Vb 1

Processus divers d’altération des ouvrages en béton armé
Various processes of alteration of reinforced concrete structures
Beschädigung der Bauwerke in Eisenbeton
Diversos processos de alteração das obras de betão armado

Prof. F. Campus
Liège

Récemment, nous avons trouvé un exemple qui s’écarte des deux explications précédentes et qui comporte une dénudation de l’armature par une altération en ordre principal chimique du béton de recouvrement. Nous l’appellerons ce processus C.

Nous avons immergé en 1934 dans l’avant-port d’Ostende de nombreuses éprouvettes de mortiers, de béton et de béton armé [1]. Un nouveau prélèvement d’éprouvettes a été effectué en septembre 1954.

Il a été procédé lors du prélèvement à l’inspection des éprouvettes de béton armé. Ce sont des cylindres standard américains armés de quatre barres longitudinales de 10 mm de diamètre, distantes de la surface externe du cylindre respectivement de 1, 2, 3 et 5 cm. Ces cylindres ont été confectionnés au moyen de bétons contenant 350 kg par m³ de ciments différents. Un jeu de cylindres a été exposé à l’atmosphère marine, au-dessus des plus hautes marées. Un autre a été exposé à mi-marée ; les cylindres sont immergés et émergés deux fois par jour. Enfin un dernier jeu avait été disposé sous les marées les plus basses ; il n’a
malheureusement pas été retrouvé en 1954. On présume qu'il aura été emporté par la marée tempête calamiteuse du 1er février 1953.

En septembre 1945, après onze ans d'exposition, aucune fissuration n'avait été constatée. Seuls les cylindres immergés à mi-marée présentaient quelques altérations superficielles pour les ciments les plus riches en chaux, certains sur une profondeur de 5 à 8 mm, mais aucune barre n'était dénudée. Nous avons déjà fait remarquer que ce résultat était surprenant et en contradiction avec ceux d'essais britanniques effectués à Sheerness [2].

Lors de l'inspection de septembre 1954, les cylindres exposés au-dessus des plus hautes marées étaient toujours indemnes. Pour ceux immergés à mi-marée, les dégradations superficielles étaient légèrement augmentées par rapport à celles constatées en 1945. Il n'y avait pas de fissuration mais dans le cylindre le plus altéré, correspondant au ciment portland le plus riche en chaux, la barre la plus proche de la surface (1 cm) était mise à nu sur 5 cm de longueur environ (figure 1).

Il est à remarquer que l'immersion à mi-marée soumet les éprouvettes aux effets de l'eau marine, des lames, de l'air, du vent, de la pluie, de l'insolation et du gel. Ce sont donc des actions atmosphériques renforcées. Cependant, après vingt années, on n'a pas constaté de traces des processus M et P, qui se manifestent généralement plus tôt sur des constructions aériennes. L'altération d'ordre principalement chimique était déjà manifeste après onze ans; elle aura localement réduit à quelques mm seulement l'épaisseur du béton couvrant l'armature la plus proche de la surface. Dès lors, l'armature presque mise à nu aura été localement attaquée et aura fait sauter la mince pellicule de béton qui la recouvrait encore. Cette dégradation doit naturellement progresser avec le temps, mais dans les conditions où elle a été observée, sur cinq centimètres de longueur seulement, la progression ne semble pas être très active.

Le cas est certes assez particulier, mais il existe et il relève certes du processus C. L'humidité constamment entretenu éliminait le retrait, un agent principal du processus M, que les variations de température et le gel n'ont pas été suffisants à déclencher. Les alternances d'immersion et d'émergence jointes à la nature de l'eau semblaient devoir favoriser le processus P; il ne s'est pas manifesté. Les faibles recouvrements du béton (1 cm = 1 fois le diamètre) n'ont pas été préjudiciables, alors que les spécialistes jugent nécessaire un recouvrement de 4 à 8 cm. (3, b). Le dosage à 350 Kg de ciment par m³ est inférieur à ce que les spécialistes jugent recommandable [3]. [4]. Faut-il admettre comme explication la qualité élevée du béton d'éprouvettes confectionnées au laboratoire? Il faut remarquer qu'il en a été confectionné 54, exposés de manières diverses, et qu'une seule a été dégradée, de la manière indiquée ci-dessus.

Nous avons eu l'occasion d'observer des dégradations survenues à des réfrigérants hyperboliques situés sur un plateau découvert et exposé aux intempéries du nord-est de la Belgique. Moins de huit ans après leur construction, sur toute la surface intérieure se détachent de nombreuses écailles elliptiques, le plus souvent au droit des armatures, mais également là où il n'y a pas d'armatures.
Il n'y a pas de fissures parallèles aux armatures et les écailles de béton portent des traces de rouille très marquées, établissant que l'armature était corrodée avant le détachement de l'écaille. (figure 2). L'épaisseur des parois est de l'ordre de 10 cm, le recouvrement des armatures de 1 cm environ. L'analyse à postérieuri d'un fragment du béton a donné les résultats suivants :

<table>
<thead>
<tr>
<th>Jours des tamis (mm)</th>
<th>18,85 ; 9,40 ; 4,70 ; 2,36 ; 1,17 ; 0,589 ; 0,295 ; 0,147</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refus cumulés %</td>
<td>21,5 ; 48,3 ; 63,7 ; 74,8 ; 83,0 ; 91,7 ; 97,9 ; 99,3</td>
</tr>
<tr>
<td>Module de finesse</td>
<td>5,80</td>
</tr>
</tbody>
</table>

La quantité de ciment est, d'après l'analyse, voisine de 250 Kg/m³. La résistance à la compression, mesurée sur une éprouvette cylindrique de 50 mm de diamètre et 50 mm de hauteur a été trouvée égale à 289 Kg/cm².

Selon toutes apparences, on a affaire à un béton assez médiocre, poreux et gelif. La granulométrie n'est pas mauvaise, mais le gravier est plutôt gros (20 % de plus de 20 mm, 50 % de plus de 10 mm). Il en résulte que près des parois internes et externes, le béton est formé des éléments les plus fins. Il est de ce fait plus poreux que la composition moyenne. Les plaques d'écaille ont l'apparence de mortier, contenant parfois quelques fins graviers de moins de 10 mm. Ainsi qu'il a été indiqué, les dégradations se marquent surtout à la paroi intérieure, mais nous avons constaté qu'elles commençaient à apparaître sous la même forme à la paroi extérieure.

Près des barres, le processus de destruction semble bien être du type P. Mais ce processus ne peut pas expliquer la chute d'écailles là où il n'y a pas de barres (figure 3) ; en ces endroits, les causes ne peuvent être que mécaniques. Le ruissellement de l'eau de condensation à l'intérieur du réfrigérant y maintient une assez grande humidité et une température suffisante pour protéger du gel, L'hétérogénéité du béton en
surface est-elle suffisante pour produire une différence de retrait et des différences de dilatation thermique susceptibles, par effet de répétition et de durée, de produire l’écaillage? Il semble bien que toute réaction des granulats avec le ciment soit exclue. On remarquera que les dégradations ont été assez précoces. Nous avons l’impression que la couche superficielle interne du béton aurait pu être le siège d’une expansion plutôt que d’un retrait.

Les dégradations sont principalement localisées aux hanches, moins à la partie inférieure, presque pas à la partie supérieure.

Dans la canalisation la plus abîmée, une cause spéciale de corrosion a été reconnue; une usine y déverse des eaux très chargées d’acides.

Le béton est attaqué superficiellement (comme l’éprouvette du port d’Ostende). Les tuyaux, fabriqués en 1937 et mis en œuvre en 1938, ont été confectionnés au moyen d’un ciment spécial réputé résistant aux eaux sulfatées, mais la teneur excessive en acide en a eu raison. (figure 4).

Les fragments superficiels que l’on peut en détacher sont inconstants et tombent en poussière. Là où la couverture des armatures est inférieure à 1 cm (elle descend parfois à 4 ou 5 mm), l’armature a fina-
lement été attaquée et a fait sauter la pellicule restante de béton de couverture. Il s’agit donc du processus C.

Les autres conduites évacuent des eaux qui ne sont pas agressives et de débit très variable avec les pluies. Il s’agit dans la plupart des cas de tuyaux posés depuis plus de 20 ans, pour d’autres depuis environ 15 ans. Les dégradations se manifestent d’une manière assez analogue à celle des réfrigérants dont il a été question plus haut, mais d’une manière plus continue. (figure 5).

Des écaillles de béton se détachent au droit des armatures qui semblent avoir rouillé auparavant; ces écaillles sont résistantes, comme celles des réfrigérants (fig. 6). Ces écaillages se produisent aux endroits où les cercles d’armature sont recouvertes de moins de 1 cm de béton (souvent 4 à 5 mm seulement). Il semble donc s’agir du processus P, comme dans le cas des réfrigérants. D’ailleurs ces tuyaux sont enfouis et leur atmosphère intérieure est toujours humide. Ils sont donc soustraits aux variations thermiques et hygrométriques; la seule variation provient du degré de remplissage variable selon le débit des pluies.

Tous ces tuyaux sont de fabrication antérieure à 1947. Avant cette date, les dispositions adoptées pour assurer un centrage convenable des armatures dans les moules et une distance suffisante de ces armatures aux parois n’étaient pas efficaces. Le recouvrement théorique était de 20 mm, mais par décentrement de l’armature, il a pu être réduit à 4 ou 5 mm. Il existe encore en dépôt sur un chantier extérieur des tuyaux de cette ancienne fabrication, qui ont été soumis aux intempéries et qui présentent des dégradations surtout aux endroits où l’épaisseur du béton couvrant les armatures est insuffisante. Les principales sont à la paroi extérieure; les dégradations à la paroi intérieure sont moindres et moins fréquentes. On observe des écaillages très étendus au droit des barres, mais aussi des fissures au droit des barres, sans écaillage. Nous avons observé, parmi un groupe d’écaillées de béton retirées de conduites en service, une écaill fissurée au droit de l’armature (épaisseur du béton 6 mm environ). Ceci nous fait croire que les processus M et P auraient pu intervenir chacun, éventuellement en combinaison. Depuis
1947, des dispositifs plus efficaces ont été utilisés pour assurer une épaisseur de couverture de 19 à 22 mm selon les cas, près de toutes les parois. Des dégradations n’ont été constatées sur aucun tuyau de cette nouvelle fabrication, plus récente il est vrai. En tous cas il n’est apparu de dégradations qu’aux endroits où les armatures étaient recouvertes de moins d’un centimètre de béton (1). Les nouvelles dispositions adoptées réalisent exactement les épaissseurs de recouvrement de 19 à 22 mm. Le béton des tuyaux est dosé avec précision, mis en œuvre sec par une vibration bien appliquée en usine. Il n’a pas été constaté de dégradations là où il n’y avait pas d’armatures, sauf le cas exceptionnel des eaux très acides relaté ci-dessus.

En conclusion, il semble donc qu’il n’y ait pas un processus unique de dégradation du béton armé; nous en avons relevé trois ci-dessus:

a) le processus M, caractérisé par l’action d’influences mécaniques entraînant la formation de fissures parallèles aux armatures, par où peut prendre ensuite naissance la corrosion des armatures. Le processus peut résulter d’actions mécaniques proprement dites, indépendantes au milieu [5].

(1) Nous avons cependant observé à la face interne d’un tuyau stocké en plein air au dépôt une fissure, qu’un sondage a révélé située au droit d’une armature, recouverte de 22 mm de béton et assez peu rouillée (figure 7).
b) le processus P, caractérisé par la pénétration de l’eau agressive à travers le béton jusqu’aux armatures. La rouille qui se développe sur celles-ci fait éclater ensuite le béton de couverture sous forme d’écaillées ou d’esquilles plus ou moins continues (7).

c) le processus C, caractérisé par une attaque progressive du béton à partir de la surface, qui finit par atteindre l’armature et la fait rouiller, ce qui entraîne sa dégradation mais sans détachement d’éclats ou d’esquilles solides. L’apparence de la dégradation est celle d’un chancre.

Peut-être existe-t-il des variantes de ces processus. De plus, il nous semble que ces divers processus puissent se combiner d’une manière variable.

Mais dans tous les cas, les dégradations semblent favorisées par une épaisseur insuffisante de béton couvrant les armatures et une qualité insuffisante du béton près de la surface. Il est à remarquer que si le gravier est un peu gros, par effet de paroi la granulométrie du béton à la surface comportera un excès de fin, si même elle ne présente pas de nids de gravier. Il faut qu’il existe une relation entre le recouvrement minimum des barres et l’épaisseur des éléments les plus gros du béton. La surface sera aussi lisse et étanche que possible ; depuis longtemps on préconise à cet effet les coffrages métalliques, notamment pour les ouvrages maritimes [3]. La vibration de coffrages paraît favorable aussi, pour autant qu’elle ne puisse favoriser la ségrégation par effet de paroi comme il a été envisagé ci-dessus.

BIBLIOGRAPHIE

(7) Il n’est pas exclu que ce processus caractéristique par son apparence puisse être favorisé par un caractère légèrement expansif du béton de couverture.

a) Rapports et Rapport Général (Publications du Congrès).

5. F. Campus — Dégradation des pieux en béton armé par le battage. (Annales des Travaux Publics de Belgique, Bruxelles, n° 1, février 1936).

Résumé

Les altérations des ouvrages en béton armé peuvent se produire suivant des processus divers. Sur la base de constatations faites sur des épreuves et des ouvrages, trois processus distincts sont définis, l'un de caractère mécanique (M), un autre provenant de la porosité ou de la percolation (P), enfin un troisième résultant d'une altération chimique superficielle du béton (C). Ces processus peuvent se combiner.

Summary

Alterations of reinforced concrete structures may follow different processes. Based on conclusions drawn from observations on test pieces and structures, three different processes are defined, one of mechanical character (M), another resulting from the porosity or percolation (P), and a third one resulting from a superficial chemical alteration of concrete (C). These three processes may be combined.

Zusammenfassung

Die Beschädigung der Bauwerke in Eisenbeton kann aus verschiedenen Vorgängen resultieren.

Auf Grund der Feststellungen an Probekörpern und Bauwerken sind 3 deutlich voneinander verschiedene Vorgänge zu unterscheiden, nämlich einer von mechanischer Art (M), einer der von der Porosität oder der Durchlässigkeit (P) herrührt und endlich sin Dritter, der von einer chemischen Korrosion der Betonoberfläche (C) stammt.

Diese drei Vorgänge können kombiniert auftreten.
RESUMO

As alterações das obras de betão armado podem produzir-se segundo diversos processos. Na base de constatações feitas sobre provetas e obras, definem-se três processos distintos, um de carácter mecânico (M), outro proveniente da porosidade ou da percolação (P), enfim um terceiro resultando duma alteração química superficial do betão (C). Estes três processos podem combinar-se.