdade de Engenharia » - Pôrto - N° 2 - juin 1939.
82 — Dwarskrachten in gewapend beton. « De Ingenieur » - Nrs 40/44 - oktober en november 1939.
83 — Le Laboratoire de Béton de l'Université de Gand. « Revue Béton Armé » - juillet 1939.

1940

84 — Bouwcontrole met het oog op de verzekering der Architecten, Ingenieurs en Aannemers
t.o.v. hun verantwoordelijkheid. «De Ingenieur» - Nrs 23/27/31 - 1940.
85 — Le problème de la fissuration du béton et l'emploi des aciers à haute limite élastique. (autographie) - 1940.
86 — Exemple de calcul de poutre continue. (autographie) - mars 1940.
87 — La pratique du calcul de la poussée des terres par les théories de Boussinesq. (autographie) - décembre 1940.
88 — Le calcul des assemblages cloués - construction en bois. (autographie) - 1940.
89 — La détermination de la charge de sécurité des pieux et pilots. (autographie).
90 — Note sur le Pont du Muide détruit. «Note d'information du Centre Belgo-Luxembourgeois de l'Acier». décembre 1940.
91 — Le problème de la fissuration du béton et l'emploi des aciers à haute limite élastique «Annales des Travaux Publics de Belgique» - octobre 1940.
93 — De Openbare Besturen en de Verzekering-Controle der Bouwwerken. «Studie bestemd voor de Onderlinge Maatschappij der Openbare Besturen» - december 1940.

— 27 —
1941

94 — Les ponts expérimentaux de la rue du Miroir à Bruxelles. (autographie) - juin 1941.

95 — La pratique du calcul de l'effet des surcharges sur la poussée des terres par la théorie de Boussinesq. « Annales des Travaux Publics de Belgique » - août 1941.


1942

97 — Pratique du calcul du béton armé. (livre) - 4e partie - 1re édition - 1952.

98 — Le béton précontraint - Procédé Freyssinet. (conférence) - février 1942.

99 — Pratique du calcul du béton armé (textes et planches) (livre) - 2e partie - 3e édition - 1942.

100 — Stabilité des constructions. (compléments) (livre) - Volume III. - 1942.

101 — Stabilité des Constructions. (livre) - Volume I - 2e édition - 1942.

102 — Stabilité des constructions. (livre) - Volume II - 2e édition - 1942.
103 — Le dosage scientifique des bétons. (autographie) - décembre 1942.

1944

104 — Calcul des systèmes hyperstatiques par la méthode du travail de déformation, adaptée par MM. Robert et Musette. (autographie) - janvier 1944.

105 — Le dosage scientifique des bétons. « Annales des Travaux Publics de Belgique » - avril 1944.

106 — Les applications du béton précontraint en Belgique. « Science et Technique » - No 5 - 1944.


109 — La méthode des points fixes par tracés graphiques. (autographie) - novembre 1944.

1945

110 — Le fluage des aciers et son importance en béton précontraint. « Science et Technique » - No 2 - 1945.
111 — Pratique du calcul du béton armé. (livre) - 1re partie - 4e édition - 1945.

112 — Dix années d'assurance-contrôle. Conférence faite à Bruxelles le 30.3.1945, publiée par le Bureau Seco.

113 — Le béton précontraint en Amérique. « Science et Technique » - No 5/6 - 1945.


1946


117 — Pratique du calcul du béton armé (texte et planches). (livre) - 3e partie - 1946.


120 — Responsibility for Defective Constructions - A ten-years Insurance Scheme. «Concrete and Constructional Engineering » - No 3 - march 1946.

1947

121 — Comparison of Partially and Fully Prestressed Concrete Beams. «Concrete and Constructional Engineering » - No 1 - January 1947.


125 — Essais de quelques poutres en béton précontraint. «La Technique des Travaux » - Nos 3 et 4 - 1947.


1948

130 — Le béton précontraint. (livre) - Volume IV de la série « Béton Armé » - 1948.
131 — Creep of Steel and Concrete in Relation to Prestressed Concrete. « Journal of the American Concrete Institute » - N° 6 - February 1948.
134 — Stabilité des constructions. (livre) - Volume IV - 2me édition - 1948.

138 — Stabilité des constructions. (livre) - Volume I - 3e édition - 1948.

139 — Stabilité des constructions. (livre) - Volume II - 3e édition - 1948.

140 — Prestressed Concrete. (livre) - 1re édition - 1948.


142 — Le béton précontraint - Ce que tout ingénieur et industriel doit en connaître.

1949


144 — Prestressed Concrete Beams carry record Loads in Belgian Hangar. « Engineering News Record » - N° 6 - février 1949.


147 — La fluencia de los Aceros y del Hierro. «Hormigon elástico» - N° 2 - juillet 1949.


151 — Design of the Ends of Prestressed Concrete Beams. «Concrete and Constructional Engineering» - N° 5 - may 1949.


158 — Prestressed Concrete - Its principles and applications. Publié par le « Cement and Concrete Association - London ».

1950

159 — Continuous bridge in prestressed concrete. « Engineering » - February 1950.
162 — Longest continuous prestressed girders carry Sclayn Bridge Traffic over Meuse River. « Civil Engineering » - N° 7 - July 1950.
165 — Prestressed Steel Structures. « The Structural Engineer » - N° 11 - novembre 1950.
167 — Prestressed Concrete. (livre) - 2e édition - 1950 (Concrete Publications - London).
168 — Hormigon Précomprimido. (livre) - édité à Buenos-Aires.

169 — Prestressed Steel Structures. « The Structural Engineer » - N° II - novembre 1950.

170 — Prototype Prestressed Beam Justifies Walnut Lane Bridge Design. « Journal of the American Concrete Institute » - December 1950.

1951

171 — Prestressed Steel Structures. « L'Ossature Métallique » - special English number - January 1951.

172 — Essai à Philadelphie d'une poutre en béton précontraint de 50 m de portée. « La Technique des Travaux » - Liège N° 1/2 - janvier /février 1951.


174 — Hourdis Champignon de grande portée sans chapiteaux. « Science et Technique » - N° 5 - 1951.

175 — A concrete example. « The Link » - revue américaine - july 1951.


— 36 —
177 — Continuity in Prestressed Concrete. « Published by the Cement and Concrete Publications - London » - 1951.

178 — A revolutionary staircase. « Civil Engineering » - No 9 - September 1951.

179 — Les charpentes en acier précomprimé. 11e volume des mémoires de l'Association Internationale des Ponts et Charpenters » - Zürich 1951.

1952


1953

184 — De berekening van de breukbelasting van een voorgespannen beton-ligger. «De Ingenieur» - Nr 9 - 1953.


189 — Le béton précontraint. (livre) - 3e édition - 1953.

190 — The ultimate strength of Prestressed Beams. «Concrete and Constructional Engineering» - Nr 2 - February 1953.

1954

192 — Prestressed Concrete. (livre) - 3e édition - 1954.


197 — Nine-story prestressed concrete building erected in Germany. « Civil Engineering » - No 12 - December 1954.


1955