Association des Elèves des Ecoles Spéciales de l'Université de Liége.

Édition de cours

COURS

DE

GÉNIE MARITIME

Notes publiées avec l'autorisation de Monsieur le Professeur.

1929
Introduction

Appendice au Cours d'Hydraulique Riviale.

Chapitre I. Mouvements ondulatoires périodiques.

1. Ondes d'oscillation - Nous avons étudié précédemment les ondes de translation, caractérisées par un déplacement déterminé des molécules liquides qui, après le passage de l'onde, ne se retournent pas à leurs positions initiales. Dans une eau calme, les vitesses et des débits prennent naissance du fait de l'onde de translation et dans l'étendue de celle-ci, mais sont nuls avant et après.

Une onde d'oscillation a des caractères tout différents. En eau calme, les particules liquides décroissent des trajectoires fermées et reviennent donc périodiquement occuper les mêmes positions. Pour cette raison, ce mouvement a été appelé orbiteur. Le phénomène étant périodique, si l'on considère un temps assez long, à travers une section déterminée en eau calme, il n'y a pas de débit véritable, mais pulsation alternative avec débit total nul. À la surface libre, au lieu d'intermèdes isolées et se déplaçant d'une manière indépendante, on trouve un ensemble d'ondulations dépendantes et continues, se propageant identiquement. La vitesse de propagation est appelée célérité. En fait le phénomène peut être compliqué par la combinaison des ondes d'oscillation avec un courant, ainsi que par les effets du vent, des compositions d'ondes ou interférences ; des ondes de translation peuvent aussi se superposer aux mouvements oscillatoires. Bref, il peut se produire des mouvements ondulatoires de complexité incroyable.

De grands mathématiciens tels que M. Boussinesq ont poursuivi très loin l'étude théorique de ces mouvements, basée sur des hypothèses reflétant déjà un ensemble compliqué de conditions réelles. Mais, ainsi que le fait observer M. Flamant, les résultats obtenus doivent être considérés comme possibles, mais non nécessaires, ni même très probables, car on peut croire que les mouvements se diffèrent toujours plus en moins dans la nature.

Nous nous bornerons donc à une analyse mathématique des cas élémentaires et en pratiquant à partir des lois d'observation, dont nous vérifierons l'ac-
cord avec les formules fondamentales d'hydrodynamique. Cette méthode est rigoureuse, elle est dépourvue de difficultés et d'artifices et est, à tout prendre, aussi convaincante que celle qui prévoit les équations différentielles comme point de départ.

2. 

La houle cylindrique régulière en profondeur indéfinie — la surface libre possède à tout instant l'aspect d'un cylindre ondulé à génératrices horizontales. Tous les plans verticaux perpendiculaires à ces génératrices sont identiques. Considérons dans un de ces plans un axe vertical \( OZ \) et un axe vertical \( OX \) confondu avec la surface libre dans l'état initial de repos.

La houle cylindrique régulière consiste en mouvement périodique du liquide, dont toutes les particules dérivent des orbites dans le plan vertical \( XOZ \) et tel que, sur une même horizontale, les mêmes circonstances vitesses, pressions, etc. se reproduisent à des intervalles de temps proportionnels aux distances à \( OZ \) et périodiquement à chaque point. J. van Gogh (Praha) a énoncé la première la loi qu'en profondeur indéfinie, les orbites sont circulaires.

\[ x = x + \xi = x + h \sin \frac{n \pi}{l} (W_t - X) e^{-\frac{n \pi}{l}} \]

\[ y = y + \zeta = y - h \cos \frac{n \pi}{l} (W_t - X) e^{-\frac{n \pi}{l}} \]

\( 2h \) est la différence de niveau entre le sommet et le creux de la houle,

\( 2l \), la longueur d'amplitude,

et \( W \), la vitesse.

Les vitesses sont

\[ u = \frac{dx}{dt} = \frac{n \pi}{l} W e^{-\frac{n \pi}{l} \cos \frac{n \pi}{l} (W_t - X)} \]
\[ w = \frac{d}{dt} \frac{\rho}{\ell} \frac{1}{\cos \frac{\pi z}{\ell}} \sin \frac{\pi z}{\ell} (WX - X) \]

Comme on peut négliger l'action du frottement, car l'expérience montre que la houle ne s'étend que très lentement, on peut adopter les équations d'Euler

\[ \frac{1}{\ell} \frac{\partial}{\partial x} \frac{d}{dt} \frac{1}{\ell} \frac{\partial}{\partial y} = g - \frac{d}{dt} \]

Mais \[ \frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \frac{\partial}{\partial x} \]

\[ \frac{\partial}{\partial y} = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \frac{\partial}{\partial x} \]

Donc

\[ \frac{1}{\ell} \frac{\partial}{\partial x} = - \frac{d}{dt} \frac{\partial}{\partial x} - (\frac{d}{dt} - g) \frac{\partial}{\partial x} \]

\[ \frac{1}{\ell} \frac{\partial}{\partial y} = - \frac{d}{dt} \frac{\partial}{\partial y} - (\frac{d}{dt} - g) \frac{\partial}{\partial y} \]

La première équation donne

\[ \frac{1}{\ell} \frac{\partial}{\partial x} = \frac{\rho}{\ell} \frac{1}{\cos \frac{\pi z}{\ell}} \sin \frac{\pi z}{\ell} (WX - X) \left( \frac{\pi W^2}{\ell} - g \right) \]

À la surface libre, donc pour \( z = 0 \), la pression est constante et égale à la pression atmosphérique \( p_0 \).

Donc \( \frac{\partial}{\partial z} \bigg|_{z=0} = 0 \)

Donc \( \frac{\pi W^2}{\ell} - g = 0 \), \( W = \sqrt{\frac{g}{\pi}} \) et \( \text{comme} \ W = \frac{\ell}{T} \).

La demi-période est

\[ T = \sqrt{\frac{\pi \ell}{g}} \]

Il en résulte que \( \frac{\partial}{\partial x} = 0 \) et que \( p \) est indépendant de \( x \).

La seconde équation donne, après développement, et en observant que \( W^2 = \frac{g l}{\ell} \),

\[ \frac{1}{\ell} \frac{\partial}{\partial x} = g \left[ 1 - \frac{\ell^2}{\ell^2} e^{-\frac{2\pi z}{\ell}} \frac{\pi \ell}{g} \right] \]

Donc, comme \( p \) est indépendant de \( x \),

\[ p = p_0 + pg \left[ 1 + \frac{\ell^2}{\ell^2} e^{-\frac{2\pi z}{\ell}} \right] \]

Remarquons que pour \( z = \infty \), \( g = 0 \), e. a. d. que les déplacements verticaux sur le fond sont nuls.

L'équation de continuité \( \frac{d}{dt} + \frac{d}{dz} = 0 \) peut se vérifier.
Vis en exprimant les dérivées en fonction de $x, z, \xi$ et $\tau$. Il est plus rapide d'établir une nouvelle forme de l'équation de continuité, selon l'observation de M. de Bonnesais.

Considérons un rectangle élémentaire dont les positions initiales de deux sommets opposés sont $x_0, z_0$ et $x_0 + dx_0, z_0 + dz_0$.

La surface initiale est $dx_0 \, dz_0$. Après déformation, les coordonnées des sommets sont:

$$x_0 + \xi, \quad z_0 + \xi;$$

$$x_0 + dx_0 + \frac{d\xi}{dx_0} \, dx_0 + \frac{d\xi}{dz_0} \, dz_0, \quad z_0 + dz_0 + \frac{d\xi}{dx_0} \, dx_0 + \frac{d\xi}{dz_0} \, dz_0;$$

$$x_0 + dx_0 + \frac{d\xi}{dz_0} \, dz_0, \quad z_0 + \frac{d\xi}{dz_0} \, dz_0;$$

On voit aisément que la surface déformée a pour expression, en négligeant les infiniment petits d'ordre supérieur:

$$(dx_0 + \frac{d\xi}{dx_0} \, dx_\xi)(dz_0 + \frac{d\xi}{dz_\xi} \, dz_\xi) - \frac{d\xi}{dx_\xi} \, dx_0 \frac{d\xi}{dz_\xi} \, dz_0.$$
la surface ne s'est pas modifiée (continuité des liquides incompressibles). Donc
\[ (1 + \frac{d \xi}{dx_0})(1 + \frac{d \xi}{dx_0}) - \frac{d \xi}{dx_0} \cdot \frac{d \xi}{dx_0} = \xi, \]
ou encore, d'après les équations précédentes :
\[ \frac{dx}{dx_0} \cdot \frac{d \xi}{dx_0} - \frac{dx}{dx_0} \cdot \frac{d \xi}{dx_0} = \frac{1}{2}. \]

Les équations précédentes se réfèrent aux positions initiales du liquide au repos. Par rapport aux positions moyennes,
\[ \frac{dx}{dx_0} \cdot \frac{d \xi}{dx_0} - \frac{dx}{dx_0} \cdot \frac{d \xi}{dx_0} = \frac{dx}{dx_0} \cdot \frac{d \xi}{dx_0}. \]

On en trouve pour le premier membre
\[ 1 - \frac{r^2 k^2}{l} - \frac{2 \pi k}{l}, \]

et il en résulte que
\[ \lambda = \lambda_0 \text{ et } \frac{d \xi}{dx} = 1 - \frac{r^2 k^2}{l} - \frac{2 \pi k}{l}. \]

\[ \xi_0 = \xi + \frac{r^2 k^2}{2l} - \frac{2 \pi k}{l}. \]

La position moyenne doit se trouver à hauteur
\[ \frac{r^2 k^2}{2l} - \frac{2 \pi k}{l} \text{ au-dessus de la position d'équilibre pour que la loi de continuité soit satisfaite. } \]

On nous vérifierons qu'il en est bien ainsi.

Les particules liquides décrivent des orbites circulaires de rayon
\[ r = \sqrt{\xi^2 + \xi^2} = r e^{-\frac{r^2}{l} - \frac{2 \pi k}{l}}. \]

Le rayon varant \( r \) pour les particules de la surface, il décrira très rapidement en profondeur suivant la loi exponentielle:
\[ r e^{-\frac{r^2}{l}}. \]

Donc
\[
\begin{array}{cccccc}
\frac{r}{l} & 0.1 & 0.5 & 1 & 2 & 3 \\
0.730 & 0.208 & 0.043 & 0.0018 & 0.00008.
\end{array}
\]

La courbe décrite est une trocarte, c'est-à-dire la trajectoire d'un point situé à distance \( r \) du centre d'un cercle de rayon \( l \) roulant sans glisser sur une parallèle à l'horizontale passant par le centre.

On bien encore, c'est la courbe décrite par un point parcourant la circonférence de cercle de rayon \( \xi \) à vitesse angulaire constante : \( \omega = \frac{\pi}{l} = \frac{\pi}{l} \text{ tandis que le centre de} \)
ce cercle se déplace sur l'horizontale à une vitesse uniforme \( W \). Lorsque \( \omega = \frac{L}{R} \), \( \omega R = W \), la trace quaidé devient une cycloïde. C'est un cas limite qui ne peut se produire qu'à la surface, car nécessairement \( \omega < \frac{L}{R} \), sinon la trace quaidé présentait des bâcles et des points nodaux aux sommets des vagues.

Si la vitesse \( W \) devient très grande par rapport à \( \omega R \), ce qui correspond aux ondulations de très grandes longueurs, telles que celles des marées, la trace quaidé devient pratiquement une sinusoïde.

Les équations de la surface libre sont, puisque \( \xi = 0 \)

\[
x = X + h \sin \frac{n}{L} (Wt - X)
\]

\[
y = -h \cos \frac{n}{L} (Wt - X)
\]

Le niveau d'équilibre initial correspond à l'horizontale moyenne de la trace quaidé. On trouve pour l'aire d'une onde au-dessus de son point le plus bas \( 2L (h - \frac{R^2}{2L}) \).

Donc le niveau initial est situé à une profondeur \( \frac{R^2}{2L} \) sous le niveau moyen de la boucle ; les failles d'une vague sont moins longues que les creux.

Pour les points de cette moyenne \( \xi \), le niveau initial est donc bien

\[
Z_0 = \xi + \frac{R^2}{2L} e^{-\frac{2\pi \xi}{L}}
\]

ce qui montre que la condition résultant de l'équation de continuité est bien satisfaite.

Or nous avons trouvé

\[
\rho = \rho_0 + \rho g \left[ Z + \frac{R^2}{2L} e^{-\frac{2\pi \xi}{L}} \right]
\]

Donc

\[
\rho = \rho_0 + \rho g Z_0.
\]

Chaque molécule reste soumise au mouvement à la même pression qu'à l'état de repos, donc toutes
Les molécules situées initialement dans un même plan horizontal constituent à tout instant une surface de niveau, appelée surface d'onde et définie par les équations :

\[ x = X + \frac{z}{2}, \quad y = z + \frac{z}{2}, \quad p = p_0 + pgz_0, \quad z_0 = z + \frac{pg^2t^2}{2} \]

3 Propriétés de la haune trochoidale. Toutes les molécules décrittent des orbites circulaires à vitesse angulaire constante \( \omega = \frac{p}{R} = \frac{R\omega}{R} \). Les rayons de ces cercles décroissent très rapidement lorsque la profondeur augmente et d'autant plus que la haune est plus courte, c'est-à-dire que \( \frac{p}{R} < \frac{p_0}{R_0} \).

Le centre du cercle est situé à hauteur \( \frac{z^2}{R} \) au-dessus de la position de repos. Les surfaces d'onde se déplacent toutes avec une vitesse uniforme \( \omega = \frac{p}{R} = \frac{\omega}{R} \).

Si nous considérons la trochoidale résultant du mouvement du cercle de rayon \( R \) et engendré par le point \( M \) à distance \( r \) du centre \( C \), le point de contact \( A \) du cercle génératif est le centre instantané de rotation et \( AM \) est la normale au profil de l'onde. La poussée qui s'exerce sur la molécule \( M \) de masse \( m \) doit équilibrer le poids \( mg \) et la force d'inertie centrifuge \( mw^2r \). Ces deux forces sont dirigées suivant \( AC \) et \( CM \). Comme \( \omega = \frac{p}{R} = \frac{AC}{\omega^2}, \) ces deux forces sont égales à \( mw^2AC \) et \( mw^2CM \), de sorte que leur résultante est dirigée suivant la normale \( AM \) et est égale à \( mw^2AM \). La poussée est donc normale aux surfaces de niveau et vaut \( mw^2AM = mg \frac{AM}{R} \).

Elle varie donc entre \( mg \left(1 - \frac{z}{R}\right) \) aux extrémités et \( mg \left(1 + \frac{z}{R}\right) \) aux extrémités.

Si \( z = R \), la poussée est nulle en extrémité ; ou est à la limite de déformation. Correspond à une haune cyclotidale à la surface libre.

Les molécules qui sont situées au repos sur une même verticale se trouvent pendant le mouvement sur une courbe.
be appliqué verticalement dynamique et défini par les équations:
\[ x = x + \frac{\xi}{t}, \quad \zeta = \frac{\xi}{t} \]
dans lesquelles il suffit de faire \( x = \text{constante} \).

D'après la longueur et la vitesse d'une houle sont liées par une relation indépendante de sa hauteur
\[ w = \sqrt{\frac{g}{n}} = \frac{t}{l}, \quad t = \sqrt{\frac{g}{n}} \]

\[ w = \frac{\pi}{l}, \quad \omega = \frac{\pi}{l} \]

Une houle est entièrement définie par sa longueur d'onde et son rayon orbital en surface. Toute la masse liquide participant à la houle peut subir une translation horizontale sans freinement de fond, le phénomène n'en est pas altéré, sauf la vitesse de translation. Si la vitesse d'entraînement est \( W \), théoriquement la surface libre et les surfaces d'onde au de niveau seront fixes et l'écoulement prend le caractère d'un écoulement permanent de vitesse uniforme \( W \) suivant les surfaces d'onde.

Comme la vitesse d'une molécule est \( v = \omega r \), son énergie cinétique est
\[ \frac{1}{2} m v^2 = \frac{1}{2} m \omega^2 r^2 = \frac{mg r^2}{2l}. \]

L'énergie potentielle est égale au produit de \( mg \) par l'élévation moyenne au-dessus du niveau d'équilibre qui est
\[ \frac{r^2 e}{2l} \]

\[ = \frac{\pi r^2}{2l}; \quad \text{donc elle est} \frac{\pi r^2}{2l}, \]
c'est-à-dire égale à l'énergie cinétique.

Pour une tranche de houle de longueur \( 2l \), c'est-à-dire une vague de largeur égale à l'unité, l'énergie totale sur toute la profondeur est
\[ E = 4 \omega \int_{-\infty}^{\infty} \frac{r^2}{2l} d\xi = 2 \omega \frac{\pi}{2l} \int_{0}^{\infty} e^{-\frac{2\pi r^2}{l}} d\xi = 2 \pi \omega \frac{h^2}{l} \left[ -\frac{1}{2 \pi} e^{-\frac{2\pi r^2}{l}} \right]_0^\infty \]

\[ E = \omega \pi h^2 l \text{ pour toute la profondeur de l'eau}. \]

On se rend compte aisément, par la rapidité de la décroissance de \( e^{-\frac{2\pi r^2}{l}} \) que la majeure partie de l'énergie est concentrée vers la surface; on peut considérer qu'elle est contenue presque toute entière dans la tranche de profondeur \( \frac{r}{l} \), puisque pour \( \frac{r}{l} = 1 \),
\[ e^{-\frac{2\pi r^2}{l}} \approx 0.0018. \]
On voit que 
\[ E = \frac{\omega^2}{g} \frac{\pi W^2}{2} = \rho \frac{\pi h^2 W}{g} \]

L'énergie d'une onde est égale au produit de la masse liquide condensée dans le cercle d'oscillation des molécules superficielles, par la vitesse de la célérité de propagation. Pour \( 2 \lambda = 100 \text{ m} \), \( h = 4 \text{ m} \), \( E = 200,000 \ \text{kg m} \).

4. Important à la théorie précédente. La théorie précédente accepte plusieurs corrections, du fait de l'action des frictions internes, de la valeur finie de la profondeur et de la possibilité de déploiement. Aussi bien d'après M. Le Benerais que d'après M. Bauzinscoq, les frictions internes amortissent la houle très lentement si il est vrai. Si \( h_0 \) est la demi-amplitude initiale, à distance \( X \) de l'origine de la houle, elle sera réduite à

\[ h = h_0 e^{-\alpha X} = h_0 e^{-\beta X} \]

la première forme étant celle de M. Bauzinscoq, la seconde, celle de M. Le Benerais,

\( X \) étant le temps nécessaire pour parcourir la distance \( X \).

Les deux coefficients \( \alpha \), \( \beta \) montrent que la décroissance est très lente et beaucoup plus lente pour les houles longues que pour les houles courtes.

M. Sydenham indique qu'en prenant pour le coefficient de viscosité l'expression de Poissonnet

\[ \alpha = 3 \times 10^{-2}, \beta = 2 \times 10^{-5} \]

pour \( l = 100 \text{ m} \), il faudrait qu'une vague parcoure 33,200 m. pour décroître de 1/100e de sa hauteur.

Si un ouragan donne naissance en une région de la mer à une série de houles diverses, généralement de périodes harmoniques de la période \( 2 \pi \) des vagues, une éruption des vagues se produira à mesure de leur déplacement et à une distance assez grande de l'origine, il ne subsistera plus qu'une onde de période pure \( 2 \pi \). Selon M. Bauzinscoq, le coefficient d'extinction est proportionnel à la \( 5/3 \) puissance du degré de l'harmonique, c'est à dire que pour les harmoniques d'ordre 1 (onde fondamentale), 2, 3, 4, les coefficients d'extinction sont proportionnels à

\[ 1, \ 3/2, \ 243, \ 1024 \]

ce qui montre nettement l'usure plus rapide des harmoniques.
D'autre part, la profondeur n'est jamais infinie; il doit en résulter une perturbation. De la décroissance très rapide de $r$ avec la profondeur, il est certain que l'influence du fond doit être très négligeable tant que $H$ est assez grand, $H$ étant la profondeur. Si la profondeur est faible, M. Bousinesq a montré, en supposant $h$ petit par rapport à $l$, que l'on peut représenter le phénomène par un mouvement orbitaire elliptique. Les grands axes des ellipses sont horizontaux, l'onde est formée d'une trochoidé elliptique. La valeur du demi-grand axe est

$$r = h \frac{\coth \pi \frac{H - x}{l}}{\sinh \pi \frac{H}{l}}$$

La valeur du demi-petit axe (vertical) est

$$r' = h \frac{\sinh \pi \frac{H - x}{l}}{\sinh \pi \frac{H}{l}}$$

en désignant par $\sinh x$, $e^{\frac{x}{2}} - e^{-\frac{x}{2}}$; par $\coth x$, $e^{\frac{x}{2}} + e^{-\frac{x}{2}}$

On a $r' = \frac{1}{\tanh \pi \frac{H}{l}}$. A la surface $r'_{0} = \frac{\tanh \pi \frac{H}{l}}{l},$ le rapport $r'_{0} = \frac{1}{l}$ dès que $\frac{H - x}{l} > 1,40$. La célérité est

$$W = \frac{l}{t} = \sqrt{\frac{gH}{\pi}} \cdot \frac{\tanh \pi \frac{H}{l}}{l}$$

Donc, dès que $\frac{H}{l} > 1,40$, on retiendra $W = \sqrt{\frac{gH}{\pi}}$, célérité relative aux grandes profondeurs.

Pour les petites profondeurs, tant que $\frac{H}{l} < 0,20$, on a

$$\tanh \pi \frac{H}{l} = \frac{H}{l},$$

d'autant moins que $\frac{H}{t}$ est plus petit. On obtient alors

$$W = \sqrt{gH},$$

c'est-à-dire la formule de Lagrange relative aux ondes allongées de faible hauteur.

Pour les profondeurs moyennes, on a des valeurs intermédiaires pour la célérité, que l'on peut calculer par le tableau suivant:

\[
\begin{array}{cccccccc}
\frac{H}{l} & 0 & 0,02 & 0,06 & 0,10 & 0,15 & 0,20 & 0,50 & 0,80 \\
\tanh \frac{\pi \frac{H}{l}}{l} & 0 & 0,063 & 0,186 & 0,304 & 0,439 & 0,557 & 0,878 & 0,987 \\
\end{array}
\]

L'élevation du niveau moyen au-dessus du niveau d'équilibre est $\frac{H - x}{l}$ et l'énergie de l'onde a encore pour expression

$$W^2 h^2 l = 4\pi \frac{H - x}{l} W^2$$
Enfin nous avons vu que théoriquement, l'onde est stable en
surface tant que $h < \frac{\pi}{2}$ ; à la limite, son profil atteint une forme
de cycloïde à pointe de rétrécissement. Mais il apparaît claire-
ment que les ondes doivent déformer longtemps avant d'atteindre
ce point limite ; elles ne sont donc stables que si $h$ est sensi-
blement $< \frac{\pi}{2}$.

L'aplatissement des ondes lorsque la profondeur devient
faible montre que le déplacement se produit plus rapidement aux
faibles profondeurs. Comme nous l'avons montré pour les on-
des de translation, ce déplacement se produit surtout lorsque
les ondes venant du large gravissent, au voisinage des côtes,
des plages en pente douce. Le jettement du fond retarde la
base de l'onde qui se remplit vers l'avant, en dissipa son
énergie en tourbillons et chocs.

Des ondes peuvent cependant déformer vers l'arrière, lors-
qu'elles se propagent en sens inverse d'un courant plus rapide
en surface que dans le fond. C'est alors la tête qui est plus
rétardée que la base, reste en arrière, et finit par être en dé-
séquilibre et déformer. Ce phénomène peut se produire par exem-
ple à l'embarquement des fleuves.

5. Composition des houles. Comme l’a montré M. Bous.
 ainsi que les équations de la houle que nous avons considérées
correspondent à celle dont les déplacements sont petits par-
rapport à la longueur d'onde. Sous ces conditions, la compo-
sition de houles différentes peut se faire par la superposition
de petits mouvements simples. Il est d’ailleurs nécessaire que
$h$ soit très petit car la houle simple à son plan moyen à
au-dessus du niveau d'équilibre des plans moyens des
diverses houles ne sont donc pas commens si $h$ est différent,
it faut que $h$ soit petit pour que l’erreur soit négligeable.
Nous envisagerons d’ailleurs surtout des houles de même ha-
teur ou de hauisses peu différentes. Les équations que
nous obtenons de la sorte sont les plus simples qui convien-
nent aux phénomènes complexes étudiés. Selon certains auteurs,
tels que M. Le Berrurier, elles sont même insuffisamment appro-
xivatives et il faut recourir à l’analyse harmonique. Comme
notre but est surtout de donner une interprétation mathé-
matique simple compatible avec les phénomènes physiques,
notre nous tendons à l’approximation indiquée.

Un cas simple intéressant correspond à la superposi-
tion de deux houles de même hauteur $h$, et dont les lon-
...et les périodes diffèrent peu, de telle sorte que
\[ \ell_1 = l - \alpha, \quad \ell_2 = l + \alpha, \]
\[ T_1 = T - \beta, \quad T_2 = T + \beta \]
\[ x = x + \hbar e^{-\frac{\pi x}{\ell_1}} \left[ \sin \pi \left( \frac{\ell_1}{T_1 - \beta} - \frac{x}{\ell_1 - \alpha} \right) \right. \]
\[ \left. + \sin \pi \left( \frac{\ell_1}{T_1 + \beta} - \frac{x}{\ell_1 + \alpha} \right) \right] \]
\[ z' = z' - \hbar e^{-\frac{\pi z'}{\ell_2}} \left[ \cos \pi \left( \frac{\ell_2}{T_2 - \beta} - \frac{z'}{\ell_2 - \alpha} \right) + \cos \pi \left( \frac{\ell_2}{T_2 + \beta} - \frac{z'}{\ell_2 + \alpha} \right) \right] \]
\[ z' = z' - 2\hbar e^{-\frac{\pi z'}{\ell_2}} \cos \pi \left( \frac{\ell_2}{T_2} - \frac{z'}{\ell_2 - \alpha} \right) \cos \pi \left( \frac{\beta}{T_2} - \frac{\alpha z'}{T_2 - \alpha} \right) \]

La hauteur maximum du vague est doublée. Il y a deux séquences à considérer : la première, fondamentale, est celle de la houle moyenne \( W = \frac{T}{\ell} \); la seconde résulte du 2e cosinus et est:
\[ W' = \frac{\ell^2}{\alpha} / \frac{T^2}{\beta} = \frac{\ell^2}{T^2} \cdot \frac{\beta}{\alpha} \]
\[ \therefore \quad W' = \frac{\ell^2}{\alpha} \cdot \frac{\beta}{T^2} = \frac{3}{\pi} \cdot \frac{\beta}{\alpha} = \frac{3}{\pi} \cdot \frac{\beta}{T^2} = \frac{1}{2} \sqrt{\frac{\pi}{2g}} = \frac{W}{2} \]
\[ \therefore \quad W' = \frac{W}{2} \]

Donc à un instant quelconque la surface libre sera formée d'une succession de groupes ou trains d'ondes, de longueur totale \( \frac{2T^2}{\alpha} \), dont les hauteurs varieront de 0 à \( 2\hbar \) et varieront pour chacune d'elle
\[ 2\hbar \cos \pi \left( \frac{\beta}{T_2} - \frac{\alpha z'}{T_2 - \alpha} \right) \]

Les vagues de longueur \( 2T \) avanceront avec une vitesse \( W \), tandis que les maxima se déplacent avec une vitesse \( W/2 \). Donc on verra à la surface d'avance des trains d'ondes dans lesquels les vagues elles-mêmes avanceront avec une vitesse double.

Clapotis. Quand une houle vient frapper sur un mur vertical support de profondeur infinie et perpendiculaire à la direction de propagation de la houle, celle-ci se réfléchit. La houle réfléchie se compose avec la houle incidente et produit le clapotis : les vagues paraissent immobiles, mais semblent monter et descendre sur place. Notamment, près du mur, les déplacements doivent être purement verticaux.

En première approximation, on peut considérer la houle réfléchie comme vigile et de sens contraire à la houle incidente.
Dès lors
\[ x = X + h e^{-\frac{n \pi}{l} \left( \sin \frac{n \pi}{l} (WX - X) - \sin \frac{n \pi}{l} (WX + X) \right)} \]
\[ = X - 2h e^{-\frac{n \pi}{l} \cos \frac{n \pi}{l} WX \sin \frac{n \pi}{l}}. \]

De même
\[ z' = z + h e^{\frac{n \pi}{l} \cos \frac{n \pi}{l} WX \cos \frac{n \pi}{l}}. \]

Donc
\[ \frac{\dot{z}}{\dot{z}} = \frac{\dot{z}'}{\dot{z}'} = \text{constante déterminé}. \]

Donc les trajectoires sont des segments de lignes droites, d'inclinaison périodiquement variable. Le sont des verticales pour \( X = 0 \) contre le mur du quai, puis \( X = 2l, 3l, \ldots \). Pour \( X = l, 3l, \ldots \), ce sont des horizontales. Intermédiairement, les inclinaisons varient régulièrement. On a
\[ \ddot{z}^2 + \dot{z}^2 = 4h^2 e^{\frac{n \pi}{l} \cos \frac{n \pi}{l} WX}. \]

Pour tous les points dont les positions moyennes sont dans un même plan horizontal ont des déplacements de même amplitude
\[ \frac{n \pi}{l} \quad \text{que quelle que soit la direction de la trajectoire.} \]
La hauteur du cratère s'applique est donc double de celle de la hauteur initiale.

La courbe de la surface libre est
\[ x = X - 2h \cos \frac{n \pi}{l} WX \sin \frac{n \pi}{l}, \]
\[ z' = -2h \cos \frac{n \pi}{l} WX \cos \frac{n \pi}{l}. \]

Comme \( h \) est petit par rapport à \( l \), ces équations représentent une cycloïde allongée.

Le clapotis défini est le clapotis simple. Il se modifie par amortissement, comme la hauteur régulière. La loi d'amortissement est, d’après M. Nau
\[ h = h_0 e^{-\frac{2n \pi g}{l^2} t}, \]
E étant le coefficient de viscosité. Il en résulte encore l'extinction plus rapide des ondes les plus courtes. comme des causes perturbatrices nom
brenues intervenant d'ordinaire dans le mouvement des ondes cha-
poteuses, elles n'ont pas le caractère de permanence de la houle,
et s'amortissent en fait beaucoup plus vite.

L'énergie des ondes clapoteuses est double de celle de la
hauke initiale. Le dépouillement des ondes clapoteuses est fréquent,
écause de leurs grande hauke, d'autant plus que les haukes
donnant naissance au clapotis dans les ports sont plus espacées que
 celles de la hauke. La grande énergie des ondes serait aussi l'in
stabilité, ainsi que les profondeurs trop générales faibles au pied des
murs. Il semble que la limite de dépouillement soit \( \frac{h}{l} \approx 0,55 \). Donc
si la hauke initiale est assez sereine, il se produit des projections
verticales d'eau aux côtés des ondes clapoteuses, ce qui s'observe
souvent.

Observons d'ailleurs que la perte d'énergie de la hauke initiale
par suite de la réflexion sur la mur est le phénomène. Si \( h_1 \) est
la hauke de la hauke initiale, la hauke réfléchie est de hauke
\( h_2 < h_1 \). Donc, lors

\[
x = X + \left[ h_1 \sin \frac{\pi}{l} (Wt - X) - h_2 \sin \frac{\pi}{l} (Wt + X) \right] e^{-\frac{\pi^2}{l^2}}
\]

\[
y' = y' - \left[ h_1 \cos \frac{\pi}{l} (Wt - X) - h_2 \cos \frac{\pi}{l} (Wt + X) \right] e^{-\frac{\pi^2}{l^2}}
\]

En éliminant \( t \) entre ces équations, on trouve des orbites
elliptiques, dont les éléments dépendent de \( X \) et de \( Y' \). On peut con-
sidérer le phénomène comme la superposition d'un clapotis et
d'une hauke simple. En effet, supposons \( h_1 < h_2 \) et posons \( h_2 = h_2 + \Delta h \).

Donc

\[
y' = y' - \left[ h_2 \cos \frac{\pi}{l} \cos \frac{\pi}{l} + \Delta h \cos \frac{\pi}{l} (Wt - X) \right] e^{-\frac{\pi^2}{l^2}}
\]

Il y a un clapotis simple d'amplitude \( \Delta h \) et de célérité \( W \)
le et une hauke simple, d'amplitude \( 2 \Delta h \) et de célérité \( W \). La
période commune est 2\pi. Les vagues se déplacent et leur hauteur varie du petit axe de l'ellipse (au creux du clapotis) au grand axe de l'ellipse (aux crêtes du clapotis) Intermédiairement, les axes de l'ellipse sont inclinés et varient régulièrement.

7. **Gaufrage.** Le gaufrage se produit lorsque une houle régulière se réfléchit sur un paroi oblique à sa direction de propagation. Les deux houles réfléchies et incidentes se croisent. Au point de croisement des crêtes, il y a une montée double en forme de cloche et au croisement des vagues, un creusement double. La surface ainsi ondulée se déplace parallèlement à l'obstacle réfléchissant. En considérant celui-ci comme axe des \( y \) et la normale comme axe des \( x \), on aura, en admettant l'égalité de l'angle d'incidence et de l'angle de réflexion et en appelant \( \alpha \) l'angle de la houle avec la normale au mur:

\[
f' = \frac{x}{x} - 2h e^{-\frac{-n x}{l} \cos \frac{\pi}{l} (Wx + y \sin x)} \cos \frac{\pi}{l} x \cos \alpha.
\]

8. **Observations sur la houle.** La houle prend naissance dans la mer par l'action du vent, qui produit une ondulation plus ou moins régulière de la surface, formée de vagues ou lames. Lorsque le vent cesse, la mer liquide restant soumise à la seule influence de la pesanteur, de la force d'inertie et des répulsions internes, les ondulations persistent en prenant une forme de plus en plus régulière constituant la houle.

La houle simple ne pourra approximativement se réaliser qu'au large, loin des actions perturbatrices des côtes et des hauts fonds; elle sera d'autant plus régulière que la direction et la vitesse du vent auront été constantes sur une plus grande étendue.

Si l'on immisce un corps dans une eau houleuse, il participe au mouvement de l'eau de son centre de gravité. Lorsque la houle s'atténue rapidement en profondeur, une longue presque lenticule flottant verticalement dans l'eau sera sensiblement immobile. Un flotteur mobile le long de cette presche suit les fluctuations de la surface. C'est le principe du trace-vague de l'animal marin. Il enregistre les déplacements du flotteur, convenablement réduits, sur un tambour tournant d'un mouvement continu.

On peut aussi observer d'un navire l'intervalle de passage de deux crêtes successives en un point et le temps que met une crête à parcourir la longueur du bateau. En tenant compte de la vitesse du navire et de la direction de sa
cent par rapport à la hauteur, on peut en déduire \( T \) et \( \ell \).

On a constaté que la relation \( \frac{T}{\ell} = \sqrt{\frac{g}{\ell}} \) est convenablement satisfaite. Le tableau suivant donne, d'après l'amiral Paris, la hauteur moyenne des différentes mers.

<table>
<thead>
<tr>
<th>Alizés de l'Atlantique</th>
<th>( 2T = 6'' )</th>
<th>( 2\ell = 65m )</th>
<th>( 2k = 1,80 )</th>
<th>( \ell = 0,029 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantique Sud</td>
<td>( 9''5 )</td>
<td>133m</td>
<td>4,30</td>
<td>0,032</td>
</tr>
<tr>
<td>Mer des Indes Sud</td>
<td>( 7'',6 )</td>
<td>96m</td>
<td>2,80</td>
<td>0,029</td>
</tr>
<tr>
<td>Mer de Chine et du Japon</td>
<td>( 7'' )</td>
<td>79m</td>
<td>3,20</td>
<td>0,040</td>
</tr>
<tr>
<td>Pacifique Ouest</td>
<td>( 8'',2 )</td>
<td>102m</td>
<td>3,10</td>
<td>0,030</td>
</tr>
</tbody>
</table>

Exceptionnellement, on a trouvé dans l'Atlantique Nord

\[ 2T = 23\text{sec.} \quad 2\ell = 824\text{m} \quad W = 36\text{m} \text{ (Amiral Mobyck)} \]

Le maximum constaté par l'amiral Paris est

\[ 2T = 19\text{sec.} \quad 2\ell = 500\text{m} \quad W = 26,3\text{m}. \]

\( 2T \) dépasse rarement 10 secondes ; \( \frac{T}{\ell} \) dépasse rarement 0,05, ce qui correspond à \( \frac{\ell}{T} = 0,16 \). On a observé exceptionnellement \( \frac{k}{\ell} = 0,10 \); d'où \( \frac{k}{\ell} \approx 0,3 \) environ. Le clapet et le saupoudrage observés dans la nature sont généralement trop complexes pour vérifier les théories simples exposées ; on a pu les réaliser en bassins expérimentaux et observer les trajectoires des particules par la stroboscopie.

9. Seiches des lacs. II peut se produire dans les lacs des clapets de grande longueur appelé seiches et qui ont été observés notamment sur le lac de Genève par le professeur Ford. Les équations du clapet en profondeur finie sont

\[ x = x - 2\ell \cos \frac{n}{\ell} \sin \frac{nH}{\ell} \]

\[ z = z - 2\ell \sin \frac{n}{\ell} \cos \frac{nH}{\ell} \]

Une seiche se produira si \( \frac{\ell}{n} \approx \frac{1}{n} \), \( n \) étant un nombre entier peu élevé, parfois l'unité.

La demi-période est \( T = \frac{\ell}{W} = \sqrt{\frac{gH}{g_1}} \frac{nH}{\ell} = \sqrt{\frac{gH}{g_1}} \frac{nH}{\ell} \)

Comme \( \frac{H}{\ell} = \frac{nH}{\ell} \) est généralement très faible dans les grands
lacs, on trouve pratiquement la formule de Lagrange pour la célérité

\[ w = \sqrt{\frac{g}{n} \cdot \frac{kgh}{\ell} \cdot \frac{\pi H}{\ell}} \equiv \sqrt{gh}. \]

Les formules précédentes ont été vérifiées au lac Léman avec une exactitude suffisante. Il y a des séries longitudinales de 73 minutes de périodicité et de 35 minutes ; elles correspondent à \( l = L \) et à \( l = L/2 \). Il y a des séries transversales de 10 minutes.
Celles de 73 minutes ont 1,20 à 1,50 m. de hauteur ; celles de 35 m. à 0,12 m. seulement. On attribue ces phénomènes à des irrégularités de répartition de la pression atmosphérique.

Chapitre II. Marées et courants de marées.

1 Phénomène et observation locale des marées de la mer.
Dans la plupart des mers se produit le phénomène de marée que l'on observe, près des côtes, par une variation périodique du niveau moyen de la surface de l'eau entre un maximum et un minimum. La période est sensiblement semi-diurne, en moyenne 12 h 25'. La marée retardée donc d'un jour à l'autre d'environ 50' (retard journel du passage de la lune au méridien).
Si l'on trace en fonction du temps une courbe de variation du niveau de l'eau, on obtient une courbe locale de marée. Elle a généralement une allure sinusoidale plus ou moins régulière, selon les circonstances locales. Le minimum correspond

\[ 5 \]

à la marée basse, le maximum à la marée haute. La différence constitue l'amplitude de la marée.
Lorsque la mer monte, il y a \( \text{haut} \), puis montant ou encroissant.
Lorsque la mer descend, il y a refleur, ébe, justant ou pendant ces combes locales ont toujours sensiblement la même allure, mais leur amplitude varie périodiquement. La période est d'une lune (21 jours), les maxima se produisent aux syzygies (nouvelle et pleine lune), les marées sont dites de vive eau. Les minima se produisent aux quadratures (première et dernière quartiers), les marées sont dites de morte eau. Enfin les maxima de vive eau et les minima de morte eau varient périodiquement avec une période d'un an (période solaire). Les marées de vive eau d’équinoxe et de morte eau d’équinoxe sont plus fortes et plus faibles que toutes les autres.

Malgré ces variations, la mer moyenne, c'est-à-dire le niveau moyen entre la mer haute et la mer basse, reste sensiblement constante en un point déterminé.

En un point déterminé (généralement un port), on distingue divers niveaux caractéristiques :

- PHM  plus haute mer
- HMVEE haute mer de vive eau d’équinoxe
- HMVEM " " " " moyenne
- HMMEM " " " morte " "
- BMMEM basse " " " "
- BMVEM " " " vive " "
- BMVEE " " " " d’équinoxe
- PBM  plus basse mer

A vrai dire, on devrait envisager les niveaux moyens des marées d’équinoxe. Les basses marées de vives eaux ou les plus basses marées sont généralement de zéro de nivellement pour les cartes marines et même topographiques.

C’est ainsi que le zéro de nivellement général de la Belgique est défini par le niveau moyen des basses marées de vive eau à Ostende.

D’après ces éléments d’observation en relation avec les circonstances géographiques du lieu et les éléments astronomiques, on définit certains caractéristiques servant principalement à la prévision des marées. Je ne citerai que les notions les plus utiles pour l’ingénieur.

On appelle unité de hauteur d’un lieu, la hauteur au-dessus du niveau moyen de la pleine mer maximale après une syzygie, le soleil et la lune étant à la fois...
dans l'équateur et à leurs distances moyennes de la terre. La plus forte marée se produit en effet généralement quelques jours (1 ou 2, parfois jusqu'à 4 jours) après la syzygie ; ce retard s'appelle l'âge de la marée.

Le coefficient d'une marée quelconque est le rapport de l'élévation de la pleine mer au-dessus du niveau moyen, à l'unité de hauteur. On le rapporte souvent à 100. Le coefficient des vives eaux moyennes est 1,1, celui des mortes eaux moyennes 1,5. Les coefficients extrêmes sont 1,18 et 2,3 d'unités électriques.

Les observations de marée se font au moyen des marigraphes, du même type que les pluviographes enregistreurs à flotteurs ou à manomètres. Les flotteurs doivent être installés dans des puits à l'abri des agitations superficielles. L'installation des marigraphes à flotteurs peut être incommode, à cause du déplacement important de la baisse d'eau de marée haute à marée basse. Le marigraphe Vidal et Kaufmann réduit ingénieusement à cet inconvénient. Il comporte un manomètre enregistrant la pression d'air et un réservoir nécessaire pour produire un écoulement d'air très lent par un tube dont l'orifice est toujours noyé sous marée basse.
Le médiocre Pratique indique les fluctuations très faibles du niveau moyen. Il comporte un vase communiquant avec la mer par l'intermédiaire d'une enveloppe percée très peu perméable. De la sorte, les oscillations de marée s'influent presque par le niveau de l'eau à l'intérieur du tube, qui indique le niveau moyen.

2. 

Notions théoriques sur le phénomène des marées.

On démontre que l'action attirante d'un astre sur une particule matérielle de masse \( m \) à la surface de la lune dérive d'un potentiel de la forme

\[
\phi = A \cos \left[ L + \sin 2 \lambda \sin 25 \cos H + \cos^2 \lambda \sin^2 25 \cos 2 H \right],
\]

\( A \) étant une constante dépendant de l'astre envisagé, \( \lambda \) est la latitude du lieu, \( \delta \) la distance polaire de l'astre et \( H \) son angle horaire.

En effet, en désignant par \( \Delta \) la distance de l'astre \( L \) au centre \( C \) de la lune, \( R \) le rayon terrestre et \( \theta \) l'angle \( MCL \), l'action de \( L \) sur la masse \( m \) au point \( M \) dérive du potentiel

\[
\phi_1 = \frac{K^2 m}{ML} = \frac{K^2 m}{\sqrt{\Delta^2 + R^2 - \Delta R \cos \theta}} = \frac{K^2 m}{\Delta} \left[ 1 + \rho \cos \theta + \rho^2 \frac{1}{2} \frac{3 \cos^2 \theta - 1}{2} \right]
\]

en posant \( \rho = \frac{R}{\Delta} \).

Il ressort une action verticale

\[
V_1 = \frac{\partial \phi_1}{\partial \rho} \frac{R}{\Delta} = \frac{K^2 m}{\Delta^2} \left[ \cos \theta + \rho (3 \cos^2 \theta - 1) \right],
\]

et une action tangentielle dans le sens des angles décroissants:

\[
T_1 = \frac{1}{R} \frac{\partial \phi_1}{\partial \theta} = \frac{K^2 m}{\Delta^2} \left[ \sin \theta + \rho^2 \sin \theta \cos \theta \right].
\]


digne des pôles.
Nous devons considérer les effets relatifs par rapport à la portion solide du globe ; nous devons donc retrancher des expressions précédentes les composantes de la force \( \frac{K^2m}{\Delta^2} \) parallèle à \( L \). C'est-à-dire \( v_2 = \frac{K^2m}{\Delta} \cos \theta \) et \( T_2 = \frac{K^2m}{\Delta} \sin \theta \).

Les actions dérivent d'un potentiel

\[
\phi_2 = \frac{K^2m R}{\Delta^2} \cos \theta = \frac{K^2m R}{\Delta} \cos \theta.
\]

Il en résulte que le potentiel relatif est

\[
\phi = \phi_1 - \phi_2 = \frac{K^2m}{\Delta} \left[ 1 + \frac{p^2}{2} \frac{3 \cos^2 \theta - 1}{2} \right]
\]

Or, d'après la trigonométrie sphérique,

\[
\cos \theta = \sin \lambda \cos \delta + \cos \lambda \sin \delta \cos \varphi.
\]

D'où finalement

\[
\phi = \frac{3K^2m R^2}{4 \Delta^3} \left[ f(\lambda, \delta) + \sin 2 \lambda \sin 2 \delta \cos H + \cos^2 \lambda \sin^2 2 \delta \cos 2H \right]
\]

(Démonstration de M. Boussete)

5. S'arrête avec une longue période (un an pour le soleil, 27 1/2 jours pour la lune). Les termes en \( S \) donnent donc une variation périodique à longue période. La période de variation de \( H \) est d'une jour ; les termes en \( \cos H \) produisent la variation diurne ; ceux en \( \cos 2H \), la variation semi-diurne.

Les forces agissant sur la partie sont :

- suivant la verticale \( V = \frac{2 \phi}{R} \),
- suivant la tangente au méridien \( T' = \frac{1}{R \cos \varphi} \frac{\partial \phi}{\partial \varphi} \),
- suivant la tangente au parallèle \( T = \frac{1}{R \cos \lambda} \frac{\partial \phi}{\partial \lambda} \)

\( R \) étant la distance au carré de la terre.

La réduction de la pente est de \( V \) est insensible ; c'est la force tangentielle, très petite également, qui produit le marée. Cette action ne peut produire au centre d'un réseau d'eau l'eau maritime, qu'une très faible oscillation verticale, provenant d'un déplacement tangentielle périodique des eaux. Mais les côtes, en arrêtant le mouvement horizontal des eaux, produisent leur accumulation et leur élévation sur des hauteur considérables. Elles produisent s'ailleurs des perturbations qui peuvent compliquer considérablement le phénomène. M. Hott a donné l'expression suivante de la variation de niveau \( \zeta \) au point considéré.

\[
\zeta = A_1 + \frac{A_2}{A_3} \sin \lambda \cos \delta \cos (H - \lambda_1) + \frac{A_2}{A_3} \sin^2 \delta \cos 2(H - \lambda_2)
\]

\( \Delta \) étant la distance de l'astre au centre de la terre,
\( A_0 \) un terme à longue période dépendant de \( S \) et très petit, 
\( A_1, A_2, \alpha_1 \) et \( \alpha_2 \) des constantes.

On voit que l'action des astres dérivait rapidement selon leur
distance. Il en résulte que c'est le plus rapproché, la lune, qui pro-
duit le plus d'effet. Le terme principal correspond à l'onde
semi-divine dont la période pour la lune est 12 h 25'. C'est
la période moyenne d'un grand nombre de marées. Mais elles
peuvent présenter des écarts marqués. Une des causes d'être
est la superposition de l'onde divine.

Les termes et coefficients \( A_0, \frac{A_1}{A_0} \cos S \) et \( \frac{A_2}{A_0} \sin^2 S \)
varient avec la périodicité de \( 2\frac{1}{2} \) jours ; il en est \( A_0 \) produisent
toutefois pas les variations d'amplitude des marées observées
dans le cas d'une lunaïsion. Mais l'action du soleil se
superpose à celle de la lune ; elle en va autant environ le tiers. Sa
période semi-divine est de 12 h, donc très voisine de celle
de la lune. Sa variation à longue période est d'un seul son
effet est faible vis-à-vis de la variation semi-divine. Le ter-
me semi-divine des actions superposées de la lune et du soleil
s'écrit
\[
\xi = B \cos 2(H - \alpha_2) + B' \cos 2(H' - \alpha'_2) \\
= B \cos 2H + B' \cos 2(H - \varepsilon - \varphi)
\]
\( m \) positif \( H - \alpha_2 = H_1, H' = H - \varepsilon - \varphi \).

On voit que \( y \) est une fonction périodique à amplitude va-
riable, maximum lorsque \( \varepsilon + \varphi = m \pi \); alors \( \xi = (B + B') \cos 2H_1 \)

et minimum lorsque \( \varepsilon + \varphi = 2m + 1 \pi \); alors \( \xi = (B - B') \cos 2H_1 \)

donc \( B' \approx B \), on voit que \( \xi \) l'amplitude de l'oscillation
varie entre la proportion de \( 1 + \cos \) aux synodiques et celle de \( 2 \) aux
séquentiologies, dans une même lunaïsion. Cette amplitude varie
da d'autres d'une période à l'autre et cause de la variation
d'une période de \( B + B' \). Mais c'est donc l'action combiné
de la lune et du soleil qui produit la variation d'amplitude
caractéristique des marées semi-divines sur nos côtes.
B'est plus grand aux équinoxes, d'où la forte marée d'équinoxe, particulièrement si la lune est aussi près de l'équateur.

L'onde divina correspond au terme $A \sin \theta \cos \delta$. La vive-
ne correspond aux conjonctions de la lune et du soleil, la mor-
ne aux oppositions. Le maximum ne correspond plus à $\delta = \frac{\pi}{4}$
(équinoxe) mais à $\delta = \frac{\pi}{4}$, qui ne peut se réaliser. Mais le phè-
nonème est donc d'autant plus fort que la lune est plus haut au-
dessus de l'équateur. Il est faible sur les côtes européennes
et ne se manifeste guère que dans le bassin du Pacifique, sur-
tout par des différences entre les hunes et les niveaux de deux
huites murs consécutives ; parfois par des éclats du même ordre
pour les basses murs consécutives (Singapore). Dans le golfe du
Cortin, le phénomène divina subsiste seul.

Sur les côtes européennes, les variations de période du
phénomène semi-divina ne sont explicable pas du au phè-
nomène divina, mais principalement à l'action combinée de
la lune et du soleil. En effet, la fonction

$$\xi = B \cos 2(H - \omega_2) + B' \cos 2(H' - \omega'_2)$$

a une période différente de $\cos 2H$ et périodiquement varia-
tible. Elle peut en effet s'écrire:

$$y = C \cos 2(H_1 - \gamma)$$
avec

$$c^2 = B^2 + B'^2 + 2BB' \cos 2(\varepsilon + \gamma)$$

$$\log 2y = \frac{B' \sin 2(\varepsilon + \gamma)}{B + B' \cos 2(\varepsilon + \gamma)}$$

Posons $2(H_1 - \gamma) = 2\pi(w - \lambda)t$, $\omega$ étant la pulsation fonda-
mentale. La pulsation modifiée est $\Omega = \omega - \lambda = \omega - \frac{1}{n} \frac{d\varepsilon}{dt} = \omega - \frac{B'}{nc^2} \left[ B \cos 2(\varepsilon + \gamma) + B' \right] \frac{dE}{dt}$.

Les éclipses sont

$$\Omega_1 = \omega - \frac{B'}{n(B+B')} \frac{dE}{dt} = \omega - \frac{1}{4n} \frac{dE}{dt}$$

$$\Omega_2 = \omega + \frac{B'}{n(B+B')} \frac{dE}{dt} = \omega + \frac{1}{4n} \frac{dE}{dt}$$

Pour la lune, $\omega = \frac{1}{2T} = \frac{1}{745}$ et $E = H - H' = n \left[ \frac{1}{745} - \frac{1}{720} \right] t$, ce qui permet de calculer les limites ci-dessus.

En considérant les périodes lunaire et solaire de $745'$
et de $720'$, on trouve que la période combinée peut varier
entre un maximum de 757' et un minimum de 738'. La différence de phase entre le passage de la lune au méridien et la hauteur varie aussi d'après les positions relatives de la lune et du soleil et toutes ces variations sont les plus fortes aux équinoxes.

3 Propagation et caractères de l'onde de marée. Sous l'effet des actions indiquées, un mouvement ondulatoire prend naissance dans les bassins étendus des océans et se manifeste par le mouvement d'ondes de marées, qui s'accumulent près des côtes. Dans les petits bassins fermés, tels que la Méditerranée, la marée est à peine perceptible (amplitude maximum 0,25 m. à Marseille, 0,60 m. à Venise). Sur les côtes libres des grands bassins tels que l'Océan Atlantique, les courbes locales de marée ont une forme sinusoidale assez régulière, correspondant à la théorie. On peut aussi observer la vitesse de l'onde et on trouve qu'elle satisfait très approximativement à la formule de Lagrange:

\[ W = \sqrt{gH} \]

\[ W = \sqrt{gH} \]

\[ W = \sqrt{gH} \]

L'énergie d'une onde d'oscillation telle que l'onde marée est très sensiblement égale à \( pr^2 W^2 \). Abstraction faite des frottements, elle doit être constante, vu son origine sidérale, donc \( W = C \). En combinant avec la formule de Lagrange, on trouve \( \sqrt{N} = C \). M. Longay a indiqué la valeur 20 comme s'accordant bien avec les observations.

L'onde marée n'est pas toutefois une onde d'oscillation pure. On constate que la propagation de l'onde marée entraîne un certain déplacement alternatif de l'onde. Au large, en mer libre et là où l'onde peut se propager librement, la vitesse des courants est constante sur toute la profondeur; on a vérifié ce fait sur plus de 300 m. de profondeur. Les maxima se produisent à la haute et à la basse mer (courants de flot et de jumant). Le renversement se produit à mi-marée et constitue une écluse.
On distingue l'étale de plat après la haute marée et l'étale de jusant après la baie marée.

En appelant $V$ la vitesse du courant, on a

$$V(H + h) = W h; \text{ d'où } V = h \sqrt{\frac{g}{H}}.$$

Entre l'étale de jusant et l'étale de plat, une particule superficielle (flotante) se déplace de $d = t V$.

Pendant ce temps, l'onde parcourt le chemin $L + d = t W$, d'où $d = \frac{t V}{W-V} = \frac{t h}{H-H}$. L'observation vérifie cette relation d'après M. Comoy. La propagation de la marée se représente au moyen de courbes côtières, lignes tracées suivant le sommet de l'onde à des intervalles de temps réguliers (une heure). Elles sont assez régulières dans les grands bassins, au large et près des côtes régulières.

Les formules précédentes, encore qu'approximatives, montrent qu'à l'approche des côtes, où la profondeur décroît fortement, la célérité de l'onde marée diminue, mais sa hauteur augmente fortement, de même que la vitesse des courants et le déplacement des particules liquides.

En d'autres termes, l'onde marée acquiert de plus en plus un caractère d'onde de translation à mesure que la profondeur diminue.

Théorie élémentaire des courants de marée. Nous avons établi pour l'onde de translation l'équation

$$g \frac{d^2 \eta}{dx^2} + \frac{d^2 \eta}{dt^2} \frac{H}{3} + \frac{d \eta}{dt} + \frac{d u}{dx} = 0$$

Dans le cas de l'onde marée très étendue, nous pouvons nous borner à conserver deux termes principaux

$$g \frac{d^2 \eta}{dx^2} + \frac{d u}{dx} = g \frac{d^2 \eta}{dx^2} + \frac{d^2 \xi}{dx^2} = 0$$

Nous avons $\frac{d \eta}{dt} + \frac{d \xi}{dt} = 0$. Donc $\eta = \frac{H}{3} \frac{d \xi}{dt}$, $\frac{d \eta}{dx} = H \frac{d^2 \xi}{dx^2}$

D'où $\frac{d^2 \xi}{dt^2} = g \frac{H}{3} \frac{d^2 \xi}{dx^2}$.

Comme le mouvement est intérieur par une force périodique provenant des astres, nous devons ajouter un terme périodique et écrire
\[
\frac{\partial^2 \xi}{\partial t^2} = \frac{gH}{\partial x^2} \frac{\partial^2 \xi}{\partial x^2} + B \sin \frac{\pi}{L} (Wt - x)
\]

Cette est l'équation de la propagation de l'onde marée dans un canal de largeur indéfinie à fond horizontal, sans courant pré-existant. La force est périodiquement variable et son action se propage avec la vitesse \( W = \frac{L}{T} \), selon les notations relatives aux ondes d'oscillation.

Donc
\[
y = \frac{x}{\sqrt{gH}} \quad z = \frac{x}{\sqrt{gH}}
\]

On a
\[
4 \frac{\partial^2 \xi}{\partial x \partial z} = B \sin \frac{\pi}{L} \left[ W(y + z) - \sqrt{gH} \frac{y - z}{2} \right]
\]

\( \xi \) est
\[
\xi = F_1 \left( \frac{x}{\sqrt{gH}} \right) + F_2 \left( \frac{x}{\sqrt{gH}} \right) - \frac{Bp^2}{g} \cdot \frac{1}{W^2 - gH} \sin \frac{\pi}{L} (Wt - x)
\]

\( F_1 \) et \( F_2 \) sont des fonctions arbitraires n'influant pas sur les termes périodiques, que nous étudions seuls. N'après les formules précédentes
\[
\xi = -H \frac{\partial \xi}{\partial x} = \frac{BpH}{L} \cdot \frac{1}{W^2 - gH} \cos \frac{\pi}{L} (Wt - x)
\]

\[
\nu = \frac{\partial \xi}{\partial t} = \frac{BpW}{L} \cdot \frac{1}{W^2 - gH} \cos \frac{\pi}{L} (Wt - x)
\]

Si le canal est étroit suivant un parallèle de latitude \( \lambda \), pour l'onde semi-dinaire, la longueur d'onde de la marée est
\[
2L = \frac{L}{\pi} \cos \lambda.
\]

Nous voyons qu'en faisant abstraction des termes non périodiques, \( \xi \) et \( \nu \) sont maxima, minima et nuls en même temps ce qui correspond bien aux propriétés caractéristiques du sommet de marée provenant d'ondes d'oscillation seules. Mais les termes arbitraires qui correspondent à la superposition d'ondes de translation peuvent modifier ces propriétés, ce qui se produit réellement au voisinage des côtes et surtout dans les bras de mer et près des îles.

5. Interférence des ondes-marées. L'interférence des ondes marées est une des raisons principales de perturbation. Elle peut provoquer de la réflexion de l'onde sur les côtes, ou de la rencontre de deux sommets de l'onde marée ayant contourné une ile par les bords opposés. Ainsi une partie de la grande-onde qui produit la marée dans l'Atlantique contourne les îles Britanniques par l'Ouest et redescend du Nord vers le Sud par le canal d'Irlande et par la mer du Nord. Elle rencontre dans le
canal d'Islande et dans la Manche l'onde venant de l'Atlantique et y donne lieu à des interférences, surtout marquées dans le canal d'Islande. Elle est perceptible dans la Manche, mais l'onde de l'Atlantique y domine nettement (amplitude 6,10 à Cherbourg ; 9,80 à Calais) car l'onde de la Mer du Nord est déjà atteinte avant le Pas de Calais (1,80 m à Yarmouth). Son amplitude se augmente dans le détroit, mais s'amortit immédiatement après dans l'élargissement de la Manche (voir H. L. Castel: Recherches sur les rivières à marée).

Le phénomène est analogue à celui du clapotis. Les deux ondes

\[ \xi_1 = h_1 \sin \frac{n}{t} (Wt - x), \quad \xi_2 = h_2 \sin \frac{n}{t} (Wt + x), \quad h_1 = h_2 + \Delta h, \]

donnent par superposition

\[ \xi = 2h_2 \sin \frac{n}{t} \cos \frac{n}{t} + \Delta h \sin \frac{n}{t} (Wt - x), \]

à un clapotis simple, d'amplitude \( h_2 \) et de période \( 2T \). Se superposera encore une onde d'amplitude \( 2\Delta h \), de célérité \( W \) et de même période. Donc l'amplitude résultante varie du maximum

\[ 0 + 2\Delta h = 2(h_1 + h_2) \text{ aux conjonctions (coïncidence des sommets des ondes)} \]

\[ 0 + 2\Delta h = 2(h_1 - h_2) \text{ aux oppositions (coïncidence des sommets et des creux)} \].

On voit que les conjonctions sont d'abord instables, ensuite probablement à mi-chemin ; elles sont d'ailleurs fixées dans l'espace et de période \( 2T \). La célérité moyenne des ondes, dont la célérité instantanée est variable.

En effet, posons

\[ \xi = H \sin \left( \frac{n}{t} - \frac{x}{t} \right) = h_1 \sin \left( \frac{n}{t} - \frac{x}{t} \right) + h_2 \sin \left( \frac{n}{t} + \frac{x}{t} \right) \]

Pour \( t = 0 \), \(-H \sin \frac{x}{t} = h_1 \sin \frac{n}{t} - h_2 \sin \frac{n}{t}\)

\[ t = \frac{T}{2} , \quad H \cos \frac{x}{t} = h_1 \cos \frac{n}{t} + h_2 \cos \frac{n}{t}. \]

Soit \( \varepsilon = \frac{h_1 - h_2}{h_1 + h_2} , \eta = \frac{n}{t} \).

Pour une valeur donnée de \( x \), le maximum de \( \xi \) correspond à

\[ h_1 \cos \frac{n}{t} \left( \frac{x}{t} - \frac{x}{t} \right) + h_2 \cos \left( \frac{n}{t} + \frac{x}{t} \right) = 0 \]

\[ h^2 = \varepsilon^2 + \eta^2 + 2h_1 h_2 \sin \left( \frac{n}{t} - \frac{x}{t} \right) \sin \left( \frac{n}{t} + \frac{x}{t} \right) - 2h_1^2 \cos^2 \eta \left( \frac{n}{t} - \frac{x}{t} \right) \]

\[ = h_1^2 + h_2^2 + 2h_1 h_2 \left[ \sin \left( \frac{n}{t} - \frac{x}{t} \right) \sin \left( \frac{n}{t} + \frac{x}{t} \right) + \cos \left( \frac{n}{t} - \frac{x}{t} \right) \cos \left( \frac{n}{t} + \frac{x}{t} \right) \right] \]
\[ H^2 = h_1^2 + h_2^2 + 2h_1h_2 \cos \frac{2\pi x}{\ell} \]

Donc les maxima de \( H \) sont bien répartis de \( \ell \); les minima sont à mi-distance. Leurs positions sont fixes. Les lignes de conjonction correspondent à \( x = 0, \ell \); celles des oppositions à \( x = \frac{\ell}{2}, \frac{3}{2} \ell, \ldots \). Dans le premier cas, \( \varphi = 0 \); dans le second, \( \varphi = \frac{\pi}{2} \). Les maxima de conjonction se produisent aux temps \( \frac{t}{2}, \frac{3}{2} T, \ldots \); les maxima d'opposition se produisent aux temps \( 0, \frac{1}{2} T, \ldots \).

La vitesse instantanée résulte de \( \varphi = 0 \), \( \varphi = \frac{\pi}{2} \),

\[
\frac{dx}{dt} = \frac{\ell}{h_1 - h_2} \cos \frac{\pi x}{\ell} + \frac{\ell}{h_1 + h_2} \sin \frac{\pi x}{\ell}
\]

La vitesse est minimum au temps \( t = \frac{T}{2} \), c'est-à-dire aux conjonctions, et vaut \( \frac{h_1 - h_2}{h_1 + h_2} W \). Elle est maximum au temps \( t = 0 \), c'est-à-dire aux oppositions et vaut \( \frac{h_1 + h_2}{h_1 - h_2} W \).

Les points de rencontre des ondes composantes, qui déterminent les lignes de flux et de reflux sont donnés par \( \varphi_1 = \varphi_2 \) ou

\[
h_1 \sin \frac{\pi}{\ell} \left[ Wk_x - x \right] = h_2 \sin \frac{\pi}{\ell} \left[ Wk_x + x \right] .
\]

Où \( x_k = \frac{\ell}{h_1 - h_2} \) \( \frac{\varphi}{W} \).\]

Les lignes sont donc espacées d'une demi-longueur d'onde et leur vitesse est \( W \), en moyenne, mais elle est variable entre un maximum et un minimum. En effet,

\[
\frac{dx}{dt} = \frac{W}{\ell} \frac{h_1 + h_2}{h_1 - h_2} \cos \frac{\pi Wt}{\ell} + \frac{h_1 - h_2}{h_1 + h_2} \sin \frac{\pi Wt}{\ell}
\]

Lorsque \( h_1 = h_2 \) et \( \Delta h = 0 \), l'onde marée prend la forme de
potence simple et les interférences sont les plus caractéristiques. Les lignes des conjonctions sont distantes de \( \ell \); les lignes des oppositions sont à mi-distance. Aux conjonctions, l'amplitude est \( 2h \). Lors des conjonctions, les vitesses sont nulles partout.

Aux oppositions, l'amplitude est nulle. Lors des oppositions, l'eau est portant au niveau moyen, la vitesse est infinite. Pratiquement les vitesses maximales se réalisent aux oppositions.
Les lignes de faveur et de refus sont définies par \( \theta \) et \( \psi \), c'est-à-dire qu'elles sont invariables et confondues avec les lignes des conjonctions.

Les criques, énumérées par Mr. Ribière, sont vérifiées dans le canal d'Islande. La ligne de conjonction est en face de l'île de Man. L'amplitude y est maximum. Pendant le flot, deux courants de directions opposées se rencontrent sur cette ligne où se détinissent et en faisant monter la mer. À marée haute, il y a ètale générale de flot. Tous deux courants de jusant partent de ce point dans des directions opposées. La mer s'abaisse jusqu'à marée basse, où il y a ètale générale de jusant. Donc les ètales de flot et de jusant ne se produisent plus à marée, mais à marée haute et basse. Le canal est alors horizontal. La ligne des oppositions, à Courtown, 50 milles au sud de Dublin, se caractérise par un niveau constant, mais le maximum de vitesses des courants...
de 81 m., alors que la profondeur est inferieure a 100 m. L'amplitude, de 2,00 a 2,60 a l'entré de la baie atteint 12,40 a 14,60 au fond.

On constate que les courbes de marée se compliquent.
Les courbes sidérales marquent des irégularités au sein de la basse mer, des courbes locales de marée deviennent complexes. Les branches deviennent inégales. Par exemple le jusant dure plus longtemps que le set sur les côtes françaises de la Manche (différence maximum au Havre), alors que c'est l'inverse sur les côtes anglaises (Southampton). Au Havre, l'étale de pleine mer est très allongée ; au moment du plein le niveau ne varie pas de plus de 0,10 m. pendant 1 h 30' en vive eau et 2 h. en morte eau. Cela est très avantageux pour l'accès du port. A Southampton, on trouve deux maxima, par suite d'ondes successives. Mais les courbes présentent des irrégularités qui ne permettent pas de les représenter par des fonctions harmoniques simples. Mais on arrive généralement à les décomposer en sinusoïdes de périodes harmoniques, de périodes égales à 1/2, 1/4, 1/6, 1/8 et 1/10 de jour.
On doit se reporter à la figure sur un grand nombre de courbes de marées relevées et en faire l'analyse harmonique. Lorsque ce travail est fait pour un certain nombre de points successifs d'une côte, on possède tous les éléments nécessaires, conjointement avec les données astronomiques, pour l'étude complète du phénomène, notamment les prévisions des variations de la pression atmosphérique dans l'étude du bassin et près des côtes influence sur le niveau. L'erreur est surtout supérieure dans les petites marées formées presque dépourvues de marée (Méditerranée). On possède des tables de correction d'après les pressions. L'action du vent soufflant sur une côte dans le sens de l'onde marée ou en sens inverse, peut provoquer un relèvement ou un abaissement important de la marée, ce qui peut avoir des effets graves en vive eau. Dans la Méditerranée, les fluctuations peuvent atteindre 1,50 m.

Il faut noter que les courbes de marée sont provoquées par la marée dans un canal.
Supposons un canal horizontal de grande longueur et de section horizontale large débouchant dans la mer ; c'est le cas d'un canal maritime à marée tel que le canal de Suez. Si le point est assez éloigné de l'embouchure pour que la variation ne se fasse plus sentir,

1. la hauteur du niveau moyen de la mer au dessus du
du fond du canal;

\[ \xi \] la surélévation au-dessus du niveau \( H \) d'un point quelconque
au temps \( t \);

\( \alpha \) la demi-amplitude de la marée, \( \alpha \) étant petit. À l'embouchure

\[ H + \xi = H \left( 1 + \alpha \sin \frac{\pi t}{T} \right) \]

Nous avons vu que le déplacement d'une onde de translation
très allongée et peu élevée se fait suivant la loi

\[ x = \sqrt{gH} \left( 1 + \frac{3\xi}{2H} \right) \frac{t}{\pi} + \xi \left( \frac{t}{\pi} \right) \]

Donc \( 0 = \sqrt{gH} \left( 1 + \frac{3\xi}{2H} \right) \frac{t}{\pi} \) \( \arcsin \frac{H - k + \xi}{\sqrt{gH}} + \xi \left( \frac{t}{\pi} \right) \)

\( \therefore \)

\[ x = \sqrt{gH} \left( 1 + \frac{3\xi}{2H} \right) \left[ \frac{t}{\pi} - \frac{1}{\pi} \arcsin \frac{H - k + \xi}{\sqrt{gH}} \right] \]

C'est l'équation de la surface libre que l'on peut tracer par-
points à diverses époques. La vitesse du courant est, selon la formule des
ondes de translation allongées

\[ v = \sqrt{gH} \left( 1 - \frac{\xi}{4H} \right) \frac{\xi}{H + \xi} \]

Cette formule ne présente qu'un intérêt théorique, vu qu'elle
néglige l'influence des frottements, qui limite la zone d'action du
flux et du reflux et réduit l'énergie de l'onde, de même qu'elle empêche la constance de \( H \). Mais il est présent dans des cas, tels que pour
le canal de Suez, où des bancs de grande étendue, limitent théori-
quement l'action de la marée (lacs Amers). Un mouvement ondu-
laire s'establit entre la mer et les basins dans l'étendue du canal.
Le mouvement est très complexe par suite des frottements et des varia-
tions de la profondeur, qui modifient la forme de l'onde et la célè-
sité. Elle se augmente lorsque la profondeur diminue, par suite de l'inertie. Les états de courant qui, théoriquement, devraient se
produire à mi-marée, se rapprochent des hauts et basse marées.

L'interprétation des faits suivants des bases théoriques ne peut se
faire que d'après de longues observations.

Supposons le niveau \( H \) du lacs constant. Au bout d'un cer-
tain temps, un état de régime s'établit et le volume total d'eau
pénétrant dans le canal pendant une période est nul. Donc

\[ \int_0^T (H + \xi) V \, dt = 0 \quad \text{et} \quad \int_0^T \left( \xi + \frac{3\xi^2}{4H^2} \right) \, dt = 0 \]

\[ \int_0^T \left\{ H \left( 1 + \alpha \sin \frac{\pi t}{T} \right) - H + \frac{3\xi^2}{4H^2} \left[ H \left( 1 + \alpha \sin \frac{\pi t}{T} \right) - H \right]^2 \right\} \, dt = 0 \]
Le niveau moyen des eaux serait donc légèrement supérieur à celui de la mer. On conçoit que les ports d'énergie par frottement peuvent atteindre sinon masquer ce phénomène, dont l'observation n'a pas fourni la preuve.

du niveau

8 Bassins à marée. Le problème des fluctuations de l'eau dans un bassin communiquant avec une mer à marée est un problème très complexe également, mais surtout au point de vue mathématique, les conditions physiques étant relativement simples. Le problème présente de l'intérêt au point de vue des ports, du régime des étangs côtiers et de la répétition de l'énergie des marées.

Si \( S \) est la surface au niveau \( z \) d'un bassin communiquant par un vérificé moyen constant \( \Omega \) avec la mer, si \( S \) est le niveau correspondant de la mer, on a

\[
q = M \Omega \sqrt{2g(S-z)} \quad \text{au remplissage}
\]

Mais \( q dt = S dz \). Donc

\[
\frac{S dz}{dt} = M \Omega \sqrt{2g(S-z)}
\]

La loi de variation de \( S \) est fonction du temps et de marée. Même pour la loi sinusoidale simple, l'équation n'est pas intégrable. Des solutions approximatives, bien que très complexes, ont montré que l'amplitude de l'oscillation dans le bassin est inférieure à celle de la marée extrême, d'autant plus que le vérificé est relativement plus petit. Le régime qui s'établit dépend des conditions initiales. Le moyen le plus pratique est de procéder par l'équation aux différences finies, d'après les courbes de marée et d'après le régime de manœuvre des vérificés s'il s'agit d'une station marémotrice. L'étude devient alors analogue à celle des réservoirs.

Lorsqu'un bassin en un étang communiquant librement avec la mer à marée par un goulot, il s'y établit un régime périodique. Supposons que la marée soit

\[
\delta = h \sin \omega t \; \text{dans l'étang, elle sera représenter par}
\]

\[
\delta = A \sin (\alpha t - \phi) \quad \text{en admettant les mêmes niveaux moyens. On a donc}
\]

\[
\frac{d\delta}{dt} = \delta A \cos (\alpha t - \phi)
\]
Donc \( S^2 \alpha^2 A^2 \cos^2 (\alpha t - \varphi) = M^2 \Omega^2 2g [h \sin \alpha t - A \sin (\alpha t - \varphi)] \)

équation qui sait la valeur de \( \alpha \).

Posons \( \frac{2g M^2 \Omega^2}{S^2 \alpha^2} = K \)

Pour \( t = 0 \), \( A \cos \varphi = K \sin \varphi \) ou \( A \sin \varphi + K \sin \varphi - A = 0 \)

Pour \( \alpha t - \varphi = 0 \), \( A^2 = K h \sin \varphi \).

La première équation montre que \( 0 < \sin \varphi < 1 \); donc le mouvement dans le bassin est en retard par celui de la mer; les maxima et minima ont lieu entre la haute mer et mi-marée descendante, et entre la basse mer et mi-marée montante. A ces moments \( \frac{d \xi}{dt} = 0 \), donc \( q = 0 \) et \( \xi = \frac{\pi}{2} \).

Donc les niveaux de la mer et du bassin correspondent au maximum de plein et au niveau minimum dans le bassin; les courants dans le goulot se renversent à ces époques, en retard sur la haute et la basse mer.

Il en résulte

\[ \alpha t - \varphi = \frac{\pi}{2} \quad \text{et} \quad \xi = h \cos \varphi. \]

\( q \) sera d'autant plus petit que \( K \) sera plus grand, c'est-à-dire \( \frac{M \Omega}{5} \).

En outre, \( A < h \), c. à. d. que l'amplitude de la marée dans le bassin est moindre qu'au large, d'autant plus que \( K \) est plus petit.

Les quelques exemples simples montrent l'imprécision des phénomènes provenant de la mer et faisaient les phénomènes observés dans les rivières à marée.
La mer. L'eau marine contient en moyenne 3,5 % de substances salines dans les océans. Dans les mers fermées, la salinité dépend de l'évaporation. Dans la Baltique, elle varie de 1,3 à 0,5 % du Grand Bé et au Golfe de Gaspé ; dans la Méditerranée, elle est en moyenne de 3,80 % ; dans la Mer Rouge, jusqu'à 4 % et 11,7 % dans la Mer Noire.

La composition moyenne de la salure est :

NaCl  MgCl₂  SO₄⁺ Mg  SO₄⁺ Ca  SO₄⁺ K⁺  Na⁺ Br⁻  CO₃⁺ Ca
71,8  70,9  4,7  3,6  2,5  0,24  0,34 %.

L'eau marine distille le calcaire des eaux fluviales. Le poids spécifique dépend de la salure s (en %) et de la température.

À 15,6 °C, s = 1 + 0,007 + 0,6. Le poids spécifique moyen est donc 1,026, dans la Baltique 1,007.

La température superficielle de la mer varie peu dans un jour et même en une année. L'action du soleil se déplace jusqu'à 160 m de profondeur et la température des eaux inférieures dépend surtout des courants. La température décroît d'abord rapidement à partir de la surface, puis plus lentement. La température moyenne de l'Océan est d'environ 4 °C et 1,8 °C à 4000 m de profondeur. L'eau marine à salure normale se congèle à −2,2 °C ; dans la Baltique à −1 °C.

Des courants généraux prennent naissance dans les Océans, provenant de différences de densité provoquées par l'action solaire, et des effets de la rotation terrestre. Ainsi le Gulf Stream se produit dans les régions équatoriales de l'Atlantique par ascension des eaux profondes, plus légères que les eaux de surface dont l'évaporation intense augmente la salure. Ce courant est dévié vers l'Ouest par la rotation de la Terre. Il bifurque sur les côtes américaines ; sa branche nord se dirige vers le pôle et est divisée vers le nord - est par la rotation terrestre. Au Labrador, la vitesse du courant atteint 4 m/s, sa largeur est de 60 km et sa température est de 15 °C supérieure à celle des eaux ambiantes. Le Gulf Stream s'incurve et redescend le long des côtes du Spitzberg et de
la Norvège vers l'Europe du Nord - Ouest, dont il advient le climat. On mène de ce circuit se trouve une mer immobile, où les vagues s'accumulent ; elle est appelée pour cette raison Mer des Sargasses.

Des courants analogues existent dans l'Atlantique Sud, dans le Pacifique Sud. On les voit figurés sur les cartes marines.

2° Régime des vents. L'observation et la connaissance du régime des vents sont particulièrement nécessaires, surtout près des côtes et des ports, non seulement à cause des effets directs des vents de tempête sur les navires et les ouvrages, mais surtout à cause de leurs effets sur les eaux.

Le sont en effet les vents qui donnent naissance aux vagues et aux courants locaux qui, avec les marées déterminent le régime des côtes. Le sont les vents violents qui donnent naissance aux coups de mer. Les vents se caractérisent par la direction et l'intensité. La direction se note par le point cardinal d'où souffle le vent. Elle s'exprime en divisions de la rose des vents (32° de circonférence = 11° 15' = un quart) rapportée aux points cardinaux vrais, c. à. d. pourvue de la déclinaison magnétique. L'intensité du vent s'exprime par sa vitesse en m/sec. On adopte le parfois l'échelle empirique de Beaufort en degrés de 0 à 12.

La vitesse du vent se calcule par la formule $V = K v^2$ Kg/m$^2$ (Kg/m, sec)

D'après Eiffel, $K = 0,08$ pour des surfaces normales au vent,

- 0,09 " treillis,
- 0,06 " câbles ou fils,
- 0,05 " cylindres (tours de phare)

La vitesse ne dépasse guère 40 à 50 m/sec., soit des pressions de 125 à 200 Kg/m.$^2$.

On adopte souvent pour les surfaces normales au vent la valeur de 275 Kg/m.$^2$. Cependant lors du renversement du vent sur la Bretagne, on avait mesuré à l'Observatoire de Barstla 400 Kg/m.$^2$.

---

Echelle de Beaufort

<table>
<thead>
<tr>
<th>V</th>
<th>0</th>
<th>1,5</th>
<th>2,5</th>
<th>3,5</th>
<th>4,5</th>
<th>5,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 m/sec</td>
<td>13 m/sec</td>
<td>17,5 m/sec</td>
<td>24,5 m/sec</td>
<td>38,5 m/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1,5</td>
<td>2,5</td>
<td>3,5</td>
<td>4,5</td>
<td>5,5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>17,5</td>
<td>24,5</td>
<td>38,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11,5</td>
<td>13,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>23</td>
<td>29,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>33,5</td>
<td>40,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

et au-delà.
La direction du vent s'observe par les pinasses ; l'intensité, au moyen des anémomètres.

Le régime observé des vents se représente en portant sur un diagramme polaire, orienté suivant la rose des vents, le nombre de jours pendant lesquels le vent souffle suivant chaque direction, d'après une année d'observations.

On joint les points extérieurs par une courbe, dont l'allure fait connaître les vents régnants ou dominants. Pour connaître leur répartition suivant les saisons, on porte successivement sur chaque vecteur, à partir du centre, les nombres de jours de vent correspondant au printemps, à l'été, à l'automne et à l'hiver. On joint les points de division d'une manière continue, par des courbes.

On huit des nombres de jours, on peut porter suivant les vecteurs les produits des nombres de jours par les vitesses moyennes résultant des observations (produits NV) ou par les produits NV², représentatifs des pressions.

On déduit parfois de ces diagrammes ce qu'on appelle les résultantes, de la manière suivante. On porte bout à bout des vecteurs dirigés suivant les huit directions principales de la rose des vents et proportionnels au nombre de jours d'action de ces vents. On obtient un polygone ouvert dont le côté de fermeture est la résultante. On pose de même pour les produits des nombres de jours par les vitesses moyennes V et pour les produits NV². Les figures n'ont d'autre signification qu'un mode de représentation conventionnel mais suggestif.

3. Les vagues : L'effet le plus apparent de l'action des vents sur la surface de la mer est la formation de vagues, c. à d. d'ondulations périodiques se déplaçant dans le même sens que le vent. La partie qui reçoit le vent a une inclinaison plus faible que la partie sous le vent, ce qui correspond à une marche plus rapide de la tête que du pied de la vague.
à cause des résistances des couches sous-jacentes. Ainsi que nous l'avons vu dans l'étude de la hauteur, les oscillations s'éteignent rapidement en profondeur. Les obstacles à la propagation des vagues créent une certaine zone de calme sous le vent. On tire parti de ce fait pour les manœuvres des canots des navires, pour le bolingage, etc.

Quand la profondeur d'eau diminue, les vagues augmentent de hauteur (voir théorie des modes d'oscillation), devenant instables et différent, c'est-à-dire se brisent en écumant, généralement vers l'avant. Cela se produit non seulement sur les plages en pente douce du rivage, mais sur les hauts-fonds du large, dont les zones écumantes sont appelées brisants. Par destruction partielle de l'énergie des vagues, ils protègent les côtes en arrière. Les zones de mer peu profonde, telles que le Golfe de Gascogne, sont généralement dures ; la mer y montante fréquemment (déferlement des vagues)

vent → crête

Niveau d'équilibre

Hauter

Longueur

creux

Il a été constaté que les vagues peuvent briser même par assez grande profondeur au droit d'un relèvement brusque du fond. Les profondeurs de déferlement sont mal établies ; elles dépendent du vent et des courants. Les vents contraires retardent le déferlement \( \frac{H}{k} = 0,72 \); les vents du large le favorisent \( \frac{H}{k} = 1,25 \). Dans les mêmes conditions, plage en pente de 1%, par temps calme \( \frac{H}{k} = 1 \). Une pente plus forte du fond favorise le déferlement \( \frac{H}{k} = 2 \). Les vents contraires, notamment le reflet des vagues, favorisent le déferlement (rosae) \( \frac{H}{k} \approx 0,72 \) à 2,35 selon les observations et d'après les circonstances exposées. Les courants inverses à la direction de propagation des vagues peuvent aussi les arrêter en provoquant déferler ; c'est ce qui se produit à l'embouchure d'un très grand fleuve tel que le Nil, lors d'une crue. Le filage à l'huile, c'est-à-dire le répandage d'une couche très mince d'huile (1/100.000 de \( \text{m}^3 \)) a pour effet d'empêcher le déferlement.
placée par de longues ondulations calmes. Le procédé est utile, non seulement pour les navires, mais pour les travaux. On y immerge à la surface de l'eau un sac rempli d'œufs saturée d'huile de poisson.

L'influence de la vitesse du vent sur la fréquence des vagues est mal définie. D'après M. Antoine, \( W = 6,9 \sqrt{V} \) m/sec

Les vagues ont une vitesse souvent plus grande que celle du vent, le rapport \( \frac{V}{W} \) varie en moyenne de 0,5 à 1,2. Par contre, la vitesse propre des particules superficielles des vagues est bien inférieure à celle du vent. Lorsque le vent a fini de souffler, l'agitation de la surface de l'eau se maintient par inertié, mais se régularise; c'est la houle. Mais la propagation des vagues à une vitesse supérieure à celle du vent peut aussi, par suite de l'amorciement très faible, provoquer la houle dans la direction où souffle le vent, quelques heures avant que le vent n'arrive au lieu considéré; c'est ce qui explique que la houle précède souvent et annonce la tempête.

Nous avons donné, à propos de la théorie de la houle, des indications sur les caractéristiques moyennes et extrêmes des houles. Dans les océans, on trouve des vagues de 12, 14 et même 18 m. d'amplitude, au large et près des côtes. Dans la Manche et la Méditerranée, ainsi que dans le Mer du Nord le maximum est de 4 à 5,50 m.; dans le Golfe de Gascogne, 6 à 7 m.; dans la Baltique, 3 m.

Nous avons vu que dans les baies, les ondulations ont une tendance à s'accentuer vers le fond. On a voulu faire dériver ce phénomène de l'étude du champ d'action du vent.

M. Thévenin a donné les formules

\[ 2h = 0,45 \sqrt{f} \quad \text{si} \quad f < 39; \]

\[ 2h = 0,45 \sqrt{f} + (0,75 - 0,3 \sqrt{f}) \quad \text{si} \quad f > 39, \]

\( f \) étant la longueur du domaine d'action du vent en miles nautiques (1852 m), \( 2h \) étant en m. la hauteur totale des vagues.

Comme formule donnant la hauteur des vagues en fonction de la vitesse du vent, en pleine mer, on peut employer:

\( 2h = \frac{V}{4} \), ou \( 2h = \frac{3}{4} \sqrt{V^2} \) (laure vain et des Bois) \( \text{si} \quad V < 20 \), ou \( 3 \text{ à } 7 \text{ m/sec}.\)

En dessous, on emploie \( 2h = \frac{V}{3} \).

Nous avons vu, à propos de l'étude des ondes de mer, de quelle manière une diminution progressive de profondeur agit sur la hauteur des ondes. On peut s'orienter d'après ces données pour les vagues. Quant à la
s'effectue, elle déraille en même temps, s'il n'y a pas de rétrécissement. Sur une plage en pente inférieure à 1/100, si \( H \leq \frac{2T}{2} \), on a

\[
V_1 = 0,9 \sqrt{\frac{H}{H}}
\]

d'après M. Baillard.

Les raz de marée sont des vagues énormes et brusques qui produisent généralement des effets violents et dévastateurs. Ils peuvent résulter de cyclones, mais aussi de séismes et agir alors à de très grandes distances de l'épicentre.

![Diagram of a wave pattern](image)

Lombée d'un raz de marée à Flamanville en 1725 (d'après M. Bénédict)

Les courants locaux résultent, ainsi que nous l'avons vu, des sudomarées, mais aussi de l'action prolongée du vent. On les trouve dans l'Océan Indien, causées par les monsons dans le Pacifique, dans la Baltique, où la vitesse des courants littoraux atteint jusqu'à deux nœuds. La vitesse est souvent plus grande près des côtes, où se produisent les courants littoraux, charriant des sables. Les irrégularités du rivage, naturelles ou artificielles (môle, promontoire, etc.) produisent des tourbillons et des contre-courants entraînant généralement une accélération dans les passages rétrécis. Il en est de même si le courant est divisé par un île ; il se produit des remous en avant et...
entre l'île et la côte, surtout si le fond se relève, il se forme des courants très rapides et très dangereux appelés raz en termes de marine française (raz Blanchard entre l'île d'Aurigny et le Cotentin, fonds passant de 40 à 10 m, vitesse de 10 à 12 nœuds. Il peut se produire des anomalies telles que des courants inverses superposés, comme nous l'avons vu à propos des marées.

Dans le Détrit de Gibraltar, un courant supérieur entre dans la Méditerranée, un courant inférieur en sort. Contrairement à la règle, le courant est plus rapide dans le fond qu'à la surface dans la baie de la Somme.

Ce phénomène peut correspondre à ce qu'on appelle le flot ou courant de fond. Lorsque sous l'action prolongée des rafales, une masse marine est mise en mouvement, d'oscillation générale, les particules dérivent des orbites qui peuvent être circulaires en surface, mais deviennent des ellipses de plus en plus plates en profondeur. Sur le fond ces trajectoires deviennent des droites. Donc les particules se déplacent horizontalement sur le fond, d'une manière périodique, mais en même temps le mouvement se propage avec une célérité générale lorsque toute la masse liquide est en mouvement. Si le fond reste horizontal et sur-tant s'il descend, la force vive s'amortit. Donc les fisses arrivent en accélérant le flot de fond. Si le fond se relève soudainement, l'énergie s'accumule dans une masse toujours moindre et le flot peut devenir rapide, d'autant plus que l'agitation vient de plus loin, c. à. d. que la mer est plus longue. Au vaissage des côtes, le relèvement du fond peut provoquer l'exhaussement de l'onde qui vient déformer sous forme de查明 de fond, souvent violente et inattendue, la surface étant calme. Mais si un haut fond précède la rade, c'est condition qu'elle soit assez étendue et les frictions aidants, l'énergie du flot de fond n'y disparaîtra comme dans une fosse, sauf pour le rendre inoffensif. Donc il est avantageux d'avoir un haut fond en avant d'une rade ouverte aux fortes tempêtes. Ceci concorde avec une remarque analogue au sujet de la propagation des lames de surface.

Pour les fonds horizontaux, les vitesses des fots de fond peuvent se calculer sensiblement par les formules des courants de marée ; il n'en est pas de même si le fond est en pente. La question est très spéciale et peu étudiée

(voir A.P.C. 1881, 1er Semestre, page 587)
5 Action des côtes.
Nous avons exposé dans l'étude des marées les perturbations que les côtes apportent à ces mouvements d'oscillation générale de la mer et à leurs effets. Nous avons esquisé ci-dessus les effets des côtes sur les courants, notamment la formation de courants littoraux dirigés par les côtes.

Les rivages exercent des actions analogues sur les vagues et houles. Sur les fonds en pente douce, les vagues déflectent ; sur les parois abruptes ou très inclinées (falaises, perrées, murs), elles se réfléchissent en majeure partie et il se forme un clapotis, généralement beaucoup plus complexe que le phénomène que nous avons étudié théoriquement. Il est néanmoins caractérisé par une amplitude, une énergie accrue et une certaine instabilité des vagues aux faibles profondeurs relatives, caractérisée par des projections souvent élevées. Lorsque le phénomène devient aussi très turbulent, il prend le nom de ressac ; il peut provoquer des appositions très intenses en avant du pied de l'obstacle.

Le gauprage s'observe rarement sauf si la côte oblique, par rapport à la propagation des vagues est très abrupte.

Toutefois les vagues à 45° et même à 30°, d'après des expériences, refléchissent les vagues à condition d'être assez élevées pour ne pas être submergées. Les vagues peuvent ainsi se propager par réflexion à l'intérieur des ports, d'une manière très gênante comme à Cherbourg, où l'on a dû construire dans l'avant du port un épi interceptant les vagues réfléchies. (À la place d'un écueil naturel qui réalisait auparavant cet effet.)
Les plages en pente dente abordées obliquement par les vagues retardent celles-ci au fur et à mesure qu’elles abordent des fonds plus élevés et produisent ainsi une rupture de conversion des vagues qui vient se rétablir sur le rivage. On observe une conversion analogique autour des murs des jetées et autour des îles. Les vagues peuvent ainsi acquérir une direction presque opposée à celle du vent (Norder explaining Nor).

Dans les baies en forme d’entomme assez resserré, les lames se recouvrent dans leur marche, mais en s’élevant de plus en plus et en devenant parfois tumultueuses. Si la baie est largement évasée, les lames s’incrustent en plan, étant retardées sur les bords. Cette courbure s’accentue vers le fond de la baie si les lames pénètrent par un goulot dans un espace s’évasant rapidement (étang naturel ou port à jetées convergentes), leur longueur augmente, mais leur amplitude s’amortit rapidement. Dans le cas du canal étroit, il semble que la hauteur des vagues croîsse en raison inverse de la vitesse carrée de la largeur et de la profondeur.

Dans le cas d’un bassin à goulot, selon M. Gaillard

\[ h' = h \left[ \sqrt{\frac{h}{h'}} - 0.027 \sqrt{D \left( 1 + \sqrt{\frac{h}{h'}} \right)} \right] \text{ en m} \]

\( h \) étant la hauteur des vagues à l’entrée du port de largeur 6, \( h' \) son amplitude à la largeur D et \( D \) la distance de l’entrée du port où la largeur est B. Cette formule est assez précise.

Lorsque les vagues se déplacent parallèlement à une côte, elles se retournent généralement au voisinage immédiat de celle-ci, à cause des frictions et de la réduction de profondeur.

Il est utile, pour les ouvrages de connaître le niveau maximum auquel peuvent s’élever les vagues au-dessus de l’eau calme. Pour la hauteur en profondeur indéfinie et des vagues d’amplitude 2H, c’est...
\[ a = h + \sqrt{\frac{1}{2} \frac{h^2}{\lambda}} = h + 1.5708 \frac{h^2}{\lambda} \quad (\lambda = \text{longueur d'onde}) \]

Mais au voisinage des côtes, en eau peu profonde, d'après les observations de M. Baillard, \( a \approx 0.637 \) à 0.89 \( h \), avec une moyenne de 0.75 \( h \) environ.

6. Action des mers sur les côtes. Les mers remaniennent incessamment les côtes par l'erosion et les déports. Les matières solides déplacées au voisinage des côtes proviennent surtout de cette action, car les flèches ne peuvent plus déverser dans le mer que des sables et des vases en général.

Les falaises sont incessamment rongées au pied par l'action des vagues, les roches très dures : gneiss, grampites, basaltes résistent assez bien. Les roches feldspathiques et calcaires s'altèrent par les actions atmosphériques, particulièrement intenses sur les côtes : pluies, vents, embruns, vagues, etc., cette action constante et éventuellement la dissolution contribuent à l'usure des côtes, qui se produit par éboulisements locaux constants. Les vases sont alors remaniés, broyés, partiellement dissous et les parties dures forment les galets roulés, tels que ceuxformant les plages françaises de la Manche. Le broyage des galets et l'affermissement des roches siliceuses donne les sables, tels que ceux des plages de la mer du Nord. Les sables peuvent contenir de nombreux rapports fluviaux, surtout s'ils sont très fins. Le dernier étape de broyage est celui des vases impalpables, constamment en suspension dans les endroits agités par les courants et les vagues, et qui ne se déposent que dans les endroits absolument calmes.

Les courants marins chassent des vases et des sables ; il en est de même du flot de fond. Le long des côtes inclinées par rapport aux vents dominants, il se forment des courants littoraux qui entraînent souvent de grandes quantités de matières solides. Telleci se déposent dans les endroits calmes : riafracturaires, baie, etc., et forment ce qu'on appelle des courants littoraux, qui se reflètent aux barres, des étangues et peuvent complètement isoler de la mer des étangs ou des lagunes (exemples: étangs d'Arcachon, de Berre, "halles" de la Baïolle, etc... Voir cours d'Hydraulique fluviale).
Les vagues déplacent non seulement des sables, mais aussi des galets, parfois de dimensions très considérables, lors des tempêtes. Lorsque l'on considère une côte normale à la direction de propagation des vagues et formée de débris accumulés par elles, on y reconnaît un profil d'équilibre dépendant de la nature des matériaux et de l'amplitude de la marée. Entre les laisses de haute et de basse mer, il existe une plage ou grève qui porte le nom d'estran. Cette partie présente généralement la pente la plus faible, tout au moins dans sa zone inférieure, 5 à 2%, même moins, selon la finesse du sable.

\[ \begin{align*}
&\text{HMVE} \\
&20\text{ à }30\% \text{ gros galets} \\
&BMVE \\
&15\% \text{ gravier} \\
&10\% \text{ gravillon et sable} \\
&\text{sables} \\
&pente \ 2\text{ à }5\% \\
&(\text{même moins}) \\
&\text{plage de galets à courbes successifs}
\end{align*} \]

La pente augmente vers la laisse de haute mer, où l'action des vagues est la plus forte et où l'on trouve les plus gros matériaux, les esquilles, etc. De 10% pour le gravier et le sable, on passe à 15% pour le gravier et jusqu'à 20 à 30% pour les gros galets ; au-delà, on peut trouver les falaises abruptes d'argile, de shiste, de calcaire, de grès ou de roche. À la limite supérieure de l'estran, sur la plage de galets, on peut trouver des courbes successifs correspondant aux laisses de tempêtes de diverses amplitudes.

Si les vagues se propagent obliquement par rapport à la côte, les galets projetés suivant une oblique sur l'estran incliné, s'alignent, du fait de l'impulsion et de la poussée, la position d'équilibre, et, lors du retrait de la vague, ils redescendent suivant une ligne de plus grande pente. Le remue peut d'ailleurs favoriser la descente, le galet est ensuite repoussé sur la pente par les vagues suivantes et le processus se renouvelle. Il en résulte dans l'ensemble un déplacement des galets le long de la côte, dans le sens des vents régnants. Les galets ne peuvent guère former des cordons aussi prononcés que les sables ; ils s'accumulent contre
les obstacles à l'eau marche : fréacteurs, jetées, etc. ou dans les
dépressions : aussi etc.

cheminement littoral du galets

profil du
rivage

direction des vagues
(vents rçnants)

laïne du niveau
d'équilibre

littoral

formation des lagunes

arrêt des cordons
littoraux

barre

dunes

1/8 à 1/4

1/1

les galets, comme les sables
lorsqu'ils sont arrêtés par
un obstacle saillant, s'accul
mulent du côté de la propagation suivant des limites concaves
vers la mer, se raccordant tangentiellement à la rive vers l'ar
ment. Le dépot s'élargit progressivement, la concavité se
prononce et l'élément terminal de courbe devient finalement
normal à la propagation des vagues. Un équilibre peut alors
être réalisé si l'obstacle (épi) est parallèle à la direction des va
gues, de manière que le dépôt peut s'encaisser sans déborde

sur l'obstacle. Si, l'extrémité de l'obstacle étant atteinte, à
une certaine époque, l'action des vagues y deviendra suffisante
pour déplacer les galets sur-sable. Quant aux sables, ils seront
toujours entraînés dès que l'extrémité de l'obstacle sera atteinte.
Il faut noter d'ailleurs qu'au cours de leur déplacement, les
galets sont soumis à un bruyage inégal qui les réduit petit à
petit à l'état de sable.

Des stériles tendent à se former derrière les obstacles, à la
propagation des vagues et courants ; il s'en même simples
bancs de sable suffisants pour faire défiler. Ainsi des îles
tendent petit à petit à se réunir à la rivière et à former des
presqu'îles, au moins à marée basse, à moins qu'un cour-
rant littoral assez vif ne maintienne les profondeurs entre l'
île et la rivière. Il s'en forme aussi à la rencontre de deux
courants : par exemple dans l'estuaire de la Seine (voir cours
d'hydraulique fluviale, chapitre des estuaires), devant les
estuaires des mers sans marées (barrages). Les bancs peuvent
aussi se former dans les estuaires parallèlement aux côtes du fait
de la rencontre des vagues directes et des vagues refoulées. Les
dépôts de sable accumulé sur l'estran peuvent être repris par
leurs vents du large et transportés vers l'intérieur des lacs
(transport sédiment). Ils sont déplacés au ras du sol et s'arrê-
tent en avant et en arrière des obstacles, suivant un profil
assez analogue à celui des dunes et des aménagements de
neige. La pente avant est de 1/3 à 1/4 ; celle d'aval,
plus abrupte, 1/2 et plus. Les dunes peuvent constituer des
accumulations inconnes en Basse, jusqu'à 100 m. de haute-
ueur et 7 km. de largeur. On favorise la formation et la fixa-
tion des dunes par des plantations appropriées : oyats, sa-
 marias, sapins.

7 Action sur les fonds. L'action des courants locaux
et des vagues sur les fonds est aussi importante, surtout au
point de vue des accès des ports et des profondeurs dans les ra-
ces ouvertes. Les actions qui interviennent sont les courants
de marées, de vitesse constante sur toute la hauteur, les
courants locaux, le frottement du fond et l'action propre des
vagues.

L'observation montre que les matériaux du fond sont te-
mus en suspension et déplacés même aux grandes profondeurs;
les vagues très violentes peuvent même les immerger en sur-
face par des fonds de plus de 20 m. Cela se remarque d'aille-
urs au temps de l'eau lors des tempêtes, même par des
fonds de l'ordre précité, le charriage est donc très important sur
les fonds et donne lieu à la formation de bancs (dépôts) et de chenaux
(affinements) les mouvements sont évidemment conditionnés
par les circonstances locales et doivent être déterminés par les ob-
servations hydrographiques. Le but est non seulement de connaître
les profondeurs, mais aussi de rechercher les dispositions
sous marins et aux profondeurs pour les rendre effica-
ces. Or, il sera évidemment avantageux de drager dans
des endroits où un courant favorable existe ou peut se proprie-
tsé et de diriger les dépôts en un endroit où les courants l'em
porteront vers le large ou tout au moins le laisseront sensiblement
en place mais ne le reconduiront pas à son origine.

_Rélevé hydrographique._ Nous nous imagineons pas spécia-
lement ces relevés au point de vue de la navigation, bien que
ce soit leur office essentiel. Si souvient alors à établir les cartes
marines, en moyen desquelles les navigateurs détermineront leur
route, surtout au voisinage des côtes, pour éviter les hauts
fonds, les écueils et les brisants. Elles donneront de courbes d'é-
gales profondeurs, dites courbes bathymétriques, rapportées à
un zéro conventionnel, généralement un niveau caractéristique
de base mou.

Des relevés spéciaux sont nécessaires en vue des travaux
importants. On les exécute au moyen de sondage, dans des
embarcations à moteur, au sonde par points; la position de
each point est fixée en faisant du bateau des visées au
sextant sur trois mât - repères plantés sur la rive.

Pour les fonds de moins de quatre mètres, on se sert de
la tige de sondage graduée à platéau d'embase. On prend
la lecture moyenne entre le bossu et le sommet des vagues.
De 4 à 20 m., on emploie le plomb à sondeur. C'est un cône
allongé, de plomb, de 7 à 8 kg., attaché à une cordette
de chaume ou mieux à un fil métallique, assez souple,
par le degré d'humidité et de tension fait varier la
graduation de la cordette. Le fil est gradué en mé-
tre; les sons multiples sont estimés. Pour les grandes
profondeurs, on emploie la _sonde de Brooks_, composée d'un
bout de caoutchouc soufflant sur une tige et accroche par deux
cordettes à deux leviers articulés au sommet de la tige. Les
leviers reçoivent l'attache du câble de suspension, dont
la tension les relie de telle sorte que le boulé reste accroché. Lorsque la tige touche le fond, la tension du câble mollit et le boulé se déroche. Le mouvement du câble indique que le fond est atteint. On mesure la longueur du câble déroulé. On reconnaît la nature du fond en y faisant trainer un petit godet terminé par une poche en toile. On peut effectuer des prises d'eau à divers niveaux en moyen de récipients à obturation commandée à la surface. Les vitesses et directions de courants se déterminent par des neopilins à tiges suspendues ou à câbles; on peut aussi, en surface, employer des flotteurs.

Chapitre II
Ouvrages de protection des côtes - Diges :

1. Protection des côtes
Les raisons et les buts des ouvrages de protection des côtes résultent à suffisance du chapitre précédent. La partie non protégée de la côte belge près de la frontière néerlandaise reculée de 5 m. par an (plage de sable) les falaises du cap de la Hève reculaient de 2 m. par an avant les travaux de défense. On observe des avances importantes de la mer sur les côtes anglaises du Yorkshire, dans la mer Noire, etc.

Les travaux dépendent de la nature de la plage, de la profondeur de la mer et de la violence des vagues. (l'attaque des côtes est moindre aux grandes profondeurs, ce qui montre l'action importante du fond de mer) ainsi que de l'importance de l'hinterland à protéger. Les dépenses
importantes d'établissement et d'entretien des ouvrages ne se justifient
que s'il s'agit de protéger des terrains exploités et de rapport : cultures,
localités et stations balnéaires.

On emploie les épis, ouvrages normaux aux côtes, et les ouvrages
longitudinaux : murs, digues ou parois.

Les épis se s'implantent que dans les plages de sable et de galets
le long desquelles existent des courants littoraux. Ils sont normaux aux
côtes ou légèrement obliques vers l'amont du courant. Ils sont plongeants
de relief, presque verticaux à la base des plus basses marées, ils s'étendent vers
les côtes jusqu'au-delà de la base des plus hautes marées et une lon-
gleur suffisante pour bien s'ancrez dans la côte et ne pouvoir être pris
à revers par les lames de tempête. L'ouvrage est légèrement supérieur à
celui de la plage et leur tête est arrêtée peu au-dessus du niveau des hautes
mâres d'équinoxe, lorsque celles-ci peuvent se développer librement sur l'estran.
Si un ouvrage longitudinal retient les caux, les épis viennent s'arrêter à
son pied, en liaison avec lui. L'écartement des épis varie de 2 à 1,5
fois leur longueur. Les alluvions s'accumulent entre eux ; il en résulte
le renforcement de l'estran.

Sur les plages de sable, les épis se font de préférence en fascinages
ou clayonnages, fixés dans le sol par des forts piquets de chêne ou de hé-
tre, de 1,20 à 1,80 m. de longueur, espacés de 0,50 et tondus. On leur
donne un profil en dos d'âne avec des butées latérales en pente très
douce. On les revêt superficiellement de pierres de listage, de forme
régulière et posées à la main, de dimensions assez grandes (0,25 à
0,50 d'épaisseur, et plus) en roche dure et inaltérable, ou en béton ri-
ché mortel. L'origine de l'épi affecte souvent la forme d'un musoir
avancé, peu saillant, mais assez large, confectionné de préférence en
plaque de fascinage listés de gros morceaux (400 à 600 Kgs).

On peut édifier des épis en charpente, dans les plages de sable
et surtout dans les plages de galets, du type le plus simple comportant
ecluses verticales de revêtement témoin entre deux rangées de pierre
moisies ou souillées dans des rainures pratiquées dans les pieux en filé
simple. Les éléments sont en bois ou de préférence en béton mortel d'avance. Lorsque la paroi est assez haute, on consolide parfois la
rangée de pieux principale par des poneys et tirants sous le vent,
prenant appui sur les têtes d'une rangée parallèle de pieux ; les pieux sont distants de 1,25 à 1,75 m. ; les éléctions ont 8 cm. d'épais-
sseur. On peut substituer aux éléctions des bottes de fascinage ou
des sacs en sacs listés ; on peut édifier une double paroi, éventuellement
à claire-voie et dont l'intervalle est rempli de pieux. Sur les plages
de galets, on peut aussi organiser de simples levées de gros galets. Selon le but proposé, on peut combiner les divers systèmes.
Les ouvrages longitudinaux constituent une protection plus sûre. Ils fixent artificiellement la laisse de haute mer. Selon la hauteur à laquelle le niveau moyen peut s'élève au-dessus de leur pied lors des plus hautes mers, ils peuvent être exposés à des actions plus ou moins violentes des lames, dont nous apprécions l'importance à propos de l'étude des jetées. Nous envisagerons donc ici surtout que les ouvrage establi assez loin de la laisse de basse mer.

Sur les plages de sable, la protection la plus simple est réalisée par les dunes littorales dont on peut organiser la constitution par l'établissement d'obstacles : palissades formées ou à claire-voie, haies, gabinets, bottes de branchements. Lorsqu'ils sont sous le point d'échec mousse sous le sable accumulé par le vent, ou relève le dispositif ou en estel de nouveau légèrement en arrière. On arrive ainsi à protéger et fixer la côte et à empêcher la propagation du sable vers l'intérieur. Cette méthode simple peut toutefois convenir pour la protection des agglomérations, stations balnéaires et terrains cultivés.

Sur les côtes en eau, on a recours à des véritables digues, assez larges en couronnement (généralement des promenons), établis au-dessus du sommet des plus hautes lames et protégés vers le large par des solides revêtements. Les actions des lames seront d'autant plus violentes que le talus est plus abrupt; s'autre part une pente très dente augmente la surface du talus et la largeur de l'ouvrage. Pratiquement l'inclinaison varie de 1/4 à 1/4, en moyenne 1/8 (côtes belges) à 1,3 (côtes néerlandaises). Il y a sensiblement équivalence des effets de la défense, ainsi que les observations pratiques et des essais de laboratoire du professeur Engels. Le dernier recommande aussi un type à parement courbe, avec talus de pied assez long à 1/4, suivi d'une courbe de raccordement à inclinaison finale verticale. Ce type a été adopté avec succès à Scheveninge; il exige une main-d'œuvre. Les paremients allemands à double courbure sont pratiquement abandonnés; eux à simple courbure peuvent convenir, mais la pente initiale doit être très progressive (cyclindres)

Une précaution générale, analogue à celle des pierres de sèche des cours d'eau, consiste dans la protection contre les affouillements du pied. Le pied sera toujours retenu par un pare-fouille composé d'un massif de béton protégé à l'avant par des palisplanches jointives retenus par une file de pierre solidarisée par un chevauchement. Aux riveasts menacés, on peut parfois avant du pare de grandes de pierre en quinconce, dont les tôles dépassent, et qui ont pour but de drainer l'excès des lames et d'empêcher le rossée. Ensuite, il faut protéger le terrain sous le pare ou le mur contre l'entraînement. Il faut donc établir le revêtement sur une couche de béton maigre,
ou de gravier, ou de fascinage ou de paille. Les branchements sont terminés par des piquets témoin ; ceux s'emploient surtout au pied des parets droits ou cour-
bus. La paille peut être fixé par introduction dans le sol au moyen du
plantoir. Sur l'angle, on peut stériliser directement le béton ou la maçon-
nerie au mortier, mais il faut alors stériliser un drainage.

Comme revêtement, on emploie les briques dures et les pierres dures
sou-gelées, maçonnerie au mortier de ciment - chaux ou le béton, soit en
bloc mouillé à l'avance, soit mouillé en place. Il faut alors réserver des
points pour le retrait et la dilatation. Le béton mouillé à l'avance a l'
avantage de ne pas subir à l'action de l'eau de mer avant dur-
cissement. Pour le maillage en place, le principe du système de New-
call est recommandable. Des dalles de 1,80 x 2,40 environ sont mouillées
en place entre coffrages amovibles (poutres et maûtres) Leur épaisseur
maximale est de 7,5 à 12,5 cm ; dans le système original, la surface
affecte la forme de marches d'escalier peu élevées. Les joints de 25 à
35 cm. de largeur réservé entre ces dalles sont mouillés bétonnés de façon
à former un quadrillage en béton armé ; solidarisé avec une forte
poutre de pied de 0,35 x 0,76. On réserve des joints de dilatation ; les
dalles sont armées de préférence de métal déployé. On prend des
précautions spéciales pour protéger le béton contre le diluvium par
l'eau de mer. Les résultats sont bons. Éventuellement les dalles et
poutres sont solidarisées avec des piquets ou béton armé. La puits
de Deauville, analogue au système Itali, consiste en un rideau
souple de briques de bétons percés et insérés sur des fils d'acier
souvré.

Le béton armé permet de multiples formes, inspirées de celles des
parets et murs de soutènement construits dans ces matériaux. Les contre-
forts, simbres et éperons sur terrains d'analyse peuvent jouer un rôle im-
portant. Pour la protection des talus d'angle, assez raides, ou de talus
en roche tendre, on peut établir en avant des lisses de pierres, plus ou
moins organisées et retenus par des piquets, fascinages, etc. On peut évi-
tuellement les maçonner si la protection contre l'assouplissement est rea-
lisable. Leur but est de briser les lames avant qu'elles n'atteignent le
talus et de retenir les lisses échouées. Ces lisses finissent par être l'ori-
gine d'un talus concave, que l'on peut progressivement revêtir dans
la suite.

Les falaises rocheuses peuvent être consolidées au pied par des murs
et piliers en maçonnerie.

2 Fixation des dunes. Nous avons vu comment on peut orga-
niser la formation des dunes dans un but utile de protection des côtes.
Mais il arrive que, sous l'effet du vent, le déplacement du sel
continue et se propage vers l'intérieur, en créant, comme en casco-
agne à l'intouchable de la Gironde, de grandes étendues inutiles et en
menaçant même des localités. Il faut prendre des mesures de protection
contre les déplacements calamiteux des dunes en précédant à leur fixation
par des sapins, des tamaris ou des oyats. Les réincult aux ont été employés avec
succès en France; les oyats en Belgique. L'oyat en roche de sable
(Ammophila arenaria) a des racines de 1 à 3 m. de profondeur en
moyenne, mais atteignent jusqu'à 8 et 10 m. Les plantations se font par
touffes en quinconce, espacées de 30 m. Les plants se reproduisent par
semis sous l'action du vent et par les racines. La végétation se fait grâ-
ce à l'eau imbibant le sable, par précipitation et condensation mo-
mente. Les jeunes plantes, surtout de sapins, doivent être protégées
contre l'enfouissement par une couverture de branchages. Les arbres
adultes forment non seulement la dune mais protégent l'hinterland
contre l'enroisissement du sable.

3. Digue - On appelle digues des levés protégeant de l'invasion
de la mer ou de la mer de terrains bas qui seraient sinon
submergés d'une manière permanente ou intermittente. Une grande
partie du territoire néerlandais est ainsi protégée par des digues.
Actuellement des travaux sont en cours pour séparer le Zuiderei-
de la mer du Nord par une digue. Le Zuiderei deviendra ainsi
un lac intérieur, dans lequel quatre digues réuniront de grands
polders bien protégés. On a déjà construit récemment en Allemagne
une digue, dite Hindenburg, reliant à la côte l'île de Syd et
portant un double voie ferrée, destinée probablement militaire. Ces
ouvrages se caractérisent par de grandes dimensions, des difficultés d'exécution
souvent grandes et un prix élevé; à cause des grandes quantités. Ce sont des ouvrages de spécialistes, demandant des études préalables approfondies et pour lesquels des expériences bien conduites peuvent éventuellement remplacer avec avantage l'expérience, c'est-à-dire la routine. Ces ouvrages sont généralement en terre et comportent un talus très dense sur le large, éventuellement variable, de 1/4 à 1/2 et même moins. Sur la hauteur de fluctuation de marée et au-dessus,
le talus est revêtu d'un parpaing construit selon les considérations des
paragraphes précédents. Pour la digue du Zuiderei, le corps en terre
sableuse perméable de la digue est remplacé hydrauliquement, d'ab-

cièce en massif épais, de "kellens", argile glaciaire à galée qui,
après tamisage est très résistante à l'action des vagues. Le talus d'argile est revêtu de fascinages au pied et percé au dessus de cette
taille. Le couronnement du talus doit être au dessous du niveau des
plus fortes vagues de tempête; cela peut se réaliser par un parapet de
1,5 à 2 m. d'épaisseur en crire. Souvent, en arrière du parapet, on
étale une large plate-forme servant aux communications; grand'
route et double voie fortifiée sur la dique du tuidonage, double voie fortifiée sur la dique Hindenburg. Le talus intérieur est beaucoup plus incliné que l'extérieur et revêtu selon les besoins. S'il est émergé, il peut être simplement gazonné ou planté et drainé.

On peut disposer l'argile d'étanchement en moyau au sein de la dique (Hindenburg) mais ce système est moins avantageux, tant pour le principe que pour l'exécution, que le revêtement d'une partie extérieure appliqué par la pression de l'eau. Les fascinages, surtout sous forme de plateaux lisses, peuvent être d'une grande utilité pour l'assise des digues sur les fonds très vagues, aux endroits assez profonds et pour la fourniture des derniers longs. Au tuidonage, on développe l'assise d'argile à gales en ces endroits. Les difficultés d'exécution peuvent provoquer des mauvais drain d'assise, des profondeurs et surtout des courants, ceux-ci correspondant en général aux profondeurs. Au fur et à mesure que la dique s'establit, les courants se concentrent et peuvent devenir plus néfastes, bien que l'action des marées, des vents et des courants doive s'atténuer dans le bassin partiellement indiqué. La construction d'une dique doit être précédée d'une étude très attentive des fonds et des courants, ainsi que du leur régime. Pour la fourniture finale, il faut disposer de moyens surabondants et conduire le travail à l'avance après une préparation soignée ; il faut observer que l'on dispose alors de l'expérience acquise dans toutes les phases précédentes de l'exécution. Si un écoulement permanent doit être maintenu (tuidonage), on construit d'avance les ouvrages d'évacuation à l'abri des tempêtes. S'ils sont bien placés et dimensionnés, leur action peut faciliter la fourniture. Pour cela, on aura éventuellement recours à des pieux et palafittes comme auxiliaires d'exécution.

Pour sea léger ouvrage, il faut une excellente organisation du travail et des moyens puissants : digues, chalands, machines de refoulement, excavateurs, etc.

Chapitre III

Ports maritimes

1 Généralités. Les ports maritimes sont les endroits où les voies maritimes se raccordent aux voies terrestres. Leur accès doivent être également bien assurés par les deux voies. Les opérations s'effectuant dans les ports sont le chargement, le déchargement, le transbordement et l'échange des marchandises ; l'embarquement et le débarquement des passagers, le ravitaillement en combustibles, eau et vivres, l'intervention et la réparation des navires. Enfin les ports servent également d'abri en cas de tempête.
Au point de vue du trafic, on distingue les ports de commerce général, les plus grands, les ports de vitesse, pour voyageurs et les ports d'échelle, les ports de pêche, et les ports spécialisés ou particuliers, ainsi les ports de guerre. Ces distinctions influent évidemment sur les dispositions du port. Les ports de commerce général doivent surtout disposer de grands bassins, dans lesquels les marchandises peuvent éventuellement se joindre sur bateau ou altière (stock flottant), des quais étendus et bien entretenus, de grands terrains de stockage ou de vastes entrepôts, des raccordements ferroviaires, routiers et fluviaux développés. Les ports sont souvent à quelque distance dans l'intérieur des terres, sur des fleuves à marée ou des canaux maritimes, à proximité des centres ou régions commerçants de consommation et de production (Anvers, Rotterdam, Londres, Brême, Rouen, etc.)

Les ports de vitesse exigent l'accès facile des grands transports fluviaux, sans port de temps. Ils doivent donc être à la côte même et accessibles en tout temps; ils doivent avoir de grandes profondeurs et tous les accessoires importants qui exigent les grands navires à passagers, à cargos, profonds, etc. Le sont donc les ports qui exigent les travaux les plus difficiles (Le Havre, Liverpool, Southampton, Bremshafen). Très souvent ces ports constituent des ports d'avant port de commerce général.

Les ports d'échelle diffèrent des précédents par la brièveté de l'arrêt ; les installations nécessaires sont donc beaucoup moindres et le caractère principal qu'ils présentent est d'être bien placé par rapport à la route des navires (p. ex. Cherbourg pour les passages, Gibraltar et Aden pour le ravitaillement en charbon).

Les ports de pêche sont l'objet dans les dernières années et dans divers pays, d'aménagements très spéciaux en vue de développer l'industrie de la pêche dans des eaux déjà anciens. Ils tendent à rationaliser cette industrie par l'emploi de bâtiments à voeux assez importants et de méthodes perfectionnées de pêche. Au point de vue maritime, les dispositions sont d'ordre moyen; l'intérêt de la question réside plutôt dans les dispositifs spéciaux : frigorifiques, manutention et expédition, etc. qui sont d'ordre industriel.

Les dispositions des ports spéciaux et privés sont de même complètement déterminées par le but particulier, soit à créer les produits manutentionnés : charbon, minerais, etc. Ils se caractérisent surtout par des moyens spéciaux de manutention mécanique, destinés à réduire la dureté et la dépense des opérations.

Au point de vue de leur situation, on distingue les ports côtiers et les ports intérieurs. Les ports côtiers naturels sont établis au fond de
baie convenablement abritées (Brux, Boulon) soit dans une lagune en communication avec le large par divers bras ou chenaux (Venise et autres ports italiens) les ports côtiers artificiels sont formés de bassins creusés dans le littoral et réunis à la mer par un chenal d'accès (ports à jetées tels que Ostende, Damquerque, etc.) ou formés de superficies d'eau imprunées sur la mer, limitées et abritées par des constructions en eau profonde : jetées, mâles, digues (ports en eau profonde tels que Ynamen, Zeelrugge, Chorbourg, etc.) les derniers ports portent parfois le nom d'avant-ports lorsqu'ils sont reliés à des bassins creusés dans le littoral par un canal d'accès (Bruges, p. ex.)

Au point de vue du régime, on distingue les ports de mouillage accessibles en tous temps, on les appelle encore ports en eau profonde dans les mers à marée. Les ports à marée sont accessibles seulement pendant un temps plus ou moins long aux environs de marée haute. Ils constituent des ports d'échouage lorsque ils sont en communication directe avec la mer et que les bâtiments échouent à marée basse. Pour les grands ports de quelque importance, on créa des bassins à flot, séparés du large par des écluses, où règne constamment un niveau voisin de marée haute et où les navires restent à flot.

2. Ports intérieurs. Les ports intérieurs doivent leur raison d'être à la grande facilité des installations maritimes : espaces considérables, accès et navigation faciles, et à la grande supériorité des accès par voie ferrée, par route et par voies navigables. En outre, les grands centres commerciaux ont pu se développer dans les lieux bénéficiant d'un bon accès direct à la mer, tant en étant suffisamment à l'intérieur des terres pour être abrités des actions de la mer. Les rivières à marée, par les bornes profondes qu'elles conservent dans la majeure partie du domaine fluvio-maritime ont pu ainsi permettre le développement de très grands ports. Par exemple Rotterdam, Hambourg, Rouen qui ne possèdent pas de bassins à flot, Chimay, Bordeaux, Londres, porteurs de bassins à flot : les ports, établis sur des rivières maritimes, sont des ports naturels. Dans certains cas, les avantages résultant de la création d'un port maritime ont paru si puissants que l'on n'a pas hésité à créer de toutes pièces des ports artificiels en reliant de grands centres à la mer par des canaux maritimes (Gand, Bruxelles, Bruges en Belgique accessibles aux hauteurs salants 6,50 m; Amsterdam sur le canal du Y en Hollande, et un mouillage de plus de 3,80 m et qui va être porté à 12,50 m, puis à 15,00 m.) Le succès ne répond pas toujours immédiatement à l'attente. En Belgique, il n'y a qu'a que Gand qui présente actuellement un trafic important. Néanmoins les canaux maritimes et ports intérieurs constituent en même temps d'excellents moyens de navigation intérieure ; on constate que des établissements industriels s'établissent rapidement sur les rives, surtout si elles sont toutes deux cor-
des de voies ferrées : le canal devient ainsi un port sur presque toute sa longueur pour autant que le stationnement ne gêne pas la navigation.

Les ports naturels en rivière peuvent trouver le long des rives concaves des profondeurs suffisantes, même à marée basse, ou y établir des murs de quai (Anvers), ou des appontements et des corps morts d'amarrage. Lorsque les étendues disponibles en eau profonde sont insuffisantes, on y ajoute des bassins creusés dans les rives de fleuve et ouverts directement sur celui-ci ou séparé par des écluses dans les rivières à marée (Bassins à flot, Anvers).

Actuellement, aussi bien dans les ports naturels (Anvers), qu'artificiels (Gand), les Bassins, ou darses s’établissent en demi-de peigne, en arrête de poisson ou en rayons sur un Bassin-canal servant à la circulation et au virage. Le Bassin-canal est initialement séparé du fleuve par des écluses, comme à Anvers. Les darses s’établissent au fur et à mesure des bassins.

La profondeur des bassins est à 0,50 m ou 1,00 m en dessous du seuil des écluses, en vue de créer une marche d’envasement. Le Bassin-canal aura de 300 à 500 m de largeur, pour permettre aux navires de tourner. Les darses auront 100 à 250 m de largeur et guère plus d’un kilomètre de longueur pour éviter la houle. Pour des buts spéciaux, tels que le transbordement en altières du charbon, des minerais et des grains (par élévateur, p. ex.) on peut établir creux des darses plus larges (400 m à Anvers). Les largeurs des méles varient de 50 à 300 m. Les darses sont inclinées sur le Bassin-canal d’un angle de 45° à 60° et l’entrée est de profondeur évasée, afin de faciliter l’accès des navires, qui ne peuvent naviguer par leurs propres moyens que suivant un rayon de 1000 à 1500 m. Pour de plus petits rayons, il faut le secours de remorqueurs.

Les filets pleins sont nasés à 2 ou 3 m environ au-dessus du marée haute.
Dimensions des navires : les bateaux de pêche ont des dimensions moyennes d'environ 3 m. de longueur, 6 à 8 m. de largeur et 4 à 5 m. de tirant d'eau. Les plus grands ont environ 50 x 10 x 5 m. max., comme les calotières. Les plus grands cargos à vapeur ont actuellement 100 à 130 m. de longueur, environ 20 m. de largeur et 8 m. de tirant d'eau (lagers de 10 000 tonnes). Les paquebots à voyageurs ont dépassé les dimensions de 300 x 30 x 11,50 ; ces grands bâtiments sont cependant encore exceptionnels. Il est probable que les dimensions des navires continueront à s'accroître. Cependant l'état actuel des grands ports et des canaux maritimes ne permet pas de dépasser le tirant d'eau maximum indiqué ci-dessus et les autres dimensions sont assez limitées à ce fait même.

En appelant L la longueur totale, l la largeur au maître-couple et t le tirant d'eau, on a :

Navires en bois  

\[
\frac{L}{l} = 3 \text{ à } 5
\]

\[
\frac{L}{t} = 0,55
\]

\[
\frac{l}{t} = 0,05
\]

Cargos en fer

\[
\frac{L}{l} = 9 \text{ à } 10
\]

\[
\frac{L}{t} = 0,40
\]

\[
\frac{l}{t} = 0,04 \text{ à } 0,03
\]

Paquebots rapides

D'après le tableau, dans un port de commerce accessible aux grands cargos, on doit donc envisager comme superficie maximum d'une porte d'amarrage 125 m. x 150 m.

Le bémage de déplacement d'un navire, équivalent au poids du cube d'eau déplacé, s'exprime en tonnes de 1000 Kg. Le port en bord est le poids de marchandises transportées. La première caractéristique s'applique aux navires de guerre et à passagers, la seconde aux cargos. Pour eux, on distingue aussi la jauge brute, nette ou légale, exprimée en tonnes de 100 pieds cubes anglais de 2,83 m³. La jauge brute correspond au cube du navire, y compris ses superstructures, tandis que la jauge nette s'obtient en retranchant les espaces strictement inutiles au transport des marchandises ou voyageurs. La jauge légale est conventionnelle.

4 Résolution - Rades et avant-ports.

On appelle rade une surface d'eau assez grande située en avant d'un port et abritée en tout ou en partie contre les tempêtes par des îles, îlots ou hauteur de fonds. Une rade bien abritée est dite formée ; elle peut être protégée par des îles (la Baie de Saint-Malo) ou être constituée par une baie communiquant avec la mer par une passe étroite (Brest, Boulogne, Portsmouth). Une rade peu abritée, p. ex. par des hauts fonds, est dite foraine ( Dunkerque, 15° - Nantes, le Havre). Les radars précédents sont naturelles ; on peut, par des constructions s'éloignant des côtes, créer des radars artificielles, mais qui constituent alors le plus souvent des avant-ports, de dimensions plutôt réduites, mais pourvus de murs accostables.
Une rade doit être bien abritée, assez profonde pour que les navires ne puissent pas seabourner et bien gouverner, au moins 13 à 14 m. Elle doit être vaste pour permettre aux navires d'évoluer, de vivre et d'attirer (durée claire). Le fond doit être fermé, mais de nature telle que l'eau mord dans le sol et que les navires ne puissent chauffer sur l'eau. L'angle, le sable marneux, la vase compacte convenant ; le roc, le sable dur et la vase mobile ne conviennent pas. Le navire doit pouvoir disposer d'une toue de longueur horizontale égale à cinq fois la profondeur. Il ne mouille qu'une seule ancre, le navire peut donc dériver sous l'effet du changement de direction du vent sur cercle d'évitage d'assise grand rayon. Dans les rades étroites, pour éviter cette dérive, on mouille deux ou quatre ancras.

L'entrée et la sortie de la rade doivent être faciles par temps calmes ; il faut donc des passees assez larges et profondes pour permettre l'entrée aisée et rapide des navires. Un secteur de largeur favorise toutefois la propagation des flaques et n'est pas désirable : 500 m. est une bonne largeur. Certaines rades offrent deux passees (Plymouth, cette Cherbourg), ce qui permet d'emprunter la plus favorable d'après la direction du vent. Cette Cherbourg est aménagée par une digue couronnée de larges formant la baie et contenant deux grandes passees de 1 000 et 800 m. et une petite passe étroite de 50 m.

L'amarrage dans les rades se fait par amures ou corps morts, ceux-ci comportant des massifs pendants de fonte et de béton (10 à 95 t.), auxquels sont attachées des chaînes, suspendues à des coffres flottants qui portent l'organe d'amarrage (amène ou d'attache). Dans les fonds meubles, le corps mort peut être constitué par des pieux qui vivent enfouis dans le sol, simples ou jumelés, et formant éventuellement des dunes d'êtres élevés. Les derniers peuvent aussi être construits en charpente de bois, ou actuellement, en béton armé. Le transfertement des voyageurs en rade, par le moyen de vedettes, est avantageux si la rade est bien abritée ; par contre, celui des marchandises par chalands ou chaloupes est très onéreuse, aléatoire et ne peut être que provisoire.

5. Ports côtiers sur côtes rocheuses. La plage est stable, les mouvements d'alluvions sont insignifiants, le rivage est acéré, c'est à dire abrupt et les grandes profondeurs sont voisines de la côte. On ne doit se préoccuper que de l'installation des ouvrages du port sur terrain solide, sans considération d'ébouage des profondeurs. Par suite de la nature rocheuse du terrain, le port est généralement réalisé en eau profonde, par l'empresse de superficies d'eau sur la mer. Les ouvrages réalisés doivent assurer d'une part la protection, d'autre part l'exploitation. Les ouvrages de protection sont formés de murs appelés môle, s'ils sont rattachés directement à la rive, ou par des estacades à claire-voie digne.
s'ils sont isolés au mer ou jetés, principalement quand ils déterminent un
échau d'accès. Les ouvrages délimitent avec le rivage l'enceinte du port et
réservent les pans d'accès des navires.

Nous avons indiqué à propos de la rade de Cherbourg une disposition
avantageuse des digues lorsque le port est au fond d'une baie.

Une disposition très fréquente lorsque le courant littoral est faible et
que les grandes profondeurs se trouvent à peu de distance de la côte consiste à établir une digue parallèle à celle-ci. Comme le charruage littoral
n'est pas à craindre, on peut d'ailleurs relire la digue à la côte par un
môle perpendiculaire de surface.

\begin{center}
\includegraphics[width=\textwidth]{diagram.png}
\end{center}

Lorsque les profondeurs sont
plus éloignées de la rive, on établit
parfois des mâles ou jetées conver-
gent vers le large, réservant entre
eux une passe aux profondeurs con-
venables. Parfois les masses des
deu x mâles sont très écartées et l'
intervalles est protégé en avant par
une digue isolée (antemurale du Italien), ce qui réalise deux pas-
s de d'accès latérales. Ce dispositif
ne convient toutefois qu'en cas
de charruage insignifiant.

Les digues parallèles au rivage ont l'avantage de permettre une ex-
tension considérable en longueur, le port se développant le long de la
côte (Marseille, Alger, Gênes, etc.)
Les môle convergents limitent plus strictement l'espace du port ; ils conviennent bien lorsque l'on réalise une avant-port de bassins intérieurs. (La Baltique) ou qu'il s'agit d'un port de développement limité. Parfois, d'auberge, on commence par construire un seul môle, abritant des vents dominants, puis la digue isolée, le second môle s'établissant éventuellement plus tard, alors que les possibilités de développement du port peuvent être mieux appréciées.

L'entrée ou les entrées du port doivent être bien dimensionnées et favorables orientées. Pour ce, il faut se rapporter au régime des vents. Si la considération de l'orientation par rapport au vent pour permettre l'entrée sûre des voiliers par tempête à partir de l'actualité, il est cependant désiré que les baies ne soient pas prises par le travers par les vents de tempête dans les passages et dressées sur les murs. Il faut que les navires puissent suivre une route aussi rectiligne que possible et ne doivent pas désirer de courbe de rayon inférieur à 1 fois leur longueur. Des môle convergents, notamment à digue avancée, peuvent aussi être de bonnes entrées. Dans le cas des digues parallèles au rivage, il faut toujours protéger l'entrée par un môle perpendiculaire (Alger, Montevideo, Buenos Aires). Si les vents dominants sont parallèles au rivage, on prolonge la digue au-delà de la passe par une branche du large de 500m., portant un éperon normal d'environ 100 m., suivi du portail de 150 à 200m. Le portail doit être assez loin du rivage pour que l'entrée soit à l'abri du ressac et que le virage des baies ne l'emporte pas trop près du rivage. Il faut éviter que le portail soit en avant des vents dominants, ce qui faveleize la propagation ou la réflexion des vagues dans le port.

Au point de vue de la navigation à voiles, il faut noter qu'un voilier navigue "au plus près" contre un vent faisant avec sa route un angle de 60 degrés (60°30'), parce que l'angle minimum de la voilure est 30 degrés. Avec certains bateaux très fins (yachts) on peut naviguer...
et quatre-quarts. Si l’angle α est inférieur, la marée doit être devenue. Pour un déplacement AB, le chemin à parcourir est la somme des côtés AC' et C'B, d'un triangle dont l'angle AC'B = 4/4 et BAC' = 6/4 - x. Le lieu de C est le segment capable de l'angle 4/4 dérit sur AB. AB + BC est minimum quand x = 6/4 (ou plus près) et maximum quand x = 0 (vent double). Si l'on tient compte de l'entrée et de la sortie des bateaux, l'axe de la passe du chenal peut être compris entre les deux directions faisant l'angle de 6/4 avec les vents dominants. L'axe favorise l'entrée, l'antenne la sortie. Comme en cas de tempête, la facilité d'entrée l'importe, on oriente généralement l'axe de l'entrée à 6/4 sous les vents dominants ; le moule de côté du vent déborde sur l'antenne de manière à éviter que les bateaux entrants ne soient déportés sur le musoir de ce dernier.

Les installations d'exploitation comportent des quais ou des darses établis le long du rivage, à l'abri des digues. Les dimensions sont les mêmes que pour les ports intérieurs, les darses sont toujours vers l'entrée du port. L'espace entre la digue et le musoir des môle séparant les darses est l'analogue du bassin - canal des ports intérieurs. Des ports de virage ou d'arrivée sont situés au droit des certains môle plus courts. Si certaines digues sont peu exposées sur le large, elles peuvent recevoir des ports d'accostage ; elles doivent être alors assez longues pour recevoir les voies, les moyens de manutention, éventuellement des hangars ou torre, pleins assez étendus (Alger).

6 Ports côtiers en plage de sable. Si les ports côtiers en plage rocheuse apparaissent ainsi assez exempt d'aliénages après qu'il a été possible de les stabiliser, il n'en est pas du tout de même si la côte est mobile, surtout s'il y a un charriage littoral important. La constitution du port doit dans ce cas prévoir également le maintien et l'intervention faciles des profondeurs après leur création. Ce problème est très complexe et capital pour l'exploitation du port ; sa solution dépend de la nature du port, de sa situation par rapport aux vents et courants, et de l'importance du charriage. Les ports taginiers, situés de la mer par un ordre littoral résolu...
vant des ports peuvent constituer d'excellents ports ou abris naturels, surtout si un cours d'eau y débouche et maintient la profondeur des ports. Mais même en l’absence de cours d’eau, le jeu de la marée peut suffire pour maintenir la profondeur dans le goulet. Il faut cependant les causer dans ce dernier par le moyen de jetées parallèles bien orientées, prolongées jusqu’aux profondeurs suffisantes. On créé initialement par dragages les profondeurs voulues ; la barre doit être suffisante pour permettre l’afflux de la marée, mais pas trop forte pour conserver une action sur les courants. Elle atteint 2,80 m sur 10 m de profondeur à Durban (Natal, Afrique) dont l’aménagement a été un succès. La lagune est de 2,000 ha et l’amplitude des marées d’équinoxes 1,80 m. Le volume de marée est de 20.000.000 m³. Une barre à profondeur moyenne de 1,80 m sous marée basse a été porté à 10 m par dragages et s’est maintenue.

Le plus souvent en terrain meuble, on créé un port intérieur plus ou moins artificiel, dans une anse, crique, embouchure de petite rivière ou même tout à fait un terrain ferme. On occupe des bassins et dans à marée ou à flot, d’après les dispositions générales précédemment décrites et on les met en communication avec la mer par un chenal, prolongé à mesure jusqu’aux profondeurs suffisantes par des jetées. Dans les anciens ports (Calais, Dunkerque, Ostende) ces jetées étaient parallèles. Elles dirivaient des jetées parallèles employées pour prolonger en mer les rives des estuaires. Il a été exposé dans le cours d’Hyrène que semblables sont les effets de ces jetées si l’il y a un charrage littoral important. L'intensité s'ingraine en
amont de la jetée qui reçoit l'action du courant, jusqu'à ce que le charriage atteigne le musoir et le franchisse. Au-delà de l'extrémité du musoir, les remous produisent un bruit fort qui constitue une barrière à l'entrée du chenal entre jetées parallèles. C'est ce qui a été constaté partout généralement. Les jetées parallèles facilitaient anciennement le balage des bateaux à voile à l'entrée de la sortie en cas de vent contraire, mais avant l'arrivée du vapeur et du remorquage, le développement des ports a conduit à accentuer l'espace entre les jetées (120 m. à Dunkerque, 135 m. à Calais) et la profondeur du chenal (3 à 4 m. sous l'eau, ou plus).

L'entrée est parfois évasée pour ne dépasser toutefois guère 150 à 180 m., pour éviter la propagation de la houle et les réflexions possibles des lames. Néanmoins, les lames se propagent ou se refléchissent dans le chenal et provoquent une agitation dangereuse dans l'avant-port. On cite le cas caractéristique de l'agitation créée dans l'avant-port de Cherbourg par la réflexion de lames sur une jetée et que l'on a dû arrêter par un épi construit à l'endroit où un éclat avait le même rôle avant son élimination inutile.

Pour réduire la propagation des lames, on évite leur réflexion, on établit en des endroits bien choisis des jetées, des frise-lames ou chambres d'épanonnement. Ils ont une longueur égale à celle du chenal; leur seuil est à une profondeur voisine avec le secteur des courants à détruire, généralement entre MBVE et MBME en France. Le plafond est incliné d'environ 1/8. On place parfois le premier près du musoir le plus exposé au choc des lames, puis alternativement dans l'une et l'autre jetée. Le plafond est pourvu, assis, haut, pour que les lames s'évaporent sans rentrer.

Dans ces conditions, les couants de marée du port et même les couants de chasse n'ont plus d'action suffisante pour maintenir les profondeurs. Des dragages annuels importants sont nécessaires. Les dragages intègrent l'entrée du port, déjà relativement droite. En outre, les jetées ne constituaient pas de rade. Les jetées parallèles sont donc aujourd'hui abandonnées, sauf éventuellement pour les ports lagunaires ou les petits ports de pêche.

Dans les petits ports à jetées, on pratiquait anciennement des chasses de surrence. A cet effet, on emmagasinait l'eau des hautes marées du V.E dans des bassins de chasse, séparés du chenal par des écluses de chasse (chaverse à rampe).

Lors des marées basses de V.E., on ouvrait les écluses qui envoient dans le chenal vers le large, un courant violent ou surrence de surrence. L'extérieur de bateau ne suffisait toutefois que pour les faibles profondeurs et risquait d'asphyxier les ouvrages. Par suite des progrès mécaniques, le dragage a supplanté les chasses.
L'orientation des jettés parallèles se fait selon les principes exposés dans le paragraphe précédent, autant que le permettent les circonstances locales; la jetée du côté des vents dominants est plus longue que l'autre, pour protéger l'entrée et la sortie des navires. Elles sont généralement quasi rectilignes et légèrement obliques par rapport au rivage. Parfois on les établit suivant une courbe de grand rayon (200 ou 1000 m). La forme du môle ne supprime pas l'avancement des plages aux abords, mais peut le rendre moins défavorable pour l'entrée du port. En recourvant vers le rivage l'extrémité d'un môle oblique, on atténue la formation du haut fond derrière le môle, tandis qu'une force peut se produire en avant, près du coude. La forme la plus avantageuse est celle d'un môle courbe dès son origine. La plage avant moins, le courant littoral progressivement devient échancré l'extrémité du môle parallèle au rivage et ne donne presque aucune dépôt à cette extrémité.

Si y a un courant d'abîme sensible en sens inverse du courant de flot, les effets du flot sont interrompus dans une certaine mesure ceux des courants de flot, mais l'influence est généralement moindre, le courant étant moins fort et le chargement peut être important. On conçoit néanmoins que l'idée soit venue de constituer l'entrée des ports par deux jettés convergents, comme à Ymmuiden. Ce cas est intéressant parce qu'il a été sou- rompu de succès et qu'il est important, car il ne s'agit pas seulement du port d'Ymmuiden même, port de pêche, mais de l'accès au port d'Amsterdam, par le canal de l'Y. Le chargement se produit surtout avec le courant de flot (SN); il est légèrement compensé par le courant d'abîme (NS) et il est peu important. L'action du ressac de tempête a suffi pour empêcher les dépôts dans l'angle Sud; la pente du fond est même devenue plus forte. Les deux jettés associés agissant comme un épi et un dépot s'est formé au nord de l'entrée, de même qu'il y a tendance à formation d'une courbe dans l'entrée même, facile à maintenir. Il a été plus avantageux de don-
sur aux jetés une forme à courbure continue, au lieu de la forme anguleuse et de prolonger légèrement le jeté du côté du vent. Néanmoins, la réalisation constitue un succès. Un tel dispositif réalise une entrée facile et constitue une vraie rade abritée, grâce à l'effet sénsoir, en arrière de la passe d'entrée. Cependant, à Madras (Inde), le système a complètement échoué, à cause des trop grands apports de sable, du Sud vers le Nord.

L'estran a avancé de 675 m. au Sud; l'entrée du port à l'est a dû être formée; une nouvelle jetée N. S. a été construite à l'abri de laquelle on a créé une nouvelle entrée à travers la jetée N. primitive. Cependant les premiers nuages auraient été écrasés par des fonds de 14 m. Cela montre combien l'importance du chargement littoral domine le problème.

Néanmoins les jetés convergents constituent la solution. Lorsqu'on couvre bien ce secteur, on estime que le mouillage est stable même en cas de mer toutefois, il est important de trouver l'origine du mou à claire-voie, pour tailler passer les sables. Les navires peuvent accoster au mou en dehors de l'action du courant littoral. Ce dispositif a donné de bons résultats au petit port de Rosslare en Irlande, où un succès complet à l'eau au Brésil et ne semble pas avoir réussi à l'étranger selon toute attente. Des dragages modestes suffisent cependant pour maintenir les profondeurs. Près des côtes danoises, on a construit 3 petits port-iles, établis en mer et reliés à la rive uniquement par un quay à claire-voie. On pourrait songer à établir en mer une digue parallèle à la côte en dehors de l'influence du courant littoral. Cette solution n'a pas encore été tentée; les liaisons avec le rivage devraient être à claire-voie s'il y avait un chargement de sable et cette solution paraît
finalement impraticable. Elle pourrait par contre convenir pour une plage à galée.

7 Postes d'accostage en mer, appontements (wharfs) et mâles.
Dans les cas spéciaux, les installations des ports se réduisaient à des ouvrages isolés, tels qu'un mur, en eau profonde, un des montants aussi protégé que possible. Cette catégorie de ports se rattache d'ailleurs aux ports côtiers que nous avons déjà décrits, par les ports d'attache et par les port à mâle provisoire unique en eau profonde, tels que celui de Zeelande. Le mâle portait en effet les rois, les moyens de manutention et les hangars ou bâtiments nécessaires et les bâtiments y accostant du côté intérieur. Le mâle est long et protégé vers la mer par un parapet. Le dispositif avait pour but de faire de Zeelande un port de vitrine et d'exemple.

Nous avons vu les inconvénients de ces transfusions de merade. Lors que le trafic ne justifie pas l'établissement d'un port fermé, par exemple dans les colonies ou certains endroits d'exemple, on établit des wharfs ou appontements en charpente de bois, d'acier ou de tôle armée, poussés jusqu'aux profondeurs suffisantes pour permettre l'accostage des bateaux. Ces wharfs portent souvent un navire de voile, des moyens de manutention mobile, etc.

Des ports particuliers et spéciaux, affectés par exemple au char- gement du charbon, de minerais, de pétrole, etc., peuvent être établis au mur à proximité de gares ou de dépôts côtiers. Des ports d'aménagement fixes sont établis en mer, sous forme de dunes d'acier ou de plates-formes en charpente et la liaison à la rivière était établie par des transporteurs hydrauliques ou pêle-plumes. Les supports des transporteurs doivent bien entendu être particulièrement robustes et fondés selon la technique du murage maritimes.

Nous ne pouvons entreprendre une étude de détail de ces ouvages, qui ne pourrait d'ailleurs couvrir qu'un ensemble de ces concepts que l'on trouvera dans la littérature spéciale. Les principes de construction des éléments de ces installations ressortent à suffisance du cours.

Chapitre IV
Ouvrages extérieurs des ports.

1 Généralités. La morphologie et l'exion de ces ouvrages sont influencés par les conditions spéciales résultant de leur emplacement et de leur fonction, à savoir : les actions chimiques de l'eau de mer sur les matériaux ; les actions mécaniques de la mer sur les ouvrages ; les forces de marée ;
2. Action de l'eau marine sur les matériaux

Par suite de sa composition saline, l'eau marine attaque un grand nombre de matériaux. La fonte, le fer et l'acier sont attaqués, non seulement par l'eau, mais par l'air salin. De même que le laiton, le cuivre, le zinc, le nickel, la plupart de l'alu-
minium, les ouvrages zincés ne doivent pas être présents pas moins de plomb, mais au minimum de fer, ou en l'oxyde de zinc.

Les constructions métalliques des ports maritimes doivent être faites en pièces de forte épaisseur, de surface minimum et facilement accessibles pour l'entretien des peintures.

Le bois est assez facilement atteint de la poussière sèche dans l'air salin. Il faut le protéger par la peinture et recouvrir les abords des pièces verticales d'un chapeau ou enduit imperméable. Les bois constamment immergés ou conservés indéfiniment sont ici plus attaqués par les organismes dont il est question ci-après. Les parties alternativement immergées et émergées sont également atteints de poussière humide. Les bois s'alimentent donc surtout au-dessus du niveau de M. B. et sur la hauteur de l'amplitude de marée. Mais ils peuvent être attaqués par les xylophages; les têtards dans les pays chauds, le pelage, vers blanc qui dévore la surface des pièces de bois et surtout le têtard (Xylophila navalis), mollusque ayant la forme d'une ruche griseâtre, de 0,02 de diamètre, pouvant atteindre presque à 0,30 de longueur. Les têtards rament le bois avec leur coquille et font des galeries dans le sens des fibres.

Les xylophages ne se trouvent ni dans l'eau douce, ni dans les eaux saumâtres (marines diluées d'eau douce) ni dans les eaux vases.

On les trouve surtout dans des eaux de mer profondes, assez chaudes, au-dessus des eaux marines, et par des fonds assez profonds et à fort courant. Certains endroits peuvent en être infectés d'une manière variable avec la salure de l'eau (San Francisco, voire, Engineering, 22 Juin 1928). Les bois fortement attaqués doivent être retirés, sinon ils constituent une source d'infection. Les remèdes employés sont le laitage (revêtement de chaux pointée, à larges lèges, ouvrages provisoires), le creosotage à 300 K° par m² (puis suivi d'effractions) et le revêtement de mortier au ciment - soufre ou corné dans une gaine impotrée ou béton armé. On peut toutefois se demander s'il ne vaut pas mieux, dans ces conditions, substituer le béton armé au bois.
...-70-

Certains essences sont peu sensibles aux attaques des xylophages ; la chêne est moins attaqué que les autres essences indigènes. Mais ce sont surtout les essences exotiques qui sont le moins attaquées : les eucalyptus (Jarrah, Karri), le teck et le grenoblie. Le sont les bois fumés, sauf le teck, dure, difficiles à travailler, très résistants. On les trouve en forts équarrissages, et grands longueurs. Leur marché est surtout dans les Pays-Bas, et en Angleterre. Les bois sont très recherchés pour les ouvrages maritimes, mais sont très couteux.

Les pierres tendres, marnesuses et argileuses, s'affinent à la mer. Les calcaires tendres, certains grès sont attaqués par des animaux xylophages. Les pierres feldspathiques peuvent s'allérer. On emploie de préférence des pierres très dures et leurdes : porphyres, basaltes, quartzites, granites, silexains très durs, etc.

On sait (voir cours de Chimie des matériaux techniques) que certains bétons hydrauliques sont attaqués par l'eau de mer, jusqu'à perdre toute résistance. L'action de la marée favorise l'altération, aussi les altérations sont-elles beaucoup moins fréquentes dans la Méditerranée, par exemple, que dans l'Atlantique. Comme précautions, tant pour les mortiers que pour les bétons, il faut :

1° employez que des bétons ayant été soumis à des essais stérées de longue durée et dont la fabrication uniforme est contrôlée et garantie. Le danger d'altération est d'autant moindre que le degré d'hydratation est plus grand ; il est donc préférable d'employer des ciments Portland plutôt que de la chaux hydraulique. Le ciment Portland résiste en général très bien à l'eau de mer ; toutefois, il exige certaines précautions pour éviter une altération dont la cause est sans doute complexe, mais qui est favorisée par un excès d'eau et une température élevée. Les ciments de Lisbonne, de composition uniforme et garanti, peuvent fournir.

2° additionner au bétant des matières pouzzolaniques : brasse d'Andamance, pâte grise, ciment granulé. Ces matières doivent être finement broyées avec le béton, auquel on les substitue dans la proportion de 1/3 environ.

3° employer des mélanges très compacts et riches. Il faut donc une bonne composition granulométrique de l'agrégat et un fort dosage de ciment ou de ciment et brasse (1:1,5:3 en vol. abs. par exemple pour les pièces immédiates en béton armé) pour des travaux importants, ou effectuer des essais préalables.

4° gâcher autant que possible à l'eau douce, plastique et pas trop mouillé ; assurer un bon drainage et un bon enrobage des armatures (5 à 10 cm). Les moules métalliques donnent une surface bien lisse et peu poreuse ; le drainage vibratoire est recommandable.

5° éviter autant que possible le bétonnage à la marée, qui...
produit des délavage du béton, le rend poreux et prépare l'attaque ultérieure. On bétonnera donc de préférence dans des endroits à sec (ouvrages intérieurs) ou, si ce n'est pas possible, en plaine mara, on emploiera des éléments moulés d'avance sur la rive : blocs, pièces en béton armé moulés d'avance, à assemblages préparés, que l'on assemblera par des points utilisant du béton à durcissement rapide et des armatures, etc., et qui l'on protège éventuellement par des gaines.

Par suite des progrès réalisés dans la fabrication des ciments et la confection des mortiers et bétons, le béton et le béton armé tendent à devenir les matériaux universels pour les constructions maritimes comme pour les constructions terrestres.

3 Action mécanique des vagues. Nous avons vu dans l'appendice du cours d'hydraulique fluviale, que les mouvements oscillatoires de la surface des mers mettent en jeu des énergies considérables. L'énergie par mètre linéaire d'amplitude $2h$ et de lenteur $W$ est

$$W \cdot h^2 \cdot \frac{n \cdot W^2}{kgm}.$$ Cette énergie a son siège principalement en surface et s'atténue rapidement en profondeur, lorsque celle-ci est assez grande. La diminution est moins rapide pour les hauts-fonds, mais l'énergie des lames est alors minuscule. Supposons que la lame dispose toute son énergie sur un obstacle immobile pendant la période $\frac{2\pi}{W}$. Si $p_H$ l'effort moyen pendant ce temps,

$$F = \frac{p_H \cdot 2h}{W},$$

où $P = \frac{\pi \cdot h^2 \cdot W^2}{2g}$.

Pour maximum pour $2h = 2h$, d'où $P = \frac{\pi \cdot h^2 \cdot W^2}{2g}$ et on peut admettre que la valeur instantanée maximum de $P$ est double.

$$P_{\text{max.}} = \frac{\pi \cdot h^2 \cdot W^2}{2g}.$$

Si on admet que la force est répartie sur l'amplitude $2h$ de la lame, en variant de zéro à un maximum, on trouve, comme pression superficielle maximum :

$$P_{\text{max.}} = \frac{\pi \cdot h^2 \cdot W^2}{2g}$$

pour l'eau de mer et $0,182 W^2$ pour l'eau douce, $W$ étant exprimé en m/sec. Ces formes correspondent assez bien avec les résultats d'observations dynamométriques faites en
Angleterre et en Amérique par Stevenson et Baillard. On a observé des pressions atteignant jusqu'à 39 k/m², mais qui sont toutefois exceptionnelles. Les observations de Stevenson sur le choc des vagues sur l'île de Dunbar (Firth of Forth) ont montré que l'intensité est maximum au niveau moyen du niveau moyen, alors que la pression horizontale n'atteignait que 0,137 k/m² au même endroit. La grande hauteur atteinte par les vagues d'eau qui peuvent se produire lorsque les vagues se forment violemment sur un mur (comme le 25 à 30 m dans l'Atlantique, 50 m à Edington, 60 m à Cherbourg) ne peuvent donc pas s'adapter la pression horizontale par la formule $P = \sqrt{2gh}$ et $P = kSV^2$. Les vagues d'eau peuvent d'ailleurs provoquer de lames de fond, comme ce sont surtout les efforts horizontaux qui sont dangereux sur la structure, ou conduit à l'utilisation de formes courbes de parements, favorisant le défilement et l'action verticale des vagues. Selon les auteurs français, les vagues les plus violents ne paraissent pas devoir dépasser 15 à 20 k/m² sur les côtes accessibles de l'Atlantique et de l'Algérie, ainsi que dans le Golfe de Gascogne. Sur les fonds sous-marins en pente douce, et relativement peu profonds, de 8 à 10 k/m² semblent des maxima, et 10 à 15 k/m² des valeurs moyennes et suffisantes déjà pour expliquer les accidents survenus aux ouvrages. Au-dessous de 15 à 19 m, au maximum 10 à 11 m, les encauchements ne sont plus réunis, mais bien le gravier et le sable, qui peuvent être soulevés par des fonds de plus de 20 m.

Le choc des vagues produit des vibrations intenses dans la construction; il faut tenir compte de ce fait dans leur conception et dans le choix des taux de travail, qui doivent être réduits. Il y a donc avantage à accroître la masse des ouvrages à la rendre monolithique le plus possible, les éléments de charpente doivent être faibles, rigides et rigide, assemblés. Le point de vue est important pour le béton armé dont la résistance permanente de traction sous l'effet d'efforts rythmés est faible et ne dépasse guère 12 à 16 kN/m². Les éléments faibles sont subis à vibration se fissent, à l'eau atteint les armatures et les cordeles. L'expansion de la corde fait sauter le béton et l'ouvrage même. Il faut tenir compte de ce fait pour la conception des ouvrages rivés en béton armé, ayant la structure de charpente.

4. Sujétions de travail à la mer

L'oscillation de mer est très gênante. Si c'est possible, on s'en affranchira par des baïonneraies, élevées jusqu'au dessus des HMVE. Lorsque l'on emploie des caissons à l'axe comprimé fixes, à hauteur, elles doivent dépasser le même niveau et la pression doit varier avec la mer dans la chambre de travail.
Les caissons éloignés doivent être équilibrés, de manière à être insensibles aux fluctuations de marée (caisses de stable d'eau). Au-dessus du niveau de B.M., on peut travailler à marée, c'est-à-dire pendant la marémise, l'ouvrage étant soumis à marée haute. Le système est très défavorable pour l'insertion des maçonneries et n'est pas recommandable pour les grands ouvrages. L'emploi de ciment fumé ou de ciment à prise rapide peut éventuellement permettre le travail à marée, notamment pour des travaux purs.

Une autre suggestion considérable, surtout pour les travaux extérieurs, est celle des courants, coups de mer et tempêtes. Le nombre de jours effectifs de travail par an peut être réduit dans une forêt proportionnelle (120 jours par an au pourtour du port de Bari : Engineering, 2 Mars 1928) et les interruptions en mauvaise saison peuvent être de longue durée. Il faut des dispositions permettant d'abriter le matériau.

Le travail dans les prothèses se fait de préférence par immersion ou échappage d'entraînements, de plateformes de fascinages lestés, de blocs, prêts, caisses forées ou caisses à claire voie, remplis ultérieurement de pierres ou de béton.

5. Jetés de chenaux.

Ils sont les ouvrages parallèles délimitant les chenaux des anciens ports intérieurs ou plages de sable. Les jetés séparent le chenal profond de la plage et des fonds marqués par les abords venus se déposer contre la face extérieure des jetés, dont la majeure partie image à marée basse.

Pour ne pas troubler le régime de la plage, ces jetés sont souvent construits comme jetés basses, c'est-à-dire en faîte saillie sur l'estran (Ostende). Elle est supérieure et arrondie pour éviter le reget ; elles sont très analogues aux épis. Or, ils étaient sur massifs de sable, de pierres ou de fascinages lestés, limités du côté du chenal et le plus souvent de l'autre côté également par des parois de palplanches jointives ou des parafoniles. La partie supérieure reçoit un revêtement en mortiers ou briques divers, posés sur champ au surface de 0,40 à 0,70 m. d'épaisseur totale. Le moyenne de sable ou de galets est divisé par des plans de refend.

Les fascinages sont lisses. Sur l'estran, on place la jetée par un ris bome de quelques mètres de longueur en mortiers posés à sec, enterrés ou sans de béton sur fascinages. Pour le chenal, on établit un revêtement en maçonnerie de briques ou mortiers, pierres sèches, sable de béton, etc. appuyé au pied sur des fascinages ou des encrochements.

Pour permettre le hâillage et guider les bateaux, on établit, au-dessus des jetés basses des jetés hautes à claire voie, généralement en charpente de bois (Ostende) ou béton armé (Calais). Elles comportent des galées contournées de montants sur pilotes, distants de 3 m ou dont les traverses supérieures, souvent de pièces de pont, supportent un planche
ou tolles, de 3 à 5 m. de longueur, établi à 3,00 m. de marée haute. L'ex-
trémité, ou mousin, est généralement large : 5 à 18 m. (Ostende: jetée-
prémenoire). Elle supporte généralement des simplicios, fuse, cabas-
tons, etc. Les palées, en chêne ou grevbark, se composent de pi-
èces de fort équarrissage : 30 à 40 cm. des assemblages se sont à mi-
bois ou à entrec ; ils sont pres-
vire les entailles : mortaises, 
limons, qui durent, et amor-
cent la fourniture : des as-
semblages des montants sur 
les pièces sont consolidés à Os-
tende par des manches de 
 tôles zinguées en deux pièces 
et boulonnés. Les pilotes sont 
verticaux ou peu inclinés (1/8 
à 1/10) et réunis par des ventouses 
in acier galvanisé sur la 
hauteur découverte par la ma-
ré ; en chêne au-dessus de 
M.H. Pour éviter que les em-
barcations ne puissent être pu-
sées entre les palées, on installa 
entre elles des potiers de remplissage distants de 0,70 à 1,00 ou 1,50 m. Se-
lon les cas. Les assemblages à boulons doivent permettre des réparations 
faciles. La planche est en pitch-pine, le garde-corps en sapin. Il faut 
vouloir toute ferme saillante sous le chemin, qui pourrait échafer les 
bateaux. Les pièces exposées au frottement sont parfois recouvertes de four-
nures de mastic équarrissage que les pièces à protéger et qui l'ouvr-
plaque, emboîssure. Les jetés en bois sont courbés d'inflexion, mais faci-
les à réparer. On tend à les remplacer par des jetés en béton armé, de 
structure sensiblement analogue, mais de réparation difficiles en cas 
d'abordage.

Sous le niveau de marée basse, les jetés lames sont parfois pro-
longées au-delà des mousins des jetés hautes. Dans ce cas, on s'il n'y 
à pas de jetés hautes, elles sont réunies par des poutres verticales por-
tant des balise.

Les jetés lames et les claires voies ne protègent pas le chemin con-
tre les lames. Si l'on doit assurer une protection, on établit des jetés 
pleins ou mi-pleins, encore parfois appelés jetés coffrés, de fait 
que les premières ont été réalisées en fixant des coffrages de maillons 
sur les palées des jetés hautes, et en remplissant l'intervalle d'entre-
- 75 -

chiments. Actuellement, les jetées mi-plaines et pleines se construisent comme des murs verticaux en maçonnerie, ce qui permet de drainer à leur pied dans le chenal et y facilite la navigation au voisinage de la jetée (par de rares cas de talmement comme sur les talus). Les jetées mi-plaines sont surmontées d'une jetée haute en béton armé, comme à Calais. Les jetées pleines sont arasées à 3 m. au-dessus de marée haute et portent un chemin bordé de parements. Les jetées mi-plaines sont arasées à des niveaux compris entre H M M E et B M M E et généralement allant en s'abaissant de la rive vers le large.

À Dunkerque et Calais, les jetées ont été construites comme murs verticaux avec parements du fait à partir de 1/10, fondés sur caissons perdus à aire comprimée, la maçonnerie de briques ou béton est paremniée en moellons. Actuellement, les caissons ou fruits en béton armé constituaient une bonne solution.

Selon les cas et notamment pour la partie construite sur l'estuaire découvert à marée basse, ou peut employer un mur trapezoïdal creux construit sur noyau de pierres sèches ou un caisson en béton ou béton armé lesté de pierres sèches. On établit des fonds maçonncis sous les 10 ou 15 m. La fondation dépend du terrain. Directe sur le terrain rocheux, elle comporte une couche de béton et des parafoulilles en plage de sable, des pieux de support ou des plateformes de fondages et très mauvais terrains, avec risclures latérales en béton de 5 à 6 m. de largeur, enclos entre parafoulilles. Les murs extérieurs, d'un fruit de 1/3 à 1/2 contien-
ment des barbares), tandis que le dallage supérieur reçoit des couleurs ; pour éviter des désordres pari effets de succion des vagues. Les chambres d'épanouissement manquées dans ces jetées ont des parois analogues à celles des jetées ; le fond reçoit un dallage au moyen de la vase. Une clarté pour à l'élément eau, pour ne pas créer d'obstacle aux eaux, assure la continuité du mouvement de des eaux de l'eau.

6. Jetées extérieures. Nous avons vu dans le cours d'Hydrau-
digue fluviale que les jetées sont souvent régulièrement en moyenne di-
egues prolongées par des jetées formant réseaux sous-marins. les jetées doivent être très résistantes aux eaux et présenter une section considérable et des talus peu inclinés. Elles se rapprochent ainsi des digues côtières, mais qu'elles ne doivent pas être échancrées, et qu'elles peuvent être initialement submergées par les plus fortes marées. Elles sont en sable, gravier ou enrochements. La rive est généralement arrondie et dressée ; la jetée est balayée. Sur bon terrain, assez peu profond et abrité, comme dans la Seine, les jetées sont de simples levées trapézoïdales d'enro-
chement revêtues de parois. Aux grandes profondeurs, les parties hautes des jetées sont parfois formées de gros blocs ravinés ou de cailloux en béton bité de béton, formant des grands monolithes résistants et supportés par un sous-fondement à grand empattement (Rangoon) ou se rapproche alors des digues en eau profonde, décrites plus loin.


Ces ouvrages les plus exposés, les anglais disent les appel-

er breakwaters, c'est-à-dire brise-lames. Avec les phares en plaine eau, ils doivent résister aux effets maxima des plus violentes tempêtes et les dégâts à ces ouvrages sont fréquents. Comme leur rôle est essentiel à la sécurité d'un port, que leur construction et leur réparation sont difficiles, il importe de leur donner une solidité à toute épreuve. Mais le prix de ces ouvrages peut alors devenir bien élevé et le problème se pose d'élire l'économie à la résistance et à la facilité d'exécution. Les circonstances particulières importent beaucoup, notamment l'amplitude de marée, la profondeur, la nécessité ou non de pouvoir accoster. Pour un même maestral minimum, la marée augmente beaucoup la hauteur de la digue et l'étendue de celle-ci exposé aux actions les plus violentes. La possibilité d'accoster exige un paramètre peu incliné et un emplantement faible du côté de l'amont. Il faut aussi considérer la violence et l'étendue d'action des vagues, la nature solide du caillou bité du fond, l'action du souffle et surtout du courants parallèles aux rives (cour-

ants littoraux élevés) qui peuvent produire des affaissements profonds (Zebrugge).

Enfin, ces ouvrages absorbent des cubes de matériaux énormes ;
le système adopté dépendra donc aussi de la nature et de la quantité
de matériaux dont on dispose.

En principe, les digues comportent une infrastructure (partie sous
MB) en enrochements, fascines, parois ou blocs non maçonnés et une superstruc-
ture (partie au dessus de MB) soit à sec, sinon continue, du moins for-
mé de massifs de dimensions considérables.

Digue dans une mer sans marée

![Diagram](image)

Le but de l'infrastructure, qui affecte la forme trapézoïdale de
grand encombrement et d'assurer une grande surface d'assise sur ter-
rain mou, de créer un talus produisant le décalage et réduisant le res-
suc, de permettre la construction par immersion aux grandes profondeurs
(jusqu'à 54 m à Valparaíso), d'éloigner les affouillements et d'atténuer
leurs effets (bouillons superficiels des talus) et enfin de permettre des répa-
rations aisées par recouvrement des talus.

Le cube de ces infrastructures est immense et elles sont facilement
subjette à dégâts.

La superstructure consiste en un mur de couronnement, continu
ou formé de blocs gros blocs. Il a pour but de réduire le cube de l'ouvrage
tillé la partie supérieure, de le couroner par un élément plus stable et résis-
tant aux niveaux des actions les plus violentes, enfin de réserver un chemin
de circulation, portant éventuellement une voie forcée pour l'avance-
ment ou l'intention de l'ouvrage. L'importance de cette superstructure
peut être faible dans les mers sans marées; les breakwaters américains
en sont même généralement dépourvus, pour suivre le ressac. La digue
est recouverte d'un revêtement superficiel de gros blocs plus ou moins
arrondis. Le couronnement est stable jusqu'au dessus de M.H.V.F.

Par contre, dans les mers à marée, l'infrastructure non maçonnée
serait généralement trop exposé entre MB et MH. La superstructure devient alors un mur à parois peu inclinées régnant depuis MBVE ou au moins MB ME jusqu'aux dessous de MH VE, c'est-à-dire de hauteur assez considérable.

8. Diges à infrastructure maçonnée

1. Le sous-œuvre est formé d'enracinements, pierres ou blocs, immergés par diverses murs ou moins arrosés en surface et formant un massif en équilibre limité par des talus plutôt durs. Les blocs en surface sont exposés aux actions des vagues, principalement au niveau moyen de la mer, mais aussi au-dessus et en dessous jusqu'à des profondeurs de 7 à 10 m.

2. En appelant \( \Delta \), le côté d'un bloc cubique, \( \Delta \) son poids spécifique, \( \bar{\Delta} \), celui de l'eau, la stabilité du bloc est proportionnelle à \( (\Delta - \bar{\Delta}) \rho^3 \) s'il est immergé. L'action des vagues...
est proportionnelle à \( l^2 \); donc l'équilibre des blocs dépend de \( (A - \bar{w}) l \). Il y a donc intérêt à accroître les dimensions des blocs et à les arrimer de manière à présenter le minimum de prise aux vagues. D'après ce qui suit, des blocs ayant même valeur de \( (A - \bar{w}) l \) sont sensiblement équivalents, donc
\[
\frac{l'}{l} = \frac{\Delta - \bar{w}}{\Delta - \bar{w}}
\]

Pour du granit ou du Béton Kg \( \Delta = 2300 \), pour du béton Kg \( \Delta = 2000 - 2100 \). Donc
\[
\frac{l'}{l} = \frac{2300}{2000} \equiv 1,2 \text{ à } 1,5 \text{ environ.}
\]

Pour un bloc de béton équivalent à un bloc de granit doit avoir un volume en moyenne 4 fois plus grand et un poids dans l'air environ 3 fois plus grand.

Il serait donc désirable de pouvoir employer de gros blocs de pierre très dense. Mais ce désir initial est rarement réalisable ; il ne dispose pas toujours de carrières communes à proximité, les gros blocs sont coûteux et leur transport à grande distance est coûteux. On est donc pratiquement obligé de construire des blocs artificiels voluminairement plus petits, soit en moyennes maillonnés ou de préférence, à l'heure actuelle, en béton. Parfois on prémente encore les blocs en pierre dure. On pourrait en accroître la densité en y mélangeant des déchets métalliques. Les carrières ordinaires fournissent des pierres dont la meilleure partie a un poids variant de 3 à 100 Kg (30%), un peu moins de blocs de 100 à 1500 Kg (25%) et à peu près la même quantité de blocs de 1500 à 4000, 5000 Kg. et plus. Les blocs artificiels sont généralement de 10 à 40 m³ (20 à 80 tonnes). On en a employé récemment à Bari de 180 m³ (360 tonnes et de 450 tonnes à Alger). Ainsi certains cas assez exceptionnels toutefois, on a employé des blocs naturels de 10, 20 et même 30 tonnes (Chorkourz) et jusqu'à 50 et 75 tonnes (Génes).

Le dosage des blocs artificiels est en moyenne
250 Kg. de ciment, 400 l. de sablé, 600 l. de cailloux dans l'Atlantique
450 l. de mortier de chaux et parzolane, 800 l. de pierraillies en Méditerranée (Bari).

L'emploi d'enrochements toutvenant peut présenter l'avantage d'une moindre manutention, d'un moindre vide et donc d'un moindre lessivage mais la résistance aux vagues est trop faible, et il faut nécessairement un revêtement épais en blocs tournés et plus ou moins arrimés. C'est le type ordinaire des breakwaters américains, dont le noyau est en tout venant.

On peut aussi former de la sorte le rabassage de digues très profondes.
A Valparaiso, sous la cote - 20, le rabassage est formé de sablé et déchets de carrière, recouverts d'une couche de 5 m. d'enrochements de petites dimensions (gros déchets de carrière).

Généralement, on constitue les digues d'enrochements classés en
tenant compte des profondeurs critiques à partir desquelles elles résistent d'une manière stable à l'action des vagues et que profondeur est plus grande vers l'extérieur que vers l'intérieur. Par conséquent, on constituera donc le corps de la digue de couches horizontales successives d'écorchages clairs, dont les surfaces supérieures présentent des ressauts vers l'intérieur, favorables à la stabilité d'ensemble. Ces couches successives s'appuient au fur et à mesure de l'exécution et réduisent le bassin ultérieur, qui affecte la superstructure. En outre, les matériaux sont exposés au minimum risque de déplacement en cours d'exécution. Cependant, le plus souvent, en regard au mode d'exécution, les écorchages et blocs de divers calibres ne sont pas établis par couches horizontales, mais surmont par couches inclinées; les blocs les plus gros étant vers le haut et vers l'extérieur. L'ensemble présente un talus extérieur de 1/4 à 2/1 jusqu'à 5 m ou 10 m. Sous le niveau moyen, suivi d'un glais 1/4 à 2/1 portant la superstructure. Le talus intérieur est de 1/4 à 1,5/1 sur toute la hauve.

Dans les murs sans marée, l'infrastructure étant arasée au niveau moyen de la mer, la superstructure est formée d'un massif de maçonnerie de plus de 5 m. de largeur, portant un chemin arasé à 2,50 m ou 3 m. au moins au-dessus de la mer. Vers le large, il est protégé par un parapet de 2 à 3 m. de largeur et de hauveur. Le mur se termine généralement par un fûl. C'est pour éviter les effets du tassement que du retrait, on branche la superstructure par des joints distants de 6 à 10 m. Le parement vers le large doit être disposé de manière à éviter le ressac. On lui donne un léger front ou une légère concavité et on le rasez de convenablement avec le glais, soit par un petit massif de bâtié indépendant en maçonnerie, appuyé sur le revêtement extérieur en gros blocs, arrimé ou non, soit par un ou des blocs spéciaux de protection, posé au pied du mur sur une terre assez large (10 à 12 m). La couche supérieure de gros blocs couvrant le glais, doit prendre appui aussi, à profondeur suffisante, sur une large terre du soubassement.
(12 m. au moins : Oran, Casablanca) Dans certains cas, on a constitué la superstructure partiellement ou totalement de blocs très volumineux et bien arrimés, protégé vers le large comme le mure monolithique et recouvert ou non par une couche en béton ou en béton armé (jetée de l’Agha à Alger, brise-lames d’Alexandrie, jetées de Casablanca et de Bari, etc.) On sait dire, on se rapporte ainsi fortement comme apparence, des digues mixtes (Bari).

Dans les murs à manteau, le remblaiement est généralement moins élevé et la superstructure plus haute. Celle-ci prend l’aspect d’un mur de fort dimensions, arasé à 2 ou 3 m. au dessus de M.HVE et pourvu d’un parapet. Il est assuré une semelle de gros blocs arrimés et protégé vers le large par des blocs spéciaux et le talus recouvert de gros blocs descendant généralement jusque sur le fond. Il faut particulièrement reprendre les tendances qui peuvent désorganiser la superstructure ; il faut notamment laisser repose l’infrastructure pendant au moins une mauvaise saison avant d’intémer la maçonnerie.

Le type de digue à infrastructure non maçonnée est le plus employé jusqu’alors présent. On lui reproche son volume considérable. Moral avons vu qu’on cherché à y remédier par l’arrimage des blocs (Môle Balliau à Genève) pour raidir la talus supérieure, et par l’emploi de blocs volumineux empilés verticalement en superstructure. Le premier système a donné des mésappuis, les blocs étant peu chargés et exposés à suivre les éboulements du massif sous-jacent. Dans ces conditions, tout l’arrimage des blocs peut disparaître par manque d’appui. Les blocs volumineux verticaux en superstructure ont donné de bons résultats, mais se rapportent vraisemblablement du type mixte.

L’excavation se fait par immersion, soit de la digue même, dans le sens de l’avancement, par voir forcée et égouts, grues, titans ou derrières (Alexandrie, Casablanca, Béjaïa) Le plus souvent, on emploie des chalands à clapets ou écaillures pour les mouvements, à bateau ou à plateforme de lancement (plan incliné à rouleaux) pour les gros blocs. Les blocs arrimés ou posés sont mis en place par des pontons flottants à graues derrières, titans ou ponts-touliers (Casablanca, Barcelone, Bari). Pour le longage des gros blocs, on y recourt des bongou réarmes, pour le passage des chaînes ou tiges à crochet ou grappins (Noire Engineering, 2 mars 1928).

La grue flottante de 400 t. du port de Bari est du style à porte-à-faux ; il se ressemble un plan de flottaison et une bande variable du ponton ; l’orientation exacte du bloc veille le mouvement de tout le ponton. Pour les blocs de 450 t. à Alger (Génie civil du 30 septembre 1928) on a employé un ponteau sur deux pontons ; le bloc est suspendu à un châssis tournant posant deux chariots. L’orientation et la manœuvre se font donc sans déplacement des pontons.
9 Diges à infrastructure maçonnée, à parois verticales.

Le type de mur se rencontre surtout dans les murs à marée, aux profondeurs modérées et sur un fond solide; il est en faveur en Angleterre et le progrès de l'ortillage, dont la puissance développe beaucoup les moyens de construction, augmente la faveur de ce type, qui retient de plus en plus l'attention, surtout en association avec le présent (type mixte).

La digue affecte la forme d'un mur continu à parois verticales. Il est très massif et, s'il est briqué, les sections sont de grandes dimensions et très lourdes. L'ouvrage est donc très résistant, d'autant plus que la lame ne dépasse pas, mais par la formation d'ondes sèches, donnant lieu à des pressions rythmées. Toutefois, cespressions sont très fortes, l'amplitude et l'augmentation des ondes sèches étant grandes. Cependant les dangers principaux auxquels sont exposés les murs sont les affouillements par l'action du ressac et surtout des courants rapides parallèles à l'ouvrage. Ce sont ces derniers qui ont miné une partie de la jetée de la Tyne en 1897 et produit des affouillements de 20 m. de profondeur dans l'argile au pied du môle de Zeebrugge directement assis sur le terrain. On ne peut donc l'employer que sur terrain rocheux et où le prestige parfois vers le large par une réseve ou un massif en blocs de béton (Yarmouth). On peut construire l'infrastructure en blocs de béton, remplis et arrimés sur MB par des scaphandriers et échecs à plongeurs. La liaison est assurée par des sacs de mortier ou de béton ou de béton souple entre les blocs disposés vers les parois et formant coffrage (Donore, Folkestone). On peut aussi employer des sacs de béton, mutant avantages sur les fonds très irréguliers et les galets, au moins pour les premières assises. A Newhaven, les sacs remplis pesaient 100 tonnes, à Le Havre, 160 t. Le procédé de sacs de béton dû à William Porter - l'a généreux - a été avantageux dans certains cas. Il emploie des sacs de jute, incomplètement remplis, de manière à bien se monter les uns aux autres. Il faut spécier avec soin et rapidement pour éviter des déchirements et des dilatations d'assurer une bonne soudure des sacs, avant qu'ils n'aient fait prise. Néanmoins, des joints sont presque inévitables.

A Wicklow, Newhaven, etc., on a construit des monolithes de béton et sous eau entre coffrages, éventuellement sur fondation en sacs pour créer une assise horizontale. On peut construire l'infrastructure même lithique à l'air comprimé, par caissons mobiles (St. Nazaire) ou caisson coulant en béton armé que l'on échoue en place par listage de béton (Zeebrugge, Barcelone, Savone, etc.)

En Amérique et en Russie, dans les grands lacs, les murs intérieurs et la Baie, où les tempêtes sont moins violentes et les bois abondants, on emploie des digues mixtes en bois, enmarchant et maçonnées. En Amérique, on emploie des crib-works, formés de pièces
de bris entélosés, ou des caissons, les vides étant remplis d'enrochements.

Les socles, établis éventuellement sur une couche d'enrochements et protégés éventuellement vers le large par une bermier ou un massif d'enrochements, peuvent recevoir une superstructure maçonnée.

Dans la Baltique, on remplit d'enrochements et de gravier l'espace compris entre deux files de pieux joints peu inclinés. Le noyau est en tout cas confectionné pour réduire la perméabilité. La superstructure est maçonnée. En cas de bassin, les files de pierre sont dultées.

10 Type mixte - Le plus souvent, il est utile de donner aux murs monolithes une fondation simple en socles en emboîtements, pour établir les assomptions et réduire le ressac. À Zeebrugge, où l'on avait tout d'abord échoué les caissons sur le fond argileux, les assomptions ont oblige à établir un soubassement en enrochements. On réalise ainsi le type mixte, qui convient surtout pour les murs à marée, mais aussi pour tous les ouvrages profonds et très profonds.

Le point capital est de donner une bonne assise au mur et d'éviter ses dislocations ultérieures. Le massif d'enrochements doit donc être assez à profondeur suffisante (8 à 14 m. sous les hautes murs ordinaires). Il faut une bermier assez étendue au pied du mur de part et d'autre, portant les blocs de protection du côté du large. Le mur doit être massif et bien stable (épais sur la base sensiblement égale à la profondeur). Il doit être long de 600 m. d'éléments pas trop longs (<20 à 25 m.) et construit après lassènement du soubassement, pour éviter les ruptures ultérieures. Les blocs conçus dans des caissons métalliques à Zeebrugge mesuraient en moyenne 25 m. de long et 3 m. de large. La hauteur variait de 1 à 5 m. (Poids: 2500 à 3000 tonnes après listage) comme épaississeur, c'est un minimum, il est recommandé. De même qu'on descend en dessous de 10 m. (en fait, la largeur variait à Zeebrugge de 8 à 11,50 m.) On peut construire le mur en blocs de béton armés plus ou moins lisses (antenne de Naples). Les dimensions de ces blocs sont allées croissant, jusqu'à 10 x 5 x 3,10 à Barèl (360 tonnes)

Pour augmenter la mobilité de l'armature en vue des tassements, on a eu l'idée d'embosser les blocs en feuilletés inclinés sur la verticale, de 22° à 30° à 40° à Scherminger. En cas de tassement, ces feuillet évoluent sur les murs et la désorganisation se limite au soubassement monolithique éventuel. Il semble logique que cette méthode doive céder le pas à celle des blocs empilés verticalement et de grande dimensions. Ces blocs visent tout surtout par leur poids et le fait que qu'ils engendrent. Comme valeur sûre du coefficient de glisse et d'ivos, il faut dix ans de prise d'eau dans les joints, on peut envisager 0,60. Un minimum de 0,54 a été observé par nous direct à Antipagusara (Chilifi à c. du 7 de 11 - 38. Au niveau moyen, où les actions sont les plus violentes, il peut être bon de briser les joints horizontaux, de manière à intégrer la résistance aux cicalement à la stabilité au glissement.
Pour la confection de ceux-ci, les caissons métalliques ou de préférence en béton armé, de grandes dimensions, ont donné de bons résultats et semblent les plus favorables. Les caissons sont de structure ordinaire et sont divisés par des parois de réfoulement résistantes. On les teste autant que possible avant de les immerger en place, ou en les échouant rapidement en faisant pénétrer l'eau dans quelques-uns des compartiments (2 sur 4 à Bigorre). On remplit alors de béton à sec les autres compartiments, puis on épuise les premiers, que l'on bêtonne à leur tour. A Bézegur, dont le caisson était noyé, les parois immerses d'un mètre en mb le bétonnage s'est fait sans eau par bennes de 5m³. A Bézegur, dont le caisson métallique était abandonné. A Bigorre, le caisson avait que deux mètres de hauteur, dont un pour les ponts du plafond. Il était surmonté de hausses mobiles récupérables. Les caissons étaient renforcés par de la maçonnerie, réservant quatre grands puis deux petits et constituant un premier étage. Les petits puis servent au pompage et à la manœuvre des vausses. Actuellement, on préfère des carcasses en béton, qui ne doivent être que légèrement armés : Barcelone, Valparaiso.

Citons une méthode dérivée de celle des puits ou blocs creux de fondation. Elle consiste à remplir des blocs cellulaires, posés au moyen de少女, flottant et dont les vides sont ensuite remplis de béton ou béton armé sous-eau (Barcelone, Gênes, Naples).

Les digues mixtes ont donné de bons résultats en général. Les accidents arrivés à certains d'entre elles ont des raisons connues.

Civita - Neochia : massif d'embracements arasé trop haut.

Bigorre : construction trop rapide ayant entraîné un bassinement insuffisant des embracements ; risques trop étroits et talus trop raide vers le large. Barcelone : fondation trop haute, muraille monolithique trop droite et inégalement protégée au pied vers le large.

12 Digue à terre-plein... Il arrive que les digues ou môle liminent du côté du large des terre-pleins, qui peuvent avoir été partiellement conquis sur la mer ou étroitement ou remblayés à l'abri du môle.

La construction sur le large est conforme aux paragraphes précédents, généralement du type mixte ou à infrastructure maçonnée. Vers le terre-plein, la construction peut être éventuellement simplifiée si le remblai est fait immédiatement, ce qui épargne la superstructure contre les coups de mer. A Bézegur, la largeur des caissons extérieurs a été réduite à 7,50m. (mur à bœufs) en bordure du terre-plein de 7,5m. de largeur, limité vers l'avant par un mur de quai sur encrochements construit en eau salme. A la nouvelle digue de Beuzeville, le mur a reçu un profil de mur de quai massif, stable selon la profondeur sur massif d'embracements protégé vers le large.

Le terre-plein doit être arasé à 3 ou 5m. au-dessus des plus hauts mers et on conserve éventuellement le parapet protecteur vers le large, le mur intérieur doit avoir au pied des profondeurs suffisantes pour l'accostage.
Chapitre V.
Ouvrages intérieurs des ports.

1. Généralités. Les difficultés d'exécution de ces ouvrages sont moindres que celles des ouvrages extérieurs et dominent moins leur conception. Les embâcles aussi sont moindres, bien qu'il faille encore tenir compte de l'action de la houle, qu'elle atténue. Mais les ouvrages ne sont plus exposés aux vagues de tempête. Les effets de la salure et de la marée subissent une difficulté considérable provenant du fait que le terrain est souvent très déformable (vue) et que les ouvrages doivent répondre support des charges considérables, voies ferrées, grues, hangars, etc. D'autre part, les profondeurs requises sont généralement grandes. Si on y a ajouté l'amplitude de marée, la recette minimum de eau (2m environ en bassin abrité) et la profondeur minimum de fondation, en obtient des hauteurs de construction de 20 à 30m. La saignée d'eau devient alors considérable. Le travail dans l'eau aux grandes profondeurs s'affaiblit le plus souvent par l'air comprimé, à moins que l'on ne puisse adopter une fondation haute sur pilotis pour les ouvrages qui n'ont pas de réseau d'eau.

Lorsque c'est possible, on établit les ouvrages en fouille dans le terrain formé, séparé des bassins par une digue revêtue d'eau, d'épaisseur suffisante pour la sécurité de la fouille. L'épaisseur de l'eau, selon le bassin et la profondeur, par règles de drainage, puisards et pompes. Pour les ouvrages de dimensions modérées : têtes d'écluses, fouilles de murs, etc., on utilise le rabattage de la nappe aquifère par batterie de tubes filtrants ou pompes de sondage. Seulement, les tournoisements sont généralement importants. Lorsqu'il s'agit de construire un bassin, on les réduit au minimum ou n'effectuant la fouille si ce qu'au-dessus de niveau de haute mer ordinaire, ainsi que le déblai nécessaire pour la construction des murs, etc., que l'on peut d'ailleurs établir sur fondation haute. Lorsque le béton est bien durci, on ponce la digue et on met le bassin à profondeur de drague, les déblais étant refoulés au lieu de leur emploi (remblaiement de terrains bas, constitution de niveaux-pleins). (Voir Engineering, 11 mai 1928, extens du Royal Éducateur à Avonmouth.)

Pour les balzaus autre de grande hauteur, l'emploi du béton armé coulé sous eau, selon certaines prescriptions scandinaves, ou même des palplanches métalliques, a permis de faire de grands progrès.

Pour les ouvrages d'évacuation et les têtes de la digue de fond, zée, on a préféré établir les ouvrages en mer, dans des endroits abrités par le moyen de grands balzaus formés, plutôt que de les associer au terrain immergé. On évite les fouilles importantes et le terrain de fondation n'est pas plus mauvais, surtout si l'y a quelque courant empêchant le
Dépôt des vases (marée)

Le béton et le béton armé peuvent être employés presque sans réserve pour les ouvrages intérieurs des ports, presque toujours enclos à sec. Ils ne sont mis en contact avec l'eau salée qu'après durcissement suffisant; néanmoins, il est utile de prendre les précautions requises pour la travaux à la mer, d'une manière raisonnable et adéquate aux circonstances.

2 Mur de quai — constituent les constructions, les ouvrages intérieurs les plus importants et les plus courants. Ils limitent les bassins profonds des terre-plans. Leur paroi doit être sensiblement verticale et sans saillies. Leur stabilité dépend de leur poids, des poussées des terres derrière les murs et de la poussée de l'eau, variable si le bassin est à marée. L'élément relié à la poussée des terres est inexact, surtout si le niveau de l'eau est fluctuant. L'oscillation étant périodique, on peut estimer que le niveau de l'eau dans le terrain s'entaille à la marée moyenne, pour autant qu'il n'y ait pas d'afflux d'eau souterraine. En principe, il ne faut donc pas drainer sous marée haute, ni drainer seulement par des moyens filtrants. Mais il est favorable de remblayer derrière le mur avec des terres perméables et pouvant peu, sable gras, de préférence même gravier ou pierraille. L'argile est dangereuse s'il peut se délaye ou gonfler. Certains ouvrages massifs modernes possèdent des épaisseurs qui ne peuvent suffire que pour des faibles poussées des terres; il serait impératif de s'en inspirer sans plus ample examen. Les poussées considérables qui peuvent dévoyer les terres argileuses sur les murs de quai ont été mis en évidence par les diversements et les glissements des murs de quai dans l'Escaut à Anvers. Les glissements ont été rendus possibles par la fondation plane et horizontale établie sur l'argile. Il faut évidemment vérifier la stabilité élastique et de glissement sur la base de fondation, dans les diverses hypothèses, de la même manière que pour les murs de soutènement.

En principe, les types employés pour les murs de soutènement peuvent convenir pour les murs de quai, surtout s'ils sont construits à sec à l'abri de batardeaux ou en fouille ouverte. Pour réduire la tension d'eau, le sommet de fondation est parfois soudé sous eau dans un encorbellement de palan causing.

On donne généralement aux murs construits à sec la forme massive. De fait en béton, à joints de retrait et parfois parementé de puis M&B jusqu'au couronnement. On conserve une grandelargeur au couronnement, ce qui stabilise, permet d'y établir une galerie pour les canalisations de toutes sortes utiles dans un quai de port et permet d'y poser un ou même tous les rails des grumes, des ballots d'amarrage, etc. Les murs très massifs sont cependant coûteux.
réduire l’épaisseur sans nuire à la stabilité, on pouvait avec avantage, utiliser les ouvrages en pierre, les éperons équilibrants en béton armé, qui n’ont encore qu’une rideuse d’application dans les murs de quai. On a construit des murs avec évidements à arcades à Copenhague.

Les murs massifs sont aujourd’hui encore en faveur; le développement du béton armé favorise des structures plus évidées, notamment les murs sur plateforme élévéé fondés sur pieux, qui constituent une forme caractéristique des murs de quai. Son principe a déjà été exposé dans le cours de murs de soutènement et fondation. Il conviendra pour les bassins à niveau sensiblement constant (bassins à plat); ils peuvent cependant être adaptés aux bassins à marée : les types anciens (Pays-Bas) comportaient une large plate-forme en charpente de bois (gris) établie sur pilotes verticaux et obliques. Sur cette plateforme, on élevait à l’avant un murvau mazonné, durcie lequel on remballait sur la plateforme. Sous la plateforme, les terres s’étendent suivant le talus naturel lors du remblaiage ou du dragage au pied de l’ouvrage. Parfois, un mauvais terrain, ou faute de palplanches le long du bord postérieur de la plateforme, pour renforcer les terres en arrière.

Le talus sous la plateforme est souvent recouvert d’immenses épaissis de terreau, et si le terrain est très mauvais, constitue évidemment par un remblai préalable de gravier ou des plateformes de lessivages disposés en retrait et au travers desquelles on bat les pieux. En terrain très pouvant, la plateforme est aussi parfois aménée en arrière dans le terrain à des masses jurons.

Actuellement, on établit les murs sur pieux en béton armé; ils ont l’aspect d’une cornière à longue branche horizontale (serrée) On enraie autant que de besoin. Pour certains types récents, le paramètre du mur est prolongé par des palplanches portalives en béton armé, solidarées avec le mur et qui reçoivent les terres, dont la poussée est réduite par l’action de la longue cornière et la pression des pieux. Cette élision est notamment répétée les pieux en bois de l’action des vents (Göteborg) La plateforme est établie sous le niveau ordinaire de l’eau mais de manière à être toujours noyée, surtout si elle est en bois.

Les ouvrages peuvent donc se construire à se avant renseignement complet du bassin dans une faille dont le fond n’est que peu sous H M O. Si l’il s’agit d’un mur à marée, il faut descendre la faille de mur presque sous H M O, nécessitant la succion d’eau et la réduction.

Pour les quais devant supporter des manutentions non pondreuses, le poids du remblai sur la plateforme est une nuisance. A mon amitié (Ingénieur, 11 mai 1928) pour les murs de quai des nouveaux docks, on a constitué le terré, plus en bordure d’une dalle noyée en béton armé, reposant sur de fortes fondations transversales en forme de cadre à 3 panneaux. Les poutres sont supportées par des pieux en béton armé; elles reçoivent une espace creuse formé à l’avant par une paroi verticale et à l’arrière par une paroi
de retour des têtes. Le type, qui a l'apparence d'un mur, est ici nuire un appartement professionnel. Les murs sur plateforme stabilisée peuvent aussi se consti-

tuer dans l'eau; il faut alors stabiliser un bateau, mais la tâche d'eau
ton est facile. Les palanquées permanentes d'avant sont utili-és pour la construction de ce bateau. L'échange d'un caisson sur la tête des pièces reçues au niveau
toul est procédé précaire et abandonné. D'une manière générale, les pal-
anquées métalliques et en béton armé peuvent recevoir de nombreuses applications dans les ports pour l'établissement de quais légers ou provisoires. Leur résis-
tance propre est accrue par des ancrages.

Les précédents employés pour construire les murs de quai dans l'eau sans
équipement sont établis exposés dans le tour de fondations. L'emploi de l'air
comprimé par les caissons métalliques à bâton ou les caissons, cloche telle le
pas aux caissons en béton armé (Phipps, Espagne). Les caissons forcés en
béton armé, échoués, puis lâchés, deviennent très en faveur. Les caissons sont
cloués et divisés en un assez grand nombre de compartiments, ce qui aug-
mène la solidité et permet, après échouage, d'épuiser les compartiments par
petits groupes et de les lâcher en béton et de salter. Les caissons des bassins à
marée empoignent peu au-dessous de base mu; le couronnement monolithe
peut être construit à marée.

Un emploi aussi des piles hâtives (voir cours de fondations) em-
plis après coup, ou des blocs armés, posés sur un socle de
béton souillé sous eau, de sacs de béton, ou une plateforme d'emboîtements.
En Amérique et en Russie, on emploie des caissons comme infrastructure,
jusqu'à sous marée basse.

On établit aussi des infrastructures diverses (voir cours de fonda-
tions) formées de piles fondées sur caissons à l'air comprimé, caissons échoués,
hauts hâtives ou blocs armés. Entre ces piles, on établit des voûtes ou des lin-
tieuses en particules métalliques soufflées de l'airot ou en béton armé. Un
mur est couronné le mur tout le bassin au-dessus de H.M.M.E. Généralement
la longueur des piles est insuffisante pour que les têtes s'établissent en ta-
bus naturel depuis le pied du mur jusqu'au huitère.

Il faut donc obtenir la partie superieure de vide pour un mur con-
nuire en béton armé, ou un petit caisson échoué, ou des blocs armés, ou des pa-
lanquées, appuyées sur un massif d'emboîtements immergé entre les piles et un
arrête, ou sur des pierres battues ou liges derrière les piles et réunies par une
plateforme. Ce dispositif de support est en général assez peu en dessous du
niveau de M.B.

Les murs de quai portent des accessoires : échelles métalliques fixées dans
des retraites, escaliers avec main courante établis latéralement dans des cham-
bres (leur pente est 3/4 environ, la montée opposée aux vents dominants).
Comme dispositif d'emboîtement, on établit des organes, surtout pour les pe-
tits embarcations dans les bassins à marée. Sur le couronnement, on établit
des bâlots en fonte ou acier souli, espacés de 25 à 30 m. Pour les petites embarca-
tions, on stabilise les navires sur piédestaux de 10 à 12 m. Les bâlots doivent être en-\nsolidement dans le mur, ou dans des massifs en arrière des murs évidés ou sur-
levés. Les efforts exercés par les câbles des grands navires sur les bâlots peu-
vant être très élevés ; il faut se préoccuper alors non seulement de la stabilité
propre des massifs d’amarrage, mais aussi des poussées qui peuvent être reper-
tées par les tores sur les murs. Par le moyen d’équerres et d’amarrages en béton
armé, il n’est pas difficile de trouver, dans un cas comme dans l’autre, des dispositions fa-
vorable à la stabilité d’ensemble. Pour minimiser les roches des navires, on fix-
se parfois sur le parement des fouilles verticales en bois.

3. Appartements, piers et wharfs. Les murs des quais sont très soi-
tés, et pour développer les installations, lorsque la nature du trafic le permet,
reconnaît éventuellement aux appartements. Il sont des constructions à claire-voie
comportant une plateforme stabilisée sur des piles de pilotis ou sur des piliers. Ils
portent les appareils de manutention et les organes d’amarrage, éventuellement
des voies ferrées et même des hangars. On peut les intégrer à la longueur des
berges ; ils précèdent alors les murs non pilier et des murs sur levées. Nous avons indi-
qué, à propos du bassin d’Amsterdam, un dispositif de transition. Sous l’ap-
partement, la berge s’étale en talus, généralement revêtus d’embâcles,
d’un pare-sole ou mazagon, de dalles de béton ou de parois, selon la na-
ture du terrain.

Les appartements, plus légers et moins résistants que les murs, ne con-
viennent pas aux marchandises pondéreuses, mais au trafic, généralement
spécialisé, de certains matières divisées, fluides ou légères ; grains, pétroles,
poisson, viandes congelés, même des charbons et minerais en cas de manut-
tenance par transporteur. Les charges verticales sont déterminées par les condi-
tions d’exploitation. Les efforts horizontaux provenant de l’amarrage, des mou-
vements des navires peuvent être évalués d’après les éléments locaux.

Les appartements en bois sont moins plus résilientes, à cause de la facilité
de construction et de réparation et de leur facilité. L’emploi de pêche de fort
éparri (les rends résistants 30 à 40 cm) les palés, écartés en moyenne
de 2,50 m., peuvent être rapprochés de la résistance sauvage. Les inconvénients
sont leur durabilité limitée, les frais d’entretien élevés et le danger d’incendie.

Les appartements en béton armé acquièrent de plus en plus de place,
à cause de leur résistance, de leur imperméabilité, et parce qu’ils s’associent
favorablement avec les hangars en béton armé. L’inconvénient principal
est la rigidité, qui amplifie les dégâts aux navires et la difficulté de répara-
tion de l’ouvrage en cas d’abordage. On préfère éventuellement les appartements
sur des pieux en bois et des ventouses placées en avant. Ils contiennent des
joints de dilatation, distants de 50 m. et s. Pour augmenter la résistance
aux efforts horizontaux, on solidarise généralement l’appartement avec le tope-

- 89 -
Plain en arrière, de manière à réaliser à la fois une butée et un ancrage. On se rapprochera ainsi finalement du type à mur de quai surélévé. Les appartements peuvent se construire à sec, avant mise en eau du bassin ; ils sont alors moulés sur place. Lorsqu'ils doivent être construits en eau profonde, c'est fréquent, l'emploi de pièces moulées d'avance est avantageux. Les assemblages se font au ciment prompt. Il s'agit surtout des pièces de contreventement des longs pilotes, dont le rôle est essentiel pour la résistance. Pour augmenter la résistance horizontale, les Américains emploient aussi beaucoup des piliers formés de cylindres verticaux, que l'on descend sur ou autour d'un groupe de pieux-bâtons et que l'on remplit ensuite de béton. Des ouvertures ménagées dans les cylindres permettent d'y fixer, avant le bétonnage, des pièces de contreventement moulées d'avance.

Les appartements de rives sont continus ou discontinus, selon le but. Pour une exploitation publique, l'appartement continu est supérieur. On peut aussi disposer les appartements perpendiculairement à la rive ou obliquement ; ils délimitent alors de vrais petits canaux pour deux navires et peuvent recevoir deux navires (la longueur ne dépasse en général pas un poste d'amarrage). La disposition de voies forcées et de grues mobiles est difficile ; ces appartements conviennent surtout pour la manipulation par transporteurs mécaniques ou pneumatiques ou pipe-lines. Ces dispositifs s'emploient aussi en rivière lorsque les profondeurs à la large sont insuffisantes. On peut aussi fixer dans ce cas des appartements parallèles à la rive, en eau profonde, reliés à la rive par des passerelles.
Les navires de mer ne peuvent assurer que sur une large et les communications avec la rive sont plus défavorables qu'avec les appartements navaux. Si l'écartement de la rive est faible, on peut faire circuler sur l'appartement des grues à grande portée pouvant desservir la rive, ou un portique transbordeur appuyé d'une part sur l'appartement, d'autre part sur la rive.

Le dispositif, en association avec un quai de quai à fondation peu profonde, permet de décharger au même temps sur le quai et sur des allèges aménagés entre le quai et l'appartement, par le moyen des grues à fléche ou portique. C'est que les échches de métro permettent de décharger au même temps dans les allèges attachées au flanc du navire. Le système est particulièrement intéressant dans les ports où une grande partie de la cargaison est chargée sur allèges.

Il a eu une application systématique au quai George V de Londres, dont le résultat est considéré comme concluant (Voir Minute of proceedings of the Institution of Civil Engineers, vol. CXXVI, page 372 et De Ingenieur du 29-9-28).


Les wharfs ressemblent aux appartements et aux piers, mais en principe seulement des échasses légères reliant la rive à des endroits de profondeur suffisante (au-delà de la barre d'un estuaire par exemple) pour permettre l'accostage des vedettes, chalands, petits navires, etc. Ils constituent souvent le moyen de transport provisoire ou permanent des côtes coloniales. Ils sont construits en bois, ou même en charpente métallique sur pierres à vis. C'est ainsi qu'a été construit en 1892 le wharf de Kolomoni, dans le Dahomey français. Les palés simples ont 8 m. d'écartement; les palés doubles, 12 m.; ils sont contournés jusqu'au fond. Le wharf de Lome, construit en 1904, dans le Togo allemand, avait des portés de 24 m., avec des poutres cantilever; les palés n'étaient pas contournés. L'ouvrage a été détruit par une tempête en 1911; sa conception théorique et ingénieuse dans les détails n'était pas appropriée à un ouvrage maritime et colonial.

4. Dunes d'Albe — On appelle ainsi des constructions isolées, formées principalement de pierres groupées et contournées, servant soit à l'aménage des navires, soit de protection contre l'abordage d'ouvrages (ponts, terrains, appartements, etc.) soit à bord des ports étroits (ponts mobiles, entrées d'écluses). On les dispose généralement en ligne, à des distances de 50 m. au plus. Des lignes de dunes d'Albe peuvent remplacer des appartements pour des bateaux de —
5 Écluses maritimes. Généralités. S'emploient dans les ports à marée pour séparer les bassins à flot des avant-ports soumis à marée. Les bassins à marée présentent de nombreux inconvénients : profondeur considérable, fluctuation gigan te du niveau, courants, houle et envasement. Les courants de marée peuvent être très importants dans les entrées des bassins, ce qui peut limiter les superficies. On se soustrait à ces inconvénients par les bassins à flot, dont le niveau est considérablement constant et égal à celui de l'HO ou même de l’HVE.

Un bassin à flot peut être séparé de l'avant-port par une tête d'écluse simple, comportant une porte de flot et une porte d'été ou une seule porte si elle est réversible (glissante ou roulante). Quelques temps avant marée haute, on égalise le niveau du bassin et de la mer, par des aqueducs, ou ventouses, et on ouvre les portes. Les entrées et sorties des navires doivent se faire alors, ou résume les portes à l'étale de marée haute ou peu avant. La durée d'ouverture n'est donc que de quelques heures 1, 2 ou 3 au plus, si la courbe locale prévi nante est une étale de marée haute assez prolongée. (Le Bateau)
Il y a donc une légère fluctuation de niveau, de quelques décimètres à dix centimètres, qui convient bien au produit en cours de montage, et qui convient aussi à la petite série de petits bassins. (Bassin à mi-marée du Kattegat, à Ouwers : 100 x 30 m)

Un premier perfectionnement consiste dans la création de bassins à mi-marée, rapprochés de l'avant-port et du bassin à flot, pour des tâches d'écluse simples. C'est une espèce de grand bassin plus profond que le bassin, où les bateaux peuvent s'amarrer et faire les opérations de port, mais aussi attendre l'ouverture du bassin à flot. La fluctuation de niveau y est plus forte, de mi-marée à mi-marée en passant par l'étale de haute mer. La durée d'ouverture est donc de six heures environ. L'accroissement récent des dimensions des écluses à sas supprime l'intérêt des bassins à mi-marée, d'ailleurs peu existant.

La véritable solution est celle de l'écluse à sas, c'est-à-dire comportant deux têtes et un sas intermédiaire, permettant de communiquer à tout moment de la marée avec l'avant-port ou le bassin à flot. Toutefois, pour que l'écoulement de l'écluse soit possible à tout moment de la marée, il faut un chenal en eau profonde, que l'on rencontre surtout dans les rivières à marées aux rives concaves. Dans les ports côtiers, ces chemins doivent être drainés, l'écluse à sas, surtout pour les grands navires, est un ouvrage très coûteux à établir, d'entretien et d'exploitation. Mais les avantages correspondants des bassins à flot : profondeur réduite, plan d'eau fixe, manœuvres simplifiées, pas d'envasement ni d'entretien, peuvent compenser ces inconvénients et au-delà, d'autant plus que la capacité des grands écluses permet de desservir de très vastes bassins (Ouwers).
Un point capital est la sécurité de l'exploitation ; il faut y veiller pour chaque écluse et, pour les grands bassins, les double (A Anvers, les écluses Rogros du Kreischhaus permettent l'accès du bassin - canal ; l'écluse du Kreischhaus sera double et une écluse sera construite à l'autre extrémité du bassin - canal).

Enfin, notons que les écluses maritimes seront aussi à soustraire les canaux maritimes à l'action de la mer (ce qui en diminue la profondeur) ; les dimensions des écluses maritimes sont allées croissant et deviennent considérables dans les grands ports. Voici quelques données.

<table>
<thead>
<tr>
<th>Port</th>
<th>Date</th>
<th>Longueur</th>
<th>Largeur</th>
<th>Portée</th>
<th>Profondeur</th>
<th>Profondeur maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saint-Nazaire</td>
<td>1905</td>
<td>3 m.</td>
<td>241,80</td>
<td>11,80</td>
<td>9,70</td>
<td>12,35 à 10,55</td>
</tr>
<tr>
<td>Le Havre</td>
<td>1907</td>
<td>30</td>
<td>255</td>
<td>12,60</td>
<td>9,50</td>
<td>13 (V.E.)</td>
</tr>
<tr>
<td>Cardiff</td>
<td></td>
<td>24</td>
<td>255</td>
<td>16,94</td>
<td>12,68</td>
<td></td>
</tr>
<tr>
<td>Kollinau</td>
<td>1914</td>
<td>45</td>
<td>330 (221+100)</td>
<td>16,94</td>
<td>12,68</td>
<td></td>
</tr>
<tr>
<td>Emden</td>
<td>1914</td>
<td>40</td>
<td>260</td>
<td>13 (V.E.)</td>
<td>12,50</td>
<td></td>
</tr>
<tr>
<td>Newport</td>
<td>1914</td>
<td>30</td>
<td>300 (180+120)</td>
<td>13,70</td>
<td>10,70</td>
<td></td>
</tr>
<tr>
<td>Panama</td>
<td>1912</td>
<td>33,53</td>
<td>305</td>
<td>12,50</td>
<td>13,70</td>
<td></td>
</tr>
<tr>
<td>King George V</td>
<td>1921</td>
<td>30</td>
<td>244</td>
<td>13,70</td>
<td>13,70</td>
<td></td>
</tr>
<tr>
<td>Dock (Londres)</td>
<td>1909</td>
<td>22</td>
<td>180</td>
<td>12,50</td>
<td>10,50</td>
<td></td>
</tr>
<tr>
<td>Anvers</td>
<td>1928</td>
<td>35</td>
<td>270</td>
<td>14,54 à 10</td>
<td>15 (V.E.)</td>
<td></td>
</tr>
</tbody>
</table>

[1]: écluses doubles jumelées.

Les écluses dont la largeur est donnée par une somme de deux chiffres comportent une ème intermédiaire. Les seuls de grandes dimensions, supérieurs à celle des plus grands navires, sont pour être d'écluse le plus grand nombre de bâtiments en même temps, ce qui réduit les frais de manœuvre, mais augmente la durée d'écluse. Il est enfin essentiel de permettre, par suite des progrès successifs, d'anciennes écluses plus petites sont accolées aux modernes plus grandes et continuent généralement à assurer un service propre.

6 Construction des écluses maritimes — Elle est basée sur les mêmes principes que ceux qui ont été exposés dans le cours des écluses de navigation, adaptés aux circonstances particulières : grandes dimensions, chêne faible, variable en grandeur et en sous (Ainsi, au Kreischhaus, la flottaison finale du bassin - canal est +4,00 ; du côté de l'écluse, PBM = -1,00 et PHM = +4,11. À Ymuiden, côté du canal -950 NAP ; côté de la mer, PBM = -2,50 NAP, PHM = +3,69 NAP.)

Jusqu'à présent, les écluses maritimes sont toujours été construites avec radier capable de résister aux sous-marins en cas de mise à sec. Vue les grandes profondeurs, cela exige des dimensions énormes et des armatures importantes (7 m. à Kollinau, 5 m. au Kreischhaus) Les lètes sont...
alors séparées par un joint continu du sas. A Ygnien, on a imposé sur ces dispositions. Les têtes ne peuvent pas être mise à sec, sauf dans les parties correspondant au chemin des portes roulantes.

Le radier n'est relativement que sous cette partie, et les parties contiguës, moins épaisse, en sont séparées par des joints. En cas de réparation au chemin de roulement, on peut échouer une caisson en béton armé, à chambres de l'état de eau, restant une chambre de travail à l'air libre sur toute l'étendue du chemin de roulement. Le poids du caisson contribue à équilibrer la sous-pression et la flexion du radier se fait dans le sens de la largeur du caisson (15 m. environ) inférieure à la longueur du radier (50 m.) le caisson ne subit pas de poussée ; on laisse les murs de l'équilibre de part et d'autre par les saccades suivant. Ce caisson obtient en même temps la chambre de porte transformée en caule sèche, permettant de réparer la porte.

Les bajoyers sont très massifs et contiennent les dispositions suivantes : vannes, etc. On les considère comme rendent les tassements inévitables, les bajoyers sont fondés séparément des radiers, la liaison étant éventuellement réalisée après coup par bétonnage d'un joint avec barres de liaison en attente (Brunwicks). En mauvais terrain, on pose sur pierre (Ygnien). Le calcul de la fondation est complexe et doit être fait avec soin, notamment pour le report des forces poussées horizontales sur la terrasse, rendu délicat par suite du dégagement de l'ouvrage. A Ygnien, on a compté sur la résistance à l'arrachement des pieux pour équilibrer partiellement les sous-pressions sur le radier de tête au niveau normal.

Les grandes écluses maritimes comportent presque toutes des portes roulantes, qui se retiennent dans de grandes chambres accolées normalement aux têtes, et généralement doubles (Il y a deux portes par raison de sécurité) les chambres doivent pouvoir être mise à sec pour la réparation des portes ; on les obtient par un bâti-terrain métallique spécialement prévu, ce qui interrompt pas le trafic de l'écluse, ne par un caisson comme à Ygnien. La mise à sec de toute la tête, lorsqu'elle est possible, doit permettre la réparation en place d'une porte formée qui serait avariée au point de ne plus être retirée dans son ensemble. Elle serait alors mise à sec entre la seconde porte et une porte de l'autre tête, renommé par flottage au moyen de remorques et échouée entre une bâtière spéciale ; si la porte intérieure est avariée, la porte de secours devait effectuer un trajet d'environ 15 km., dont plus de la moitié dans l'océan, et traverser l'écluse Rogers. Les Néerlandais considèrent le système comme impraticable ; il semble devoir être toujours possible de ramener la porte dans l'ouvrage. Il faut observer que la disposition soigneuse des portes plus fortes, capables de résister à la charge totale de marée haute sur une face. Une telle condition était excessive pour une porte de 50 m ; cette construction a probablement provoqué l'examen critique et l'abandon de la condition de mise à sec de la tête.
En terrain assoupli et perméable, les têtes reçoivent naturellement des parafonilles et encouragent en même temps les infiltrations et dérangements de terrain, ainsi que de réduire les sous-pressions. Les radiers contiennent des tunnels pour canalisations, etc. Il y a parfois un mur de chêne, par important (Panama, Newport, canaux maritimes). Les sas ont des radiers minces, percés pour éviter les sous-pressions et des bajoyer indépendants. Aux Kruisschans, ils sont massifs, par suite de la présence des aqueducs. À Yunnider, les aqueducs contournent simplement les têtes, en a donc que donner aux bajoyer une fondation haute sur piéce et plateforme ; le pavement est prolongé jusqu‘au radier par des palplanches en béton armé. Le mur est enfoncé par des non-ouvrants et est drainé.

Sur fond râchoux, il n'y a pas de radier (St.-Nazaire).

La fondation haute réalise une grande économie et accélération du travail. Il y a une tendance très forte à l‘heure actuelle à réduire les revêtements des grands pas au minimum par l‘emploi de palplanches en métal ou béton armé. Le système est possible grâce aux nouvelles conceptions relatives aux moyens de sasement, par galeries ou aqueducs établis dans les têtes. Les grandes chambres des portes roulantes allongent beaucoup les aqueducs, qui en différencient les parois. On se basant sur des expériences concluantes effectuées sur modèle en laboratoire d‘hydraulique appliquée, on a fait passer l‘eau de sasement au travers de la chambre de la porte dans la tête intermédiaire de l‘écluse d‘Yunnider.

Les aqueducs débouchent souvent dans les mélanchons des portes décrites on à un vantail, en vue de la curée. Ils contournent simplement les têtes sur toute la longueur du sas, où ils débouchent au niveau du radier par des lavresss évasé se faisant face. Pour amortir la force vive de l‘eau, à l‘écluse de Kruisschans, on a fait communiquer les lavresss avec l‘aqueduc par des orifices verticaux triangulés. À Yunnider, on a employé l‘orifice en biseau à la base et l‘ouverture très progressive des vannes ; il n‘y a pas de dispositif amortisseur, ou la grande masse d‘eau du sas.

Au nivel de Panama, le débouché dans le sas se fait par des orifices verticaux dans le radier, les aqueducs étant sous les bajoyer. Quant au mode d‘exécution, on donne la préférence autant que possible aux ferrailles ouvertes équipes (St.-Nazaire, Panama, Newport). Les progrès dans les moyens d‘équipement, notamment le rabattage de la nappe acquière par双创 filtrants (Kollimau, Kruisschans, Yunnider) et les progrès dans la construction des batisses : béton armé et surtout palplanches métalliques (66 à 83 m. de longueur) favorisent beaucoup ce mode d‘exécution, même éventuellement en site humide. Néanmoins, on a fait aussi usage d‘air comprimé, par caissous fixes ou caissous mobiles, au bateau notamment, suivant les dispositions exposées dans les cours de fondations et d‘écluses de navigation.
Les écluses maritimes. On emploie les portes bascule, les portes à un vantail, les bateaux-portes et les portes glissantes ou roulantes. Les portes bascule sont les plus anciennes. Elles sont encore employées pour les petites écluses, conjointement avec les portes à un vantail. Les bateaux-portes servent plutôt de portes de secours, et pour la fermeture des calles sèches. Les portes ne permettent pas de renversement de chute. Théoriquement, dans les bassins à flot à écluse simple, on peut se contenter d’une porte d’île. Encore faut-il produire un voisinage de l’équilibre, que la houle dans l’avant-port produise des renversements rythmés de chute, produisant un battant des portes, qui les fatigue beaucoup. Pour éviter cela, on achante parfois les portes bascule ou à un vantail exposées à la houle par des portes valets, tournant autour de po- teaux tournants et s’appuyant sur des tasseaux fixés aux portes. Ces portes ont une essor comme les portes ordinaires, mais par de bor- dage. En position ouverte, elles se rabattent dans l’enclave derrière la porte (écluse de Seine).

De même les bassins à flot peuvent être séparés d’un bassin de marée par une porte d’île ; les canaux maritimes également. Pour les écluses à sec, il faut généralement des portes d’île et des portes de flot à chaque tête, à moins que le niveau ramené ne soit toujours supérieur à M.H.L., cas exceptionnel où que l’écluse soit ouverte à marée haute. Ces portes glissantes ou roulantes évitent cet inconvénient ; elles sont réversibles. Pour les petites écluses, les portes à secet ou en éventail ont le même avantage.

Les portes bascule se font encore en bois : chêne, greenheart, teck pour les petites écluses. Pour les plus petites, on adopte la même structure que dans les écluses intérieures. Les grandes sont généralement formées d’une ou de deux couches jointives de grososses poutres, solidarisées par des moines et recouvertes d’un bordage d’étanchéité. Les assemblages, aux potsaux, tour- rillons et bascule sont faits au moyen de fournitures et l’indéformabilité est assurée par des écharpes. Les portes métalliques, de plus grandes dimensions, sont généralement cintrées et formées, ou moins partiellement, d’un double bordage, comprenant des capacités étanches remplis d’air pour l’équilibrage. Mais il est en général utile d’avoir un double bordage sur toute la hauteur, pour la rigidité et la symétrie de la sollicitation de la porte.
ment, il faut que l'eau de mer soit acheminée dans les compartiments qui ne soient pas à l'équilibre, sinon le poids varierait trop suivant la marée. Il faut aussi que l'eau puisse s'échapper à marée basse.

Les chambres d'équilibre des portes tournantes doivent, autant que possible, être soumises au niveau de M. B.V.E., de manière que le poids de la porte soit invariable. Mais par suite de l'arrangement des chambres, qui sont souvent placées dans les poêles tournants, la variation est inévitable, mais restée modérée. L'équilibre ne doit d'ailleurs pas être complet, mais on peut néanmoins réduire les fatigues horizontales sur le collet et les tirants, en enlevant les caisses à air vers le poêle tournant, tandis que vers le poêle basculé, les chambres sont remplies d'eau. Des vannes et des conduites d'air comprimé permettent de régler l'équilibre, d'isoler et de vider les chambres, etc. Cet équilibre est très avantageux, le poids actif des portes métalliques est peu variable et la traction horizontale faible. Au contraire, le poids actif des portes massives en bois varie fortement suivant la marée. L'étanchéité est assurée par des fournitures en bois (chêne, grenierhecht).

La structure de l'ossature des portes est la même que pour les écluses de navigation intérieure, le type à aiguilles convenant bien pour les grandes longueurs relatives. Il est de même des portes à un point, qui reçoivent le plus souvent une section transversale rectiligne de bateau-porte, permettant de la mettre en place par flottage (écluse de Tancarville, au Havre). Les poêles basculés à double bordage peuvent aussi être aménés en place éventuellement par flottage, dressées en s'aplatis.

Les pivots et crapaudines reçoivent les formes usuelles, il est bon d'assurer le graissage sous pression du pivot. Les poussées sur les haurds sont libres, ainsi que les pressions sur le bâque que l'on fait en béton solidaire armé et ancré (type de Panama) et garni d'un bâche-bane en bois servant d'appui aux fournitures des portes.

Dans beaucoup d'écluses françaises et anglaises, la manœuvre se fait par câbles ou chaînes noyées, commandées par voies hydrauliques. Actuellement, on préfère la manœuvre élecctrique, par bielle et manivelle (type du canal de Panama), ou bien par crèmeauille droite articulée, ou crémaillère droite à translation et bielle. Sauf pour les câbles, il faut un intermédiaire élastique entre la porte et le dispositif de manœuvre (ressorts Belleville toujours comprimés) et il est utile de disposer des butoirs hydropneumatiques de fin d'ouverture.

Les bateaux-porte seront décrits plus loin à propos des sales sèches.
Les portes glissantes, et principalement les portes roulantes, sont aujourd'hui le plus en faveur pour les écluses maritimes de grandes dimensions. Elles sont isotopiques et leur calcul est exempt des incertitudes relatives au calcul des portes basculées en charge. Par rapport aux portes à un vantail, elles ont l'avantage d'être appuyées sur le fond par de multiples galets et de n'être pas exposées à donner du nez et à gagner sous l'effet du poids et des efforts de manoeuvre. Il n'y a aucune gêne à leur donner la forte épaisseur nécessaire ; cela n'altère qu'à la tête où l'incommençement de la chambre de porte normale à l'écluse. La longueur de cette chambre, supérieure à la longueur de l'écluse est le plus grave reproche qu'on puisse faire à ce type de porte, mais il est compensé par la diminution de longueur de la tête par rapport aux écluses à portes d'île et portes de flot. Néanmoins, par raison de sécurité, on ne mit parfois les têtes d'écluse d'une double porte roulante ; c'est le cas des deux écluses du Knieckhans et de la tête intérieure à Gmin- den.

Pour réduire le poids dont provient la moindre partie de la résistance, les portes sont équilibrées par des chambres à air régnant sur toute la longueur sous le niveau des plus basses eaux. Au-dessus de ces chambres, le bordage est généralement double, mais dans ce cas, l'intérieur est librement accessible à l'eau même, pour réduire les pressions sur les têtes, on règle le niveau de l'eau dans la capacité supérieure en tête de la porte à un niveau intermédiaire entre l'amont et l'aval, au moyen de Vàmes (Zeibregge). Le réglage du niveau de l'eau permet aussi de régler le poids de la porte, qui est un élément de sa stabilité, notamment pour résister aux efforts transversaux des vents et des courants, ou de la houle pendant la manoeuvre. La capacité supérieure est vide lorsque la porte flotte. Par suite du double bordage et de la longueur importante de la porte, celle-ci peut flotter dressée, comme un bateau-porte. Pour réaliser le plus grande stabilité de flottaison possible, avec le moindre bruit d'eau, on stabilise les chambres d'équilibrage le plus haut possible et on charge la partie inférieure d'un lest fixe, parfois très considérable (1 550 tonnes à St. Nazaire). Ce lest doit être bien arrimé et les caisses à air sont éloignées pour éviter les déplacements du lest d'eau variable, in-
L'ouvrage dans les chambres d'équilibre latérales (water-ballast) et permettant le réglage de la porte. Par suite de la forme peu favorable au point de vue de la stabilité de flottaison, on impose que le centre de gravité se trouve sous le centre de poussée. Il faut que les portes puissent s'introduire et sortir aisément sans encombrements; les portes doivent recevoir à cet effet des dégagements nécessaires pour permettre une obliquité suffisante des portes pour éviter les opérations doivent être évidemment conduites avec précaution, par emmerces et hécule.

Les portes sont une structure formée de deux ou plusieurs toises principales (4 au Brinquechans), en treillis à larges mailles, sur lesquelles prennent appui des aiguilles; celles-ci sont supportées à leur tour par les bordes par l'intermédiaire de traverses et de raidisseurs. En outre, des diagonales courent le contournement longitudinal et transversal. Les aiguilles sont parfois légérement obliques en forme de pince (portes de ferblant et de ferblant) en vue de faciliter le dégagement de la porte flottante. Le bordage est en tôles planes, cintrées ou courbées (ces dernières plus légères). Il y a au moins deux portes étanches, limitant les chambres à air, accessibles par quinze et hécule. En outre, la partie supérieure porte généralement un pont de circulation, revêtu d'un plancher. Le pont est d'accès aux organes de manœuvre des paves, des tubes et d'air comprimé, éventuellement de ventilateurs, aux portes de visite, et. Parfois il est le passager publique et peut même porter des voies forcées, mais alors la chambre de portes doit être recouverte d'un tablier mobile (de préférence à un tablier fixe, qui saigne que le plancher supérieur de la porte roulante soit baissant) la porte du bâvre porte une voie forcée sur embrochés, supportée par les bordes qui ont été rapprochés dans ce but; c'est une disposition exceptionnelle. Les appuis fixes consistant en un double bâre, parallèlement légerement convergents, et en doubles bâchés en regard, pour des faveurs en bois pour l'étanchéité et le réglage. Le changement de sens de pression s'accompagne d'un jeu de quelques centimètres, mais aussi d'état que possible, surtout s'il y a une voie forcée sur la porte (1 à 2 cm. au bâvre). Si les abords sont inclinés, les bâches de tête et les bâches d'appui présentent le même jeu, ce qui facilite le dégagement. La convergence légère des bâches est à réduire le jeu transversal. A Ymmiden, il n'y a pas d'appui sur les bâches; la partie inférieure des bordes est fermée et gommé de faveurs en bois appliquées par la pression sur les paves latérales de l'encoche de la voie de la porte, dont la profondeur est réduite.

Les galbés sont en règle générale fixés à la partie inférieure de la porte; ils reçoivent une voie de roulement métallique rectiligne entre les bâches et ils doivent permettre le jeu. A Ymmiden, ce jeu est de 5 cm. de part et d'autre et il y a un rappel par galbés et plans inclinés. Les rails sont du type lourd, en acier doux, posés sur poutrelles noyées dans le radiers. Le dispositif de fixation et de désengagement doit permettre l'enlèvement facile.
sous eau, notamment à l'entrée des chambres de porte, pour la pose du bateau. Il n'y a en général que deux trains de galets, chaque train d'un nombre équivalent de galets (au Brüssel et à Ynniden). Ces trains sont égalisés entre les galets par des balanciers à rotule (Brüssel, Ynniden). En service, ils sont réduits, mais les galets doivent pouvoir supporter le charge de la porte. À ce moment, l'eau, complètement remplie, écarte les galets qui sont éliminés à Ynniden, où les galets peuvent supporter un maximum de poids de la porte lorsque deux caissons d'équilibrage sont vidés par accident (32 tomme en total pour les deux bouches). Les galets sont accessibles par des cheminées pouvant des échelles, abritant des caissons d'eau comprimé dans lesquels sont les galets. Les caissons d'eau comprimée sont vides à la partie supérieure. Dans certains ports allemands, toute la partie inférieure de la porte est abritée.

Une telle caisson, permettant l'embâcle et la séparation des voies de roulement, etc., en service, l'étanchéité est assurée par des fournures en bois établies sous la porte et glissant à faî大事le doux sur le radiateur, marqué par le joint élastique du type de la porte d'Ynniden, de cas de défaillance des chariots, la porte doit pouvoir être transformée en porte glissante. Au Brüssel, ce sont les fournures inférieures précédemment qui doivent prendre appui sur des glissières ou pièces de granit poli, à joints arrondis pour éviter les arrachements en cas de saillies. La même disposition existe à Ynniden. La manœuvre est la suivante: on soulève légèrement la porte par réduction du lest d'eau, et qui dégager les tringles de roulement. On retient la porte dans son enclave de la sorte, puis on réintroduit le lest et on règle la pression d'appui sur les glissières.

En résumé, les portes très perfectionnées constituent des fournitures très sûres en exploitation et d'une réglage aisé par le jeu des chambres d'équilibre et du miroir. Cela fait.

Les portes glissantes sont identiques en principe, sauf l'absence de chariots et de voies de roulement, remplacé par des sortes de glissements sur un tôle (Portsmouth) et des glissières en granit.
Les portes roulantes peuvent recevoir des ventilés. Celles du Krimschans comportent des pompes et des tubes permettant d'envoyer des jets d'eau dans l'encaissement de la voie pour délayage les broues, puis les aspirer et les diviser dans des chalands. On peut aussi y pratiquer des chasses sur le radier par des petites vannes installées dans le bas des portes.

Les moulins sont généralement la largeur strictement nécessaire à l'entrée pour permettre le dégagement des portes; au-delà, elles s'agrandissent, afin d'être assez spacieuses pour permettre le mouvement de l'eau et le radonage des portes. La structure se fait dans ce cas par un bateau métallique spéciale (baisse métallique flottant et échancrable) s'appuyant sur des fûtures ad-hoc, étanches par des fournitures en bois.

L'enraississement du fond de la chambre en service peut être combattu par des chasses, d'où le mouvement de l'eau lors de la remontée des portes suf- fit pour éraser les broues. Le mouvement de l'eau s'effectue éventuellement par des aqueducs de chaîne. Les dispositifs de nettoyage propres des portes, tels que ceux du Krimschans, rendent toute la technique de l'entrée des portes superficielles.

Dispositif de la porte roulante

Au sujet des efforts et dispositifs

Béal - Bancorville de manoeuvre, je me réfère au cours au Havre.

Dispositif de la porte roulante

Des idées : les très grandes portes, telles que celles du Krimschans, se manoeuvrent actuellement par un conduit unique roulant sur le couronnement des parois des chambres de portes et attelé électriquement aux portes.

La commande s'effectue par pignons engrenant avec des roues de chaîne, fixées aux parois ou par des tambours habillant sur des chaînes ou câbles.

On prévoit l'appareillage habituel de sécurité : interrupteurs de fin de course, freins électro-magnétiques, etc. La manoeuvre d'ouverture normale se fait en trois minutes au Krimschans. La porte d'Ymondres pèse au total 11 750 tonnes.

**8. Organe de manœuvre et de sécurité des écluses maritimes**

Les manoeuvres sont généralement électriques ; les moteurs sont abrités dans des cabines ou des cales et la commande est autant que possible, centrale. Les moteurs, pompes, etc. établis dans les portes sont placés dans une chambre, à l'intérieur de l'ouvrage, de manière à dégager le plus possible le pont supérieur.

Les aqueducs sont obtenus par des vannes cylindriques ou Stoney, largement équilibrées, vue leurs dimensions et leur poids. Le portail des vannes Stoney du canal de Panama est divisé en deux par une petite
pile finement profilée, en coton armé.

Des cabotins ou tranchettes facilitant l'entrée des navires ; des huitards solidement ancrés en arrière des bajoyers rigides ou dans les bajoyers mas- sifs souvent à l'amarrage (nord. à Yunniden)

Des dispositifs de protection et de sécurité doivent être prévus pour les grandes écluses maritimes, pour prévenir les risques très réels d'abordage par les grands bateaux et en diminuer les conséquences.

Les chemins d'accès doivent être assez longs et conviviaux, pour que les bateaux entrent dans l'écluse en bonne direction ; ils sont bordés d'estacade et de diques à Alebe très solides, permettant l'amarrage en attente et le passage de câbles de halage. Les navires doivent stopper à l'entrée et sont haliés dans l'écluse. Des chaines de protection sont tendues entre les bajoyers de tête à distance suffisante des portes, pour prévenir un obstacle élastique à l'abordage des portes par un bateau qui n'avait pas friser son cœu. Lorsque la porte est ouverte, la chaîne est longuée et se dépose dans une rainure sur le fond du radeau (Panama, Yunniden).

La chaîne est tendue par des rinces hydrauliques à soupape de sûreté (pression de service à Panama : 11 kg., soupape réglée à 5 kg.)

La tension maximale de la chaîne est de 120 m., la course possible du navire est de 21 m., ce qui suffit à avancer des navires de 5 000 à 6 000 tonnes de déplacement, à des vitesses respectives de 5 m. et 1 nœuds. La course de protection est parfois supérieure (10 m. aux portes supérieures de Gatun. Panama).

Le long des estacades et des bajoyers, on dispose des flotteurs de protection ; petits rideaux élastiques en bois de sapin, maintenus appliqués par des chaines verticales tendues par des lest en fonte. Dans les petites écluses, on se sert dans les bajoyers, de fournitures verticales ou des ventouses horizontales en chêne ou greenheart. A Panama, ces ventouses sont appuyées sur des ressorts et peuvent pivoter dans le mure. Des flotteurs élastiques sont préférables.

Dans les écluses à portes rotatives ou glissantes, il y en a généralement au moins une de réserve, qui sont comme fournitures de secours. Avec les autres types de portes, il faut des fournitures de secours spéciales.

Dans les petites écluses, ce sont des rideaux de ponteilles en bois. Les ponteille métalliques permettant de réaliser de grandes portées, et à la Nouvelle-Orléans, pour l'écluse du canal maritime, de 26, 20 m. de largeur, 15 de montrage sur le bateau et 5, 80 m. de chute maximum, on a prise des ponteilles de 25 m. creuses et pouvant flotter. Elles peuvent ainsi servir en amont et en aval. Elles sont mises en place par un pont tournant équilibré, dont le pivot est sur un bajoyer et qui dessert le dépôt de ponteilles disposé en spirale autour du pivot. L'acochage
se fait par un crochet à dérachage automatique lorsque la portelle est en place (action d’un mousquet) le système a coûté 355.000 dollars, mais est considéré comme supérieur à celui du canal de Panama, appliqué ensuite au canal de St.-Marie (Canada), et dont la manœuvre est réalisée précise. Il s’agit de barrières à montants articulés et rampeles suspendues à un pont supérieur tournant, et qui vient obstruer l’édifice par rotation en cas d’accident aux portes. En 1909 au canal de St.-Marie, lorsque on dut manœuvrer le pont par un courant de 1.50 m/sec., il fut endommagé et ne put être utilisé qu’au bout de cinq jours. Le système des portelles existait parallèlement. Le pont du Panama a coûté 432.000 dollars pour la même profondeur et 55,55 m de longueur. (Proceedings of the Am. Soc. of Civil Engineers, décembre 1927 — Genie civil, 28 Avril 1928)

Toujours en disposant des ponts mobiles sur les toits d’édifices ; si l’on en met un sur chaque toit, le passage n’est jamais interrompu. Mais ces ponts gênent toujours l’exploitation de l’édifice.

En terrain suffisamment enneigé, il faut de grands avant et arrière-rадиод. On les fait en fosses rectangulaires, en passant de grandes dalles ou dalles de béton sur couches d’argile et gravier, avec dé Üniversement de parafondues perpendiculaires à l’axe de l’édifice. Il faut prévoir les enrochements pile-môle, dandoîes pour les coques des navires qui s’alourdissent ou s’échoueraient.

9 Ponts mobiles et tunnels — Le trafic important des ports exige de nombreux moyens de franchissement, surtout pour les routes, les voies ferrées pouvant généralement contourner les installations. Comme les passages doivent laisser subsister un tirant d’eau très considérable pour les grands navires (40 à 50 m), on ne peut généralement pas établir de ponts fixes dans les ports maritimes ; il faut des ponts mobiles ou des souterrains. On peut établir des viaducs assez élevés sur les côtes ; il en existe de nombreux en Amérique et en Angleterre (Pont du Forth, etc.) ainsi que sur le canal de la Baltique.

Les souterrains ont déjà reçu de nombreuses applications ; ils constituent la meilleure solution du problème au point de vue de la capacité et de la sécurité du trafic, moyennant une stricte discipline et une bonne ventilation. Ils sont bien coûteux et exigent un grand développement, à cause des temps.

Les ponts mobiles sont infiniment moins coûteux, mais constituent des goulets pour les navires et rendent le trafic routier intermittent. Pour parer à ce dernier inconvenient, on peut établir des ponts jumelés, à une distance suffisante à une longueur de navire. L’un d’eux au moins est formé à tout moment. Moyennant une signalisation adéquate, le trafic rou-
fit routier n'est jamais ouvert (ports basculants sur le bassin - canal à Anvers.)

Comme ponts mobiles, on emploie les ponts tournants, les ponts basculants (très appropriés) et les ponts levants (exceptionnels à cause de la grande quantité de navires.) Les ponts tournants et les ponts basculants sont souvent à double voie, sur les grandes portes. Sur les estuaires et canaux, on emploie les ponts tournants symétriques à grande portée. (Pont de Baronne.) Sur les toits d'écluse, on emploie quelques fois les ponts levants, qui ne sont cependant plus guère en faveur. On utilise aussi les ponts transbordeurs, les transbordeurs sur radier, les baies automotrices (Anvers) et les ponts flottants à passage mobile. A Constant- tiople (Corne d'Or) le pont flottant de 1912 à 466 m. de long et 25 m. de large. Il livre passage aux transbordeurs. Il est établi en double rampe sur deux pontons rectangulaires à fond plat. Pendant la nuit, la partie mobile de 65 m. est ouverte pour le passage des navires. Le socle est très inconstant et la profondeur atteint 40 m. Dans des conditions analogues, on a cependant (en 1925) construit à Stockholm un grand vaisseau à travers basculante (voies sous de fondations)

Des dispositifs de protection analogues à ceux décrits pour les écluses doivent être installés, dans une mesure plus ou moins limitée, aux abords des ponts mobiles, pour éviter leur abordage, tant en position fermée qu'ouverte (ponts tournants)

10. Embarcadère - Pour le débarquement et l'embarquement des passagers des navires et passage d'eau, mais aussi pour l'accès des véhicules sur les ponts et des trains sur les ferry-boats, il faut des dispositifs spéciaux dans les ports à marée. Pour les passages, on peut établir des plateformes fixes ou divers niveaux dans des ouvrages à claire veine, accessibles par escaliers et reliées aux navires par passerelles volantes.

Pour les ponts recevant des véhicules, la solution ordinaire est celle de l'embarcadère flottant sur pontons plats, portant un tablier au niveau du pont des bacs. Ces tabliers doivent être assez longs de manière que la rampe (à M H) et la pente (à M B) reste modérée (5° maximum.) On est donc obligé de les établir dans des mouvements normaux aux rives, à fond en pente légèrement supérieure à la pente maximum du tablier. Les mouvements protègent l'embarcadère contre la houle. La partie de l'embarcadère soletant sur la rive doit être protégé par des espadrilles et d'Albe, les pontons doivent être guidés ou amarrés. Les bacs ne peuvent d'ailleurs s'attacher à l'embarcadère. Un tablier doit être établi entre l'embarcadère et le bateau, pour éviter des dérivations et des accidents lors du passage des véhicules.

À Flushing, pour des raisons liées à un emplacement restreint,
ou a été récemment un embarcadère formé d'un tablier mobile levant, suspendu par chaînes à des portiques. Le bateau, dans un refoulement spécial, comme un ferry, et le port repose par son extrémité sur le bateau, pour éviter les dérivaillons. Au passage des charges, les manœuvres de levage et de descente sont électriques.

Le sont des dispositifs tout à fait analogues, mais plus importants que l'on emploie pour les ferries, ceux-ci devront accepter par la poupe dans un chenal de forme arrondie bordé d'escarades et de flotteurs de protection, qui amène les rails du ferry en coinçade exacte avec ceux du tablier mobile. Le dernier repose sur la poupe du ferry. L'embarcadère se compose d'un certain nombre de travers, articulés sur des travers de support suspendus dans des portiques par le moyen de chaînes, câbles ou vis sans fin, permettant le levage ou la descente. Ces travers sont plus ou moins équilibrés (pour le poids propre seulement). La longueur totale est telle que la rampe reste modérée. Il faut de solides dispositifs frontaux et latéraux d'amortissement et d'amortissement des chocs (garnitures élastiques, entraînes, etc.) Généralement les embarcadères sont jumelés. Les ferry portent deux voies, dont la bifurcation est sur le tablier mobile.

11. Outillage, voies et hangars. Ces questions, très vastes lorsqu'on les examine en détail, peuvent faire l'objet d'un cours. Nous ne pouvons songer ici qu'à les esquisser et à signaler leur importance. L'ingénieur des constructions civiles trouve dans son enseignement général tous les éléments qu'il faut pour répondre à ces questions et qui dépendent surtout des cas concrets.

L'ingénieur chargé d'une telle étude se documentera pour le choix des dispositions principales, dont ses connaissances lui permettent de déterminer ensuite tous les éléments.

L'ingénieur fondamental de l'outillage des quais est la grue mobile tournante, généralement à porte et à commande électrique ou à vapeur. La commande, hydraulique, longtemps en avantage, cédant maintenant devant l'électricité. La puissance levante est de 1,5 à 2 tonnes pour les grues à marchandises diverses, 3 à 5 t. pour les quais à matière pondéreuse. Le nombre des grues varie de 3 à 6 pour porte de 125 m., dans les ports bien outillés. Le rendement journalier est d'environ 150 tonnes avec la grue de 1,5 t., 300 tonnes avec la grue de 3 t., et 500 t. avec celle de 5 t. La vitesse de déchargement journalière doit être d'au moins 500 à 1000 t. avec des bateaux de 1500 à 6000 t. de port en boulard.

Un outillage spécialisé existe généralement pour divers traîfies importants : grains, charbons, minerais, pétroles, etc. Un port doit posséder en outre des engins de grande puissance, grues sur bâches, soit fixes, soit de préférence flottantes. On construit des grues flottantes jusqu'à 200 t.
On réussit fort développé et bien élevé essentiel à l'exploitation d'un port. On estime que le développement total des voies doit atteindre 12 à 14 fois celui des quais. On distingue les voies de manutention à quai et le long des hangars, dépôts et autres endroits à dérouler ou l'on change et décharge. Elles sont reliées par des voies de circulation à la gare de triage où l'on compose les trains avant leur expédition. On a formé les remise des voies de circulation. Il est ensuite déposé pour les descentes de port. Pour assurer le rendement les manoeuvres doivent se faire par trains complets, au moyen de locomotives, ce qui signifie que toutes les liaisons sont faites par signaux et que les trains sont en rayon assez grand. De là l'avantage des trains ou chemins de fer, dont les faisceaux se raccordent avantagément aux voies de circulation.

Il faut une rame de 45 à 60 wagons de 10 à 20 T. par bateau. Dans ces conditions, le nombre de voies à quai desservies d'un côté doit être de 2 à 3 quais, du côté de port de recevoir, de 3 à 5, pour 3 à 7 quais. On ne peut donc guère dépasser pour les quais les longueurs de 500 à 1000 m.

Pour les quais spéciaux, le rendement est généralement supérieure (300 à 1000 T. par hame et par poste de navire); il fait donc ici surtout de puissantes grues de manutention et une circulation toujours assurée, par deux voies et, généralement, il y a un dépôt le long de ces quais, de telle sorte que les points de triage peuvent être mis en stock, et matériels réunis étant organisé pour la moyenne journée. Parfois d'ailleurs, toute la manutention passe par le stock.

Les hangars sont des endroits de dépôt couverts sans étages. Ils sont parallèles aux quais, continus ou discontinus, ils sont de 50 à 150 m. de longueur et une longueur toujours grande. Ils sont établis au niveau du sol au départ du chargement des wagons, totalement ou en partie. Ils sont bordés de voies sur les deux faces, des voies même sont établies dans les plus grands. La construction comporte des appuis et une toiture, parfois des cloisons rigides d'abri contre les intempéries. On les fait en bois (danger d'incendie) fer ou béton armé. La construction change peu le terrain; la surcharge provient des manutentions et est relativement modérée.

Les bâtiments à étages servant au dépôt et à la manutention sont des magasins. Généralement plus étroits et moins longs que les hangars (20 à 40 m. de long) ils surchargent plus les trains pleins, à cause du poids propre et de l'étalonnage de produits aux divers étages. Le terrain étant généralement mauvais, le point capital de la construction est la fondation, sur semelles, paliers ou pieux. Parfois une partie du magasin est hangar couvert sur l'appartement, surtout pour les denrées périssables et non pondereuses (marée dans les ports de pêche), les magasins se font surtout en béton armé. Les dispositions particulières dépendent...
12. Canaux maritimes. Ils s'orientent aux navires de haute mer et se distinguent des canaux de navigation intérieure par leurs dimensions. Ils se classent en deux types principaux : 1° les canaux de navigation, généralement en pleine (canaux de Bruges, de Gand & d'Ypres, de Bruxelles maritimes). Ils ont un caractère de canal latéral ; 2° les canaux de jonction de mer ou de pontement d'isthmes, qui peuvent avoir un chéf de partage (canal de Panama).

Ils peuvent être sans échec, comme le canal de Suez, malgré une diminution aux extrémités, à condition que la vitesse du courant, qui peut varier de 0,5 m/sec. max. par sec.

Mais ce cas est exceptionnel et ne peut se prévoir que lorsque les diminutions de mer et de houle sont assez faibles. Généralement, à cause de ces diminutions, il est préférable de séparer le canal des bassins à niveaux variables par une élévation et de le constituer de biefs, à flotaison peu variable, dont le nombre dépend des caractères hydrométriques du terrain et du tracé. On réduit de la sorte les lacunes, ou facilite la navigation et l'interdiction (pas de courants ni d'obstructions.)

Des récifs dépendent des dimensions des navires que l'on peut admettre dans le canal. Des canaux dont la fonction est essentielle, comme ceux de Suez, de Panama, etc., doivent pouvoir livrer passage aux plus grandes navires.

Canal de Suez (740 m²)

Canal de Panama (2062,50 m²)

Canal de Kiel

Canal de Gand à Zonnezon
Nous reconnaissons la difficulté qui résulte de la croissance constante des dimensions des navires, que nous avons indiquée plus haut. Ces canaux limitent pour une longue durée les dimensions des navires affectés aux routes sur lesquelles ils sont établis. Ce dessin, les sections correspondantes actuelles du canal de Suez et du canal de Panama. Le canal de Kiel, construit dans un but militaire, a des dimensions supérieures à celles du canal de Suez.

Les canaux reliant à la mer des ports qui prétendent à une importance mondiale doivent également recevoir des dimensions analogues. Le canal reliant Amsterdam à la mer du Nord à 50m de largeur au profond, et 9,80 m. de monterage ; les talus sont à 5:1. Mais en projet de port se raccroche à la longueur au profond à 75 m. et le monterage à 12,50 m. ; le canal sera donc un des plus grands du monde. Ultérieurement, la longueur pourra être portée à 100 m. de profond et le tirant d'eau à 15 m.

Les canaux maritimes belges, comme le canal maritime de la Saône, (France) ont une destination plus modeste ; ils sont conçus en vue de mettre en relation avec la mer des ports d'importance secondaire, comme Gand, ou même subordonnés, comme Bruxelles. Ils ne reçoivent que des navires de tonnage faible ou moyen. On dessine les sections correspondant des canaux de Gand et de Bruxelles.

L'influence du rapport H de la section monterage au maître-couple sur la marche des bateaux est considérable ; d'autant plus que la vitesse admissible pour les myopes doit être nécessairement assez élevée. Le maximum général est voisin de 10 à 12 km/h. (6,25 m/s). Elle peut être plus élevée si le canal traverse, comme celui de Panama, des lacs assez profonds. La vitesse de 13 km/h., on a constaté sur le canal de Suez, (un bateau de 17,3 m. de largeur bâtarde provoquant une dépression de 1,37 m. du plan d'eau, pour n = 6,9. En aucun cas, n ne peut descendre en dessous de 5.

La croissance continue des dimensions des bâtiments fait que le voisinage des navires de dimensions exceptionnelles ne peut être généralement assuré. Pour le permettre, on prône à des distances considérables (12 km. par exemple, correspondant à une heure de marche), des élargissements de 60 à 100 m. de longueur et de plus de 100 m. de largeur. L'élargissement est préférable et en général bilatéral, surtout lorsqu'on veut permettre le virage du canal maritime de Kiel. Les coulées doivent être de trois grand rayon (1500 à 2000 m) sinon
on donne donc sur largeur $A = \frac{1}{2} \times \frac{1}{2} R$, $R$ étant la longueur des plus grands navires et $R$ le rayon.

En principe, les canaux maritimes ne présentent pas de différences par rapport aux canaux de navigation en ce qui concerne la construction, l'alimentation, les entretiens, etc., sous réserve de l'ordre de grandeur. Le canal maritime de Bruxelles, par ex. est alimenté par la petite Sorme, en temps ordinaire. En temps de piéred, on prévoit 3 m$^3$/sec. dans le Rupel à Wintham et on remonte l'eau par pompage, de Bief en Bief, au moyen de 3 stations. L'alimentation naturelle le présente souvent l'inconvénient d'introduction des vases, qui oblige à drague. Il est bon de laisser décanter le caillou. A Bruxelles, on admet l'eau de la Sorme dans le bassin de jonction, où les limons se déposent et que l'on drague périodiquement.

Le point le plus spécial réside dans le revêtement des berges, principalement au plan d'eau à cause des remous violents dus au passage des vaisseaux. Il faut donc des revêtements plus importants et solidement assis, de manière à éviter l'affaissement des terrains meubles, tant au pied que derrière le revêtement. En principe, il est utile de revêtir les talus sur toute la hauteur. On peut employer le système des murs de lait, assez facile ; la fondation doit être bien assise. Pour réduire la hauteur du mur, on lui donne une fondation sur élévation, le talus intermédiaire étant recouvert de bitume, d'un pavé maconné, d'entrailles ou de palplanches (canal maritime de Bruxelles). Il est préférable de conserver le talus d'inclinaison normale et de le renforcer de dalles de bitume (système Bouzault), de maçonneries de briques de brique ou de pierres sèches ou même d'entrailles échancrées sur le talus. Le dernier système s'emploie notamment lorsque le canal est creusé par dragage. Il est nécessaire d'établir un filtre de gravier sur pavements gradins entre le terrain et les pavés secs.

**Chapitre VI**

*Établissements de dragage.*

1 Rappel de notions relatives à la stabilité des flotteurs. En vertu du théorème d'Archimède, le poids du flotteur, dont la résultante passe par son centre de gravité $C$, est équilibré par la poussé de l'eau, égale au poids du volume d'eau déplacé, passant par son centre de gravité $C$ ou centre de carène, mais agissant en sens inverse, c'est-à-dire verticalement vers le haut. Le plan d'eau constitue le plan de flottaison ; il limite la partie immergée du flotteur appelée carène, dont le volume est dit volume de carène. Les diverses flottaison et un flotteur de poids constant, déterminant des volumes de carène égaux sont dits iso-carène.
Les flotteurs pratiques ont généralement au moins un plan de symétrie vertical continuant l'axe longitudinal. A l'état de repos, en eau calme, la ligne de flottaison est donc une courbe plane symétrique, dont l'axe de symétrie coïncide avec le grand axe de l'ellipse d'inertie, le petit axe lui étant perpendiculaire (direction transversale).

Pour produire une flottaison inescarène différente de celle du repos, il faut appliquer au flotteur un couple à axe horizontal. Il en résulte une inclinaison déterminée et limitée du plan de flottaison si l'équilibre du frottement est stable.

Le couple de renversement est alors équilibré par le moment des poids ou par le moment des formes. La stabilité de poids est réalisée lorsque C se trouve au-dessus de C; elle est absolue. Mais elle exige un fait très important dans le fond du flotteur comme dans les portes roulantes et un grand volume de carène.

Lorsque C se trouve au-dessus de C, on peut encore réaliser une stabilité relative, dite stabilité de forme qui est celle de la plupart des navires. Elle est réalisée si le métacentre M correspondant à la droite d'intersection des deux plans de flottaison se trouve au-dessus du centre de gravité. Le métacentre est déterminé par la verticale passant par le centre de gravité de C. Il est stable si l'intersection des lignes de poussé pour des flotteurs isoeccarènes infiniment voisins se fait dans l'espace, le métacentre est le centre instantané de rotation des flotteurs isoeccarènes. Pour que l'équilibre du flotteur soit stable, il faut que le plus bas métacentre satisfasse à la condition précédente; c'est à dire a minimiser correspondant à l'axe minimum de V flotteur. En désignant g pour a, il faut donc r < a. Si la rotation s'effectue autour de l'axe longitudinal, le moment élémentaire des poids est

\[ Pa \cos \theta = -\Delta V a \cos \theta + \Delta \]

moment élémentaire des formes est

\[ dC = \frac{\partial C}{\partial \theta} (Pa + \Delta I_{min}) = \frac{1}{2} \rho a^2 (r - a) > 0 \]

La stabilité statique est d'autant plus grande que \((r - a)^2\) est plus grand.

En eau calme, si le flotteur a été secoué accidentellement de sa position d'équilibre, il excède ses oscillations de part et d'autre de cette position lorsqu'il est abandonné à lui-même. Le frottement sur la coque amortit ces oscillations et la navire finalement. Le phénomène est le rendu. Pour les petites oscillations, en négligeant l'amortissement, la demi-période est
\[ T = \pi \sqrt{\frac{T}{g}} = \pi \sqrt{\frac{T_m}{\gamma P(2-a)}} \]

\[ P = \frac{K^2}{(2-a)} = \frac{T_m}{P(2-a)} \]

K étant le rayon de gyration de la masse par rapport à l'axe central parallèle à l'axe de rotation (axe longitudinal) l'est donc comme si le flotteur constituait un pendule simple de longueur \( T \). Pour ralentir les oscillations (stabilité de roulis ou dynamique), il faut augmenter \( T_m \) et réduire \( (2-a) \). Donc il faut éloigner l'embarc.

sur du centre de gravité et réduire la surface de flottaison. Si le métacentre est au centre de gravité, la période devient infinie ; il n'y a plus d'oscillation. A la limite, dans le cas du sous-marin, \( 2 = 0 \); il faut alors que \( a \) soit positif, stabilité de poids.

Donc si l'équilibre statique exige de grandes valeurs de \( (2-a) \), donc de grandes surfaces de flottaison (ponts de mais, caissons, dock flottants), l'équilibre dynamique exige par contre une grande inerte du flotteur, mais une faible surface de flottaison (bateaux phares, bouches).

La période des oscillations finies non amorties est sensiblement la même que celle des petites. Observons que les facteurs d'amortissement augmentent la stabilité au roulis. On les augmente par les quilles de roulis, minières, saillantes longitudinales fixées sur les carénages qui s'opposent au roulis par réaction directe de l'eau. Il existe des dispositifs mécaniques anti-roulis, basés notamment sur l'effet gyroscopique. Le phénomène du roulis réel, notamment en eau agitée et extrêmement complexe ; les notions précédentes donnent cependant un aperçu des conditions du problème.

Le poids du flotteur est souvent constitué partiellement de lest, souvent liquide (water-ballast) par suite des facilités de chargement et de déchargement. Le lest a par contre un inconvénient grave, sa mobilité. Les déplacements du lest, par suite d'oscillations, peuvent entraîner le chavirement du flotteur. Le lest liquide doit donc être toujours subdivisé en compartiments cloisonnés assez petits pour éviter les dangers précités.

2. Différents modes de radoubmage. Le radoubmage consiste en la mise à sec des bâtiments en vue de visiter ou de réparer la coque.

L'abattage en carène consiste à amarrer le bateau près de son appointement ou ponton, et à l'incliner sur la bise à la manière des marins ou des bûcherons. La bande donnée au navire a pour effet de découvrir une partie de la coque. Cette méthode s'emploie, qui fatigue la matière et la coque et crée des risques de chavirement, ne convient qu'aux petites embarcations munies de pontons.
Le gril de carénage consiste en un gril de charpente ou de béton, armé, établi dans les ports à marée à un niveau moyen entre M.H.T. et M.B. Les embarcations à faible tirant d'eau y ont accès à M.H.T. et s'échouent à M.B. On peut gril de carénage, alors procéder aux réparations. Le dispositif est très économique et convient bien aux port de pêche. Les bateaux sont maintenus par des étangs ou s'appuient contre des appointements ou d'Albe portes de bornes d'amarrage et éventuellement d'engins de ma- ntenance. Le gril de carénage doit être dans un endroit très abrité. L'inconvénient est que le travail, interrompu à chaque marée, est divisé en proie d'une fraction de marée (1h. au moins).

Avec la cale de halage ou slipway, le bateau est retiré de l'eau, indépendamment de niveau de marée, par gravissage d'un plan incli- né sur un chariot spécial, appelé lors ou bac, roulant ou glissant. Lorsque la translation du bateau se fait dans le sens de la longueur, la cale est dite longitudinale; elle est perpendiculaire au quai. Lorsque la trans- lation est dans le sens de la large, la cale est dite traversière; elle est parallèle au quai. Ces cales sont généralement aménagées dans des refou- llements ménagés dans les caisses des quais. Elles comportent une partie fixe formée par les cales longitudina- les, de trois longueurs, parallèles, posée sur la radice ou sur des palés de pilotis, dans le cas convaincement controversé. Les longueurs portent trois longues parallèle- lém de glissement ou de roulement (cou- ette) ou de rails. Le bateau répète éga- lement trois forts longueurs, rémés par des traverses et contournés et en outre, éventuellement, un ou deux pans de charpente latérale en élévation. Le bateau repose sur le ber par une forte pièce de bois tendre (petites cales) ou par une ligne de tins (voir plus loin).
L'accroîc se fait par des coins - voûtières glissant sur les traverses, ou par des lignes de tos látéraux. La manœuvre se fait par chaînes.

Les cales transversales présentent un grand nombre de longues parallèles (4 à 12 par cale) ; elles portent des rails. Le ber reproduit la même disposition et ne peut avoir qu'un peu de charpente latérale, vers le haut. La manœuvre se fait par un grand nombre de treuils accrochés sur des treuils commandés par un seul arbre ou une vis sans fin. Un appareil compensateur (notamment du système cabal) est inséré entre les chaînes et le ber. Le roulement se fait sur des trains de gales, disposés comme dans les navires de Stoney.

Les pertes sont pour un ber glissant 19 9% — Cale long. — Cale bâbord.
ber roulant 6 à 6% — 30% — 20% —

Le ber d'une cale longitudinale présente généralement une portée de plus inférieure à celle de la cale 3%, pour faciliter l'échouage. La manœuvre est dédiée avec les cales longitudinales, et plus simple avec les cales transversales. Cette opération se fait dans l'avant-cale, qui doit atteindre la profondeur d'échouage et est assez longue dans les cales longitudinales. Le tonnage moyen est de 5000 à 8000 tonnes; on a fait des cales pour navires de 5000 tonnes.

Les cales de construction des grands navires ressemblent aux cales de halage longitudinales. On se sert aussi de dispositifs analogues pour la mise à l'eau et la sortie du navire de sauvetage, qui sont garés en temps ordinaire. Les cales, quel que soit leur usage, doivent toujours être étanches dans du mortier abrité. On couvre une coque de principe en établissant un slipway dans un chenal de port en relation directe avec la mer, par exemple pour le service d'un navire de sauvetage. La manœuvre se faisant l'ordinaire par mer démontée, le bateau court le plus grand risque d'être brisé. Avec les élévateurs, on a voulu parer à un inconvénient des cales de halage, provenant de leur grand développement. L'élévateur de Victoria Dock à Londres, du système Edwin Clarke, comporte deux rangées de pressions hydrauliques verticales déplacées en tête par des traverse. Sur ces traverses repose un ponton qui peut flottter et que l'on peut échouer par l'eau liquide. L'élévateur dessert plusieurs pontons.

Le ponton étant échoué à fond de socle des presses, le bateau est améné dans, arrière, puis soulévé. Le ponton est épuré et flotte alors librement avec le bateau à sec. On répare sur le ponton flottant améné dans un bassin spécial peu profond. Cette application est unique jusqu'à présent, mais le progrès des outils de levage puissant laisse supposer de grandes possibilités d'avoir des élévateurs hydrauliques ou jumelaires, notamment pour de petits bâtiments : chaloupes, etc. Pour les grands navires, les moyens de radoubage épuré sont les cales sûres et les dock flottants.
4. Salles sèches. Une salle sèche constitue une écluse maritime à grand
pas, sans mur de chante, et possède seulement une tête. La navire y entre à
flot ; ensuite, on ferme l'écluse et on laisse l'eau de la salle. La navire s'échoue
d'une manière convexe et est reconnu à sec. Les opérations inverses permis-
tent de le ramener à flot et de l'extraire de la salle. Les parties essentielles
d'une salle sèche sont donc l'écluse d'entrée, analogue à une tête d'écluse
maritime, mais à porte de flot seulement, et ensuite la salle, celle-ci est ana-
logue à un sas, mais fermée à l'extrémité opposée à la tête par un mur, formant
un plan rectangulaire, ou demi-cercle ou en ronde. Les dernières formes réduisent
le cube de maçonnerie et l'épuisement ; la première s'emploie pour réserver
la possibilité d'allongement. (*) Mais, différences des écluses maritimes, les
salles sèches doivent avoir tout leur radiersanche et susceptible de résister aux
soupes. L'étude de la stabilité des salles sèches est donc analogue à celle des
sas d'écluses à radiers rigide, exposés dans le cours d'écluses,
sans la différence toutefois que lorsque la salle est à sec, le radiers supporte
son milieu tout le poids du navire. Donc, lorsque la salle est à sec,
le radiers est, en toute hypothèse, soumis à flexion. Le poids excentrique des
bajoyers tend à comprimer le moment ficheant dans la partie centrale,
provenant de la surcharge concentrée du bateau. Si des accidents surven-
us aux anciennes salles constantes sur radiers général non armé (forme
de radiers de Gand) ont pu justifier la séparation des bajoyers du radiers,
la solution moderne paraît bien être celle du radiers rigide en béton armé.
La forme des bajoyers en béton armé peut être déterminée de telle sorte
que les poids et poussées correspondent, en envisageant dans les cas de sollici-
tation possible, aux moindres contraintes. En terrain meuble et perméable,
les radiers sont très épais et souvent plus dans l'axe qu'au bord ; en ter-
rain imperméable, et à profondeur suffisante dans le roc, le radiers peut
être un simple revêtement régisant. C'est le cas exceptionnelle-
ment favorable, les radiers minces sont divisés par des drains en relation
avec les aqueducs d'épuisement.

En terrain meuble et perméable, la sollicitation du radiers dépend essen-
tiellement de la répartition des sous-préssions et des réactions du terrain. C'est
là une quittance encore pour ainsi dire incomplète et très complexe. D'investiga-
tions théoriques (Boussinesq) et expérimentales (écluse d'Hannover), il résulte
que la répartition des pressions n'est pas uniforme, et que contact du ma-
vin, il semble que la pression soit supérieure au milieu que vers les bord,
le qui réduit la fission réelle du radiers sous la charge du navire.

Le parement intérieur des bajoyers est à grands gradins, produi-
sant un écaissement général, en vue de l'accès de l'eau et de la lumière. les

(*) On a réalisé en Angleterre quelques salles sèches à deux lettres amovibles par
les deux extrémités, Tilbury Dock à Londres, Portsmouth, etc.

Transversalement, il est en dos d’âne, les échelles latérales au pied des baies étant en relation avec les aqueusz et les éclaireurs de profondeur en des endroits bien abrités, dans les casiers à fuites et groupés de manière à former un vaste chantier. On en dispose parfois dans les avant-ports, dans des endroits bien abrités, pour recevoir sans délai les navires très avancés (ports de guerre) la longueur totale des formes de radiers doit être proportionnée à l’importance du port (15 à 17 m. linéaires par km. de quai; en moyenne 50 à 95). Les dimensions des formes n’ont cours de croître; la dernière forme du Haarlem mesure 300 m. de longueur utile (allongée à 350), 36 m. de largeur au plafond, 15,85 m. de profondeur d’eau sur le seuil de vies, eaux, 13,6 m. en morte eau. Le sable d’eau en vive eau est 233.000 m³.

1. Le dock de l’île aux Quais (Tanger); long. 228 m., larg. 30,48 m., abrié par les baies.

La construction se fait par les méthodes indiquées dans les ouvres d’édifi- cations et de fondations. Les méthodes modernes, applicables selon le cas, sont:

1° Le caisson unique à air comprimé (forme modèle du bateau) ou les caissons joints à air comprimé, la charpente des caissons constituant l’armature du radiers;

2° La construction à sec dans une fosse écartée par pneumatique;

3° Les caissons en béton armé échancrés (projet pour le port de l’aéronautique).


Les tins sont formés de pièces de bois superposées ou d’éléments en fonte ou acier conçu,
dont certains sont en forme de coings, pour permettre le réglage de la hauteur. On emploie aussi des caissons maçonnés ou en béton armé. Sur les tins, il y a généralement des faux - tins, en bois dur (chêne) portant à
L'usage de ces pièces en bois tendres (cornêches) destinées à l'usure et facilement remplaçables. Les tins se placent transversalement ; leur hauteur varie de 1,00 à 1,20 m. La largeur de 0,35 à 0,40 m ; la longueur, de 1,20 à 1,50 m. L'écartement est réglé en fonction du poids linéaire variable des navires. Il est maximum sous les chaudières et y atteint 100 à 200 km pour des paquebots de 150 à 200 m. Pour les plus grands paquebots de 300 m, on a envisagé au Havre jusqu'à 500 ou 600 km et des tins ou raies seulement pour 1000 tonnes.

Le réglage de l'appui du bateau sur les tins est complexe et délicat ; leur écrasement peut provoquer des fissures et des fatigues importantes dans la coque, même des ruptures. En cas de besoin, les tins sont poussés jointivement. Pour l'accrochage des bateaux à fond très plat (cuissard), on établissait parfois deux lignes latérales de tins auxiliaires ; mais pour les navires commerciaux, on préfère généralement l'emploi d'épontilles.

Les formes de radoub sont équipées de voies ferrées et de grues, desservant à la fois le flanc de la sale, du type à levette et cantilever ; en usage dans les chantiers navals.

Dans les anciennes formes, on travaillait préalablement l'intérieur d'une fosse, de 3 à 4 m, dite fosse à gouvernail, qui devait recevoir le gouvernail par le bas. Cette fosse était un point faible, et actuellement, les gouvernails sont construits de façon à pouvoir être retirés par translation horizontale.

Le problème du remplissage des salles sèches est analogue à celui des écluses ; il se diffuse par l'importance des volumes et par la particularité que la forme est initialement sèche. Les aqueducs doivent déboucher le plus bas possible, au niveau du radiere. Initialement, le lavage des vannes doit être partiel, pour diminuer le débit tant que les débouchés ne sont pas noyés. Si mon, il se produisait des jets d'eau violents, animés de vitesses de 10 à 12,5 km par seconde, qui détruisaient les maçonneries et produisaient des désordres. On cherche d'autrefois à amortir la force vive de la seine dans des chambres d'épanouissement. On peut employer d'une manière appropriée les dispositifs normes des écluses ; aqueducs courts, aqueducs longs et carrons ventiles et siphons. Les formules fondamentales pour la durée de remplissage sont les mêmes que pour les écluses : \( Q = M \sqrt{gh} \) et \( S_{dh} = Q dt \).

D'après M. Flamant, \( M = \frac{1}{\sqrt{\frac{8}{\pi} \frac{L}{D} + (\frac{1}{m} - 1) + \frac{10}{g}}} \),

L étant la longueur de l'aqueduc, \( D \) le quadruple du rayon moyen, \( m \) le coefficient de contraction (0,62 environ) ; \( L \) le coefficient de freinage des parois (0,0035 environ) ! Dans un bassin à marée, du fait de la variation du niveau, l'équation différentielle n'est pas intégrable et l'on procède par la méthode des éléments finis, de préférence par voie graphique.
La durée de remplissage de la forme n°1 du Havre est de 1 heure environ. Le débit maximum atteint environ 96 m³/sec.

Pour l'épuisement, les rigoles d'assèchement qui longent les bajoues commencent par des conduits ou poches avec les aérodynes d'épuisement, qui conduisent les eaux vers un puisard, où plongent les tubes d'aspiration des pompes (au Havre, il y a un puisard dans chaque bajoue). Les aérodynes longitudinaux peuvent éventuellement être employés aussi pour le remplissage. Les aérodynes de vidange doivent avoir comme les aérodynes de remplissage de bonnes caractéristiques hydrauliques, c'est-à-dire des formes continues et progressives ; en outre, le but est d'éviter les poches d'air possibles. Les pompes de refoulement dans les aérodynes de refoulement, généralement plus petits, débouchent sous le niveau des bassins mers. Les vitesses usuelles réalisées sont de 1 m/sec. La durée d'assèchement est donc généralement plus grande que celle de remplissage et de l'ordre de 4 à 5 h. en France, la moitié en Angleterre. On empile des pompes centrifuges, placées dans des fosses étanches, de manière à travailler avec une aspiration maximum de 4 à 5 m. Au début, elles sont en charge ; l'ombrage est donc immédiat et certain. A cause de la forte charge initiale et pour réduire le développement de la chambre étanche des pompes au-dessus du puisard, on emploie fréquemment le type centrifuge à axe vertical relié par long arbre à un moteur électrique à axe vertical placé dans une chambre de machines dont le plancher est au-dessus de + H M. Le débit et le débit des pompes centrifuges à axe horizontal et à attaque directe sont plus robustes, plus simples et plus sûres en exploitation. La force motrice est généralement électrique, de préférence par courant continu.

A côté des pompes d'épuisement proprement dites (5 de 1000 CV à la forme Gladstone, de Liverpool ; 8 de 495 CV au Havre), on prévoit souvent des pompes d'arrosage (14 de 1000 CV au Havre) pour maintenir la cale sèche malgré les infiltrations. La prévision est placée en contrebas de celle de l'épuisement, pour limiter les aérodynes secs, et permettre l'accès des dispositifs spéciaux.

Les tôles sont conditionnées comme les tôles d'élans des maritimes. On emploie parfois comme coucheuse les portes-buques (petites formes) et les portes roulantes (grandes formes). Mais la coucheuse qui est encore la plus usitée est le Bateau-Porte, échoué contre des ferrures latérales, garnies de ferrures d'arrièrê. L'élévation est souvent légèrement bâbitondale pour faciliter le dégagement de la porte par un léger soulèvement lorsqu'elle est rendue flottante. Le pivotement est facilité de même par des saines mises dans le bajoue.
5/ Bateaux-portes — des bateaux-portes sont constitués par des tôles et des tôles symétriques qui sont scellées en travers de l’entrée de la cale, contre des appuis adéquats. Lorsqu’on ouvre la porte, la pression extérieure de l’eau presse la porte sur ses appuis, elle travaille comme une porte à un vantail ou une porte coulissante. L’ouverture et la fermeture se font par déplacement latéral. Les bateaux-portes sont disposés pour faciliter les manœuvres ; on leur donne des formes aiguës, avec deux étambots d’extrémités, assurant l’appui sur les feuillets et une quille d’appui sur le seuil. Cependant, comme la porte doit résister, après épuisement de la cale, comme une énorme plaque flottante, le profil est peu favorable et dans les dossiers portes, on réalise la forme parallépipédique analogue à celle des portes coulissantes. Au point de vue de la résistance et de la constitution, l’analogie est complète avec les portes coulissantes ; traverses principales et aiguilles, double bordage, pont fixe inférieur, caisson flottant supérieur, compartiment supérieur où l’eau peut jouer librement. Il y a plusieurs ponts, celui du caisson flottant inférieur étant appelé pont de ressaut. Le pont supérieur porte les organes de manœuvre, cabines, machines : pompe, etc. Des cheminées permettent les accès aux compartiments inférieurs.

Schéma d’un bateau-porte (cale-sèche n° 12, 60 à Marseille)

La manœuvre d’échouage des bateaux-portes demande une étude approfondie. On donne à ces engins de la stabilité de pont. Il faut que l’échouage soit rapide et s’effectue sans perturbation. Lors du remplissage de la cale, vers la fin, la pression appliquée sur les appuis disparait ; il faut éviter que la porte ne se souvienne et, lorsque l’égalisation des niveaux, pour éviter les contretemps défavorables pour le navire en cale sèche et pour le bateau-porte qui pourrait en résulter. Or, comme les niveaux sont variables, même dans les casins à flot, on voit la complexité.
du problème, qui ne peut être résolu avec un lest constant fixe et une flottaison constante. La solution appropriée a été proposée par M. Sermant, par la flottaison variable. Elle consiste à obtenir des communications du compartiment supérieur avec la mer et à enoyer l'eau correspondante à une flottaison déterminée dans le caisson flottant. L'échouage est ainsi graduel comme au vent. Pour le soulèvement, on laisse s'écouler l'eau dans la salle sèche la quantité d'eau soutirée pour que la porte se soulève d'elle-même d'une quantité très modérée lorsque l'eau atteindra dans la salle un niveau bien déterminé et voisin du niveau extérieur. Des pompes électriques puissantes peuvent contribuer à l'opération et permettre le réglage que l'on veut. Si d'ailleurs la mise à flot se fait en vives eaux, le lest conserve sa supériorité à celui d'un échouage ultérieur en mares eaux ; il faudra assurer l'équipement de l'excédent par pompage. La position du pont de ressaut devient indifférente et il peut même disparaître.

Ainsi équipés, les bateaux-portes deviennent des engins de manœuvre assuré, facile et sûre. Ils ont l'avantage d'être reversibles et ainsi on peut les entraîner et régular, sur chaque face successivement, de l'intérieur de la salle sèche. Ils n'exigent pas de chambre de porte. Cependant, pour habiter la manœuvre de la porte n° 1 du dôme, on les fait retirer par un perçoir latéral à portes d'âge, comme des portes roulantes, mais en flottant.

6 Docks flottants. Les docks flottants sont des engins de radoub dits flottants suivant un autre principe. Ils sont plus complexes et l'œuvre construction est du ressort de l'ingénieur naval. Ils sont moins répandus que les cales sèches, bien que le projet de la construction navale de la mécanique et de l'électricité semblent deviner développer leur emploi.

En principe, un dock flottant est un flotteur dont la section transversale est semblable à celle d'une salle sèche, mais formée de caissons creux entre un double bordage stanche. On distingue le ponton ou caisson
inférieure et les caissons latéraux. Un bref d'eau permet d'immerger le dock presque jusqu'au pont supérieur. Dans cette position, on peut y introduire un navire, qui est accosté, éventuellement, avec le concours de scaphandriers ou pompe alors le lest d'eau ; le dock émerge en soullevant le navire qui repose sur une ligne de tiers. Le déplacement du ponton doit être tel que son plancher émerge malgré la charge du navire supporté. Celui-ci est alors le sec et peut être réparé, par les moyens du dock flottant, qui constitue une véritable usine-atelier ; soit avec le secours d'ateliers toréfiés à proximité du poste de travail du dock. Parfois, on se borne aux réparations de premières nécessités ; la mise en état complète se faisant ensuite en eau sèche.

Une première question capitale est celle de la stabilité du dock, qui ne peut être qu'une stabilité de formes. Elle est grande, d'autant plus que la surface de flottaison rectangulaire large. Dependant, avant l'inversion du ponton, la section de flottaison n'est que les rectangles droits des caissons latéraux. La stabilité est donc plus précaire pour avant l'inversion du ponton. On l'arrêtera en raccordant les caissons latéraux au ponton par des épaisseurs obliques.

Un autre élément est la résistance du dock : la puissance élévatoire verticale est uniformément répartie sur toute la longueur. Le poids du navire a au contraire une répartition linéaire constante. Il en résulte un diagramme d'efforts tranchants et de moments fléchissants faciles à établir et auxquels la charpente doit résister. On doit envisager de même la résistance transversale.

Les docks flottants conviennent bien aux colonies ; ils peuvent être construits dans la métropole et remorqués ensuite à leur port d'attache éloigné. Le poids est d'environ 45 % de la puissance de levage, pour laquelle on atteint et dépassa 50.000 tonnes (2.000 m. de long et 50 m. de large.)

Les docks modernes sont généralement auto-carrément (Self docking). A cet effet, ils sont divisés en longueur accéléri de différentes manières. Les sections sont réunies de même manière aussi rigide que possible, mais en cas de besoin, chaque section peut être carrée par le moyen des autres. L'inconvénient de la division est la diminution, tant en vitesse de la température de la mer que de la résistance sous l'effet de vaissauls levant les plus défavorablement chargés (envisage).
Cet inconvénient est tel qu'on a une tendance à revenir au dock non sectionné et qu'en tout cas le type le plus répandu aujourd'hui est celui à trois sections, méca
taire grande, deux latérales plus petites, solidement assemblées entre elles par des boulons assurant une liaison rigide et résistante. Les caissons latéraux portent des grues mobiles et sont reliés par des passarelles mobiles cantilevers à axe vertical.

Pour les petits bâtiments, on a proposé en Allemagne des docks flottants partiellement à cloison voile et les docks gigogne permettant, comme l'éleveur de Clarke, de mettre les navires à sec sur des pontons ou des docks flottants sans machinerie, un dock desservant plusieurs pontons. Je renvoie pour plus de détails aux ouvrages spéciaux.

On construit aussi des docks flottants asymétriques, à caisson monobloc. En immersion, ils se tendent donc à s'incliner. On s'y oppose en guidant les mouvements du caisson par un parallélogramme articulé dont les bielles sont fixées à des piles fixes près du rivage, ou à des pylônes fixes sur des pontons secondaires très stables, ce qui diminue l'inclinaison sans la supprimer. Les efforts d'équilibre transmis par les bielles produisent les moments sollicitant dans les sections transversales. Pour les réduire, on a imaginé des dispositifs assurant un lestage liquide automatique du côté opposé à l'inclinaison, par action des bielles de guidage sur des leviers (p.ex. système Clarke). Les docks peuvent être entièrement auto-vanables, en sorte, que se ponton secondaire peut être transformant, c'est-à-dire disposer les hú- leaux sur des grils en dent de peigne, dans lesquels pénètrent les pontons divisés du dock flottant.

* Comparaison entre les sables sèches et les docks flottants - les pre-
mières ont l'avantage des installations fixes et durables, permettant leur travail
plus normal et plus soigné. Les décares d'établissement plus élevés peuvent être compensés par la durabilité et l'économie de l'exploitation et d'entretien. La sûreté d'exploitation est grande et les profondeurs ordinaires suffisent. Mais la construction exige un terrain assez bon. Les docks flottants coûtent moins et sont d'installation plus rapide ; par contre, ils sont moins durables et coûteux d'entretien et d'exploitation. Ils exigent une superficie importante pour pouvoir abriter les plus gros navires. Par contre, ils sont mobiles et peuvent aller chercher les navires immobiliés par leurs avoirs, même dans des positions dangereuses. Grâce à leur élastométrie, les docks flottants sont des engins assez simples, permettant de faire face à des situations exceptionnelles (marine de guerre). Ils sont indépendants du terrain. Les docks flottants se justifient surtout dans les colonies, dans les ports naturellement très profonds et ceux dont le terrain est très mauvais, ainsi que dans les ports militaires.

Chapitre VII

Éclairage et balisage des côtes.

1. Généralités. La navigation se fait en pleine mer d'après des observations astronomiques, mais par suite des courants, etc. Le navire peut subir des déviations atteignant 10 milles par jour. Des erreurs de cet ordre sont dangereuses au voisinage des côtes, par suite des bancs de fond, des récifs, des courants, etc. En outre, elles peuvent éloigner le navire du point d'atterrissage prévu. Dans le jour, les navigateurs peuvent se guider d'après l'aspect des côtes, dont les lignes d'ondes uniformes peuvent recevoir des repères optiques : grands panneaux blancs ou colorés appelés amers. En tout temps, les sondages peuvent renseigner sur la route, mais ils exigent une navigation lente. C'est néanmoins le moyen le plus sûr en temps de brume et la nuit en l'absence de signaux lumineux. Les signaux sonores de brume ont une faible portée. Les signaux ultra-sonores et les ondes hertziennes (radiophares) sont susceptibles d'apporter des solutions perfectionnées. Actuellement, les dispositifs les plus importants sont destinés à la signalisation lumineuse : balises à buise, les dispositifs principaux sont les phares.

Les derniers, pourvus d'appareils lumineux puissants et à grande portée, sont placés en des points favorables par rapport aux grandes routes maritimes. Ce sont donc des repères de 1° ordre, qui peuvent être très éloignés entre eux ou entre groupes. Il existe des routes dont la disposition par rapport aux côtes exige une suite continue de phares, à des distances telles que l'un soit en vue avant que l'autre disparaîsse (par exemple, la Manche et la Mer du Nord).
Les phares d'alignement permettent aux marins de reconnaître leur position ; l'accès aux radars et ports est ensuite signalé par des feux secondaires, des balises et bouées, dont l'ensemble constitue le balisage des ports. Il s'agit de signaux conventionnels d'administration des ports, par exemple des signaux stenographiques d'indication des profondeurs, etc.

On distingue : 1. les feux fixes à l'horizon qui éclairent uniformément la majeure partie de l'horizon maritime. Leur puissance est faible.

2. de direction éclairant un secteur relativement étroit. Eventuellement plus puissants, ils peuvent se confondre avec les feux de marines. Les feux peuvent être blancs, rouges ou verts. Les feux blancs (à l'horizon p.ex.) peuvent recouvrir des secteurs colorés destinés à couvrir soit des passer, soit des obstacles. Les limites sont imprécises et comportent un angle d'indécision qui se comprend de placer dans l'angle non dangereux.

Les feux blancs fixes de direction peuvent former des feux d'alignement, en conjugant deux feux assez écartés placés suivant l'alignement à déterminer et à des niveaux différents. Malgré les imperfections optiques, la précision est suffisante.

2. Les feux d'occultation, dont la lumière est périodiquement éclipée pendant des temps relativement courts, par rotation d'un panneau opaque. Les occultations sont régulières (toutes les r") ou groupées (un groupe toutes les r")). Les occultations peuvent se combiner avec les feux d'horizon ou de direction et les feux colorés ; la puissance est du même ordre.

3. Les feux mobiles ou à éclats, composés de faisceaux lumineux tournants, concentrés par des parements lenticultivaires, donnant des éclats très rifs et courts, réguliers ou groupés, séparés par des intervalles plus longs. Actuellement, en France, les intervalles sont de 5" au maximum. La durée optimum des éclats serait 1/4 de", mais on est conduit à descendre en dessous, sans toutefois dépasser la limite inférieure de 1/10 de". La rapidité de rotation ne permet plus une reconnaissance sûre par la durée et l'intervalle des éclats ; les phares se distinguent maintenant par le groupement des éclats, qu'ils soient toujours blancs. On peut aussi établir de petits feux de direction colorés à éclats. Les feux mobiles réalisent, pour la concentration des faisceaux, les plus grandes puissances lumineuses.

La portée géographique d'un phare A de hauteur H est définie par la distance AH au point E où un rayon lumineux est tangent à la surface de la mer calme. Le rayon lumineux est courbé par la réfraction, la portée lumineuse pour un observateur se trouvant à une hauteur h au-dessus
du niveau de la mer est $AB > AE$. Pratiquement cette portée dépend de la puis-
science lumineuse et surtout de l'état de l'atmosphère. Elle n'est pas propor-
tionnelle à la puissance et le béné-
fice de portée des grandes puissances est d'autant moindre que le temps
est plus brumeux. On détermine par
expérience les portées lumineuses réali-
sées 90 fois sur 100 (temps brumeux)
e 50 fois sur 100 (temps moyen) les
dermières atteignant jusqu'à 40 milles

On admet que le rayon de courbure $p$ de la trajectoire lumineuse égale m
fois le rayon terrestre $R$. D'où lors la portée géographique est

$$AE = \sqrt{RH \cdot \frac{2m}{m-1}} = D$$

L'inclinaison $\alpha$ du rayon lumineux sur l'horizon est telle que

$$\tan \alpha = \frac{m-1}{m} \frac{D}{R} ;$$

c'est le minimum de la demi-amplitude du faisceau lumineux.

L'observateur placé en $B$ à hauteur $h$ au-dessus du niveau de la mer ver-
ra théoriquement le feu si

$$EB \leq \sqrt{Rh \cdot \frac{2m}{m-1}} = d ;$$

la portée lumineuse théorique étant $D+d$. Le coefficient $m$ varie sur les côtes français de 3 à 60
selon l'état de l'atmosphère, en moyenne 10 environ. En réalité, il n'y a
pas intérêt à dépasser une hauteur $H$ de 50 à 100 m., à cause des brumes.

Par contre, les feux bas sont très souvent masqués par les brumes légères de
surfaces.

Pour assurer la visibilité de jour des phares, on en Blanchit géné-
ralement les tours. Les lois de la visibilité des objets en plein jour sont d'ailleurs
mal connues.

Les signaux sonores sont des portées variables selon leur nature, de
quelques centaines de mètres pour les cloches jusqu'à 6 milles en moyenne pour
les puissantes sirènes. Mais la portée dépend fortement de l'état atmosphérique
et peut varier de 2 à 18 milles pour un même signal. Les cloches sous-marines
dont sont munis certains navires, d'entrée de ports, des canons et batiments
phares permettant par réception microphonique, un repérage assez précis.

La question de la signalisation maritime dont son état actuel
en majeure partie aux travaux remarquables des éminents ingénieurs fran-
çais des Phares et Balises; la signalisation maritime française est exem-
plaire : le traité "Phares et Signaux maritimes" de Mr. Ribière fait
autorité dans la question.
Les phares sont des constructions élevées en forme de tour portant à la partie supérieure un appareil lumineux ou lanterne, en métaux inoxydables (bronze, laiton, cuivre). La tour est en maçonnerie, béton armé ou charpente métallique. Elle comporte généralement une ou des galeries circulaires au niveau de la lanterne et une chambre de garde. À pied du phare se trouvent les annexes : logements des gardiens, salle des machines, magasins, etc. dans des bâtiments séparés sur terre ferme, dans le sole même des phares isolés en mer sur des récifs.

Les phares sont soumis à l’effort du vent, de 275 kg/m², rapporté à la section d’emblée dont on considère les 2/3 en France, la 1/3 en Angleterre. La stabilité est assurée par le poids propre. On peut donc établir les calculs statiques d’une telle construction. Le coefficient de sécurité au renversement est de 5. Pour les maçonneries, on ne compte pas sur la résistance à la traction et on prend pour qu’il y ait compression partout, ce qui paraît excessif. Mais on n’envisage ainsi qu’une sollicitation statique, alors que les observations et les expériences ont montré très nettement que les rafales, souvent rythmées, produisent des oscillations élastiques des phares. On a relevé des oscillations de 2 m/m d’amplitude totale et dont la période allait de 1/2 à 8/10 de seconde. En outre, certaines phares en maçonnerie méditerranéenne subissaient des fléches mesurables (1/4 m) sous l’effet des fortes rafales. Les chiffres observés pour les vibrations sont compatibles avec ceux calculés par l’équation simplifiée de Lord Rayleigh pour les tiges vibrantes (voir A. Ribiere, op. cité) L’énergie des oscillations d’une tour comporte : 1) l’énergie potentielle qui pour un élément de longueur dx et de section Ω est \( \frac{1}{2} \left( \frac{M^2}{EI} + \frac{N^2}{E} \right) \frac{dx}{dx} \) ; elle est nulle au sommet de la tour ;

2) l’énergie cinétique, qui comporte deux termes, l’un en translation des sections perpendiculaires à l’axe, égal à

\[
\frac{1}{2} \frac{\Delta V}{g} \left( \frac{dy}{dt} \right)^2 dx,
\]

l’autre de rotation des sections

\[
\frac{1}{2} \frac{\Delta L}{g} \left( \frac{d^2 y}{dx dt} \right)^2 dx.
\]

 Ces deux termes sont nuls à la base (encaissement) et maxima au sommet. Donc les effets d’incertitude provenant au sommet de la tour des fatigues d’autant plus sensibles que l’on y concentre la forte masse de la lanterne et que le volume de matériaux intéressés est réduit, par l’aminciissement de la tour. On peut d’ailleurs, par résolution de l’équation des tiges vibrantes, trouver la loi des déplacements horizontaux, des vitesses et des accélérations \( \frac{dy}{dt} \), d’où celle des forces \( \Delta \Omega \frac{d^2 y}{dx dt} \) dx. On en déduit la courbe des T et des M correspondants.

Immediatement sous la lanterne, on trouve des Taux considérables, qui expliquent les fissures verticales relevées au sommet des meneaux phares et provenant d’efforts résants. Ils s’amorcent aux angles...
Enfin, les phares isolés en mer sur des récifs sont exposés au choc direct des vagues qui, en se brisant, peuvent lancer des projections verticales jusqu'à des hauteurs considérables. Nous avons essayé d'exposer dans le premier chapitre les éléments d'appréciation des efforts correspondants. Il est évident que de tels phares doivent recevoir un socle particulièrement solide, soutenant d'ailleurs les aménagements du phare. L'aménagement de la fondation au roc doit être particulièrement soigné (rails d'ouvrage) et toute la tour doit être spécialement robuste.

On peut déduire de ce qui précède les règles constructives suivantes.

Les phares doivent recevoir une fondation particulièrement solide, large, bien ancrée dans le sol, éventuellement sur pieux. La base de la tour ou socle réalise la transition entre l'emballage de fondation et le fût de la tour. On emploie de la maçonnerie de choix, au mortier de ciment.

Les planchers intermédiaires se feront de préférence en béton armé, ainsi que les escaliers et pavés de refend. Eventuellement, on disposera des armatures au coussinage, notamment autour des baies. Complété par la galerie en surplomb et la lanterne, les phares en maçonnerie constituent généralement des constructions très élégantes, dont les types français sont des modèles.

L'emploi de la maçonnerie de bonne qualité est avantageux par suite de la durabilité et de la grande masse, qui réduit les vibrations. Le béton armé est désavantageux à ce dernier point de vue, ainsi qu'on le concerne l'aspect. Son emploi n'est cependant pas exclu, mais il faudrait essayer d'introduire dans le calcul de résistance l'effet des vibrations, dont les données sont encore sommaires. Par contre l'emploi de petits matériaux ou de béton est favorable pour la résistance aux chocs et vibrations. Des phares en charpente métallique, dont il existe quelques types, ont l'inconvénient de l'altérabilité et de la sensibilité vibratoire ; ils sont peu employés (sauf toutefois aux Amériques, sur pieux à vis par les fonds de sable)

La construction des phares en terre ferme est analogue à celle des cheminées et se fait au moyen de planchers et gaines, portées s'élevant avec la tour même. La construction en mer est par contre exposée aux difficultés les plus grandes ; elle peut durer des dizaines d'années, environ 50 pour le phare de la Jument d'Onessant près de Brest.

On utilise aussi en France les tours ou tourrettes Calice, massifs cylindriques de maçonnerie pleins, peu élevés au-dessus de HM (5 à 15 m), portant des feux et signaux sombres non gardés. Le calcul leur assigne une
Période propre de vibration de 0,10 à 0,20 seconde. Pas plus qu'avec les phares en mer, il n'y a donc de synchronisme à redouter avec les lampes. Mais ces vibrations rapides peuvent influencer le fonctionnement des appareils de signalisation, qui doivent être éventuellement fixés sur des amortisseurs en caoutchouc. Le fonctionnement est automatique et réglé par des mouvements d'horlogerie. Sur les moussaisons des jetés et digues, on dispose souvent les feux de direction sur de petites tourelles métalliques en toile rivée.

3 Partie optique et luminosité des phares. Anciennement, la partie optique des phares était constituée par des réflecteurs paraboliques. On les emploie encore pour les projecteurs éoliennes, principalement sous forme de réflecteurs Mangin, formés d'une lentille divergente concave, convexe, argentée sur la face convexe. La source lumineuse est placée près du foyer, de telle sorte que, après réfraction et réflexion, les rayons lumineux sortent parallèlement à l'axe de la lentille.

Mais les appareils catadioptriques ont édifié à peu près aux appareils dioptriques un à lentilles pour les grands phares. Ils dérivent du principe de la lentille plan-concave, qui convient pour les petits feux. Pour les grandes lentilles, la résistance et le montage exigent une épaisseur minimum aux bord, l'épaisseur sur l'axe optique serait très grande, ce qui augmenterait le poids, le prix et les erreurs de la lentille, ainsi que l'absorption. Pour cette raison, Fresnel a adopté une lentille centrale relativement mince entourée d'ameneaux lentilières de biseau convenable, épaissis par des restants orientés suivant les rayons lumi-
neux. Pour les feux mobiles, on réunit un ensemble de panneaux lentilaires, ré-
sultant de la rotation du profil défini autour de son axe optique. La surface
du panneau est augmenté vers les bords
par quelques anneaux coudés agissant comme prismes à réflexion total.
Les panneaux d’un fanal sont dispositifs en polygones réguliers (feux à éclats simples), ou en polygones sym-
metrics, irréguliers (groupes éclats d’éclats), ou en polygone ouvert as-
socié avec un réflecteur (un groupe d’éclats et une occultation). Fréquem-
ment on associe deux fanaux sur un
même plateau de support. Pour les
feux d’horizon, on peut employer une lentille cylindrique, obtenue par rota-
tion du profil défini autour d’un axe
perpendiculaire à l’axe optique. Une
lentille cylindrique ne projette une mappé plane lumineuse au lieu d’un faisceau liné-
aire ; mais on conçoit que la puissance d’éclairant soit beaucoup moindre
que celle des panneaux.

On emploie aussi les lentilles sphéro-elliptiques et hyperboliques ;
je renvoie pour plus de détails à l’ouvrage de M. Ribière.

Les panneaux assemblés constituent un ensemble entourant le
foyer lumineux, reposant sur un support permettant la rotation commu-
niquée par un axe moteur. Oriciennement, on employait des roulements à-galets ou à billes, mais le poids croissant des appareils augmentait les résistances. Vers la fin du 19e siècle, M. Boussibout a imaginé de suppor-
ter l’optique par un flotteur cylindrique dans une cuve à mercure, ce
qui réduit beaucoup les résistances. Dans les derniers types, le flotteur est
immédiatement sous le plateau de support du fanal, pour éviter des flexions. Les flotteurs doivent réaliser une stabilité de forme parfaite et
l’ensemble fait l’objet d’un équilibrage précis. Un pivot-guide central
sort de guide à la rotation, sans réaction horizontale ni verticale. Dans
les phares français, la force motrice est produite par la simple force d’un
poids, déterminé en vue d’une vitesse de rotation définie et totale qui
ait une forme ; le poids est remonté chaque jour (principe des horloges à
poids), éventuellement au moyen d’un moteur électrique ou micanique.
Pour contrôler l'uniformité de la vitesse, on emploie des régulateurs centrífuges dont les boules sont remplacées par des masses appuyées par des ressorts sur une paroi sphérique fixe, dont le centre se trouve légèrement en-dessous de l'articulation des bras du régulateur. Lorsque la vitesse augmente, le freinage résistant augmente aussi, et vice-versa, ce qui assure le réglage.

Comme source lumineuse dans le fourneau, on emploie les brûleurs de pétrole, à mâche ou à incandescence, l'incandescence par le gaz ou l'acétylène, l'arc électrique et la lampe électrique à incandescence. Cette dernière tend à supplanter toutes les autres. La source lumineuse doit présenter une intensité maximum dans l'angle vitre des parmeaux du fourneau, dont surtout dans le sens horizontal. Les lampes à incandescence à souffle convenable bien, ainsi que l'arc électrique alternatif.

Le fourneau, ses supports et son mécanisme sont enfermés dans la lanterne vitrée à glaces cylindriques minces, dont les parmeaux sont cylindriques pour éviter des refractions. Malgré cela, des parmeaux opaques doivent être disposés dans les angles morts du fourneau, pour réduire les émissions de lumière diffuse entre les éclats. La lanterne doit être bien aéree, surtout avec les lampes à combustible liquide ou gazeux.

4 Bateaux - Phares. La signalisation maritime des routes importantes près des côtes est complétée par un ensemble de dispositifs de balisage dont les plus importants sont les bateaux - phares gardés, émettant des feux d'alerte établis en des endroits appropriés, mais où la profondeur et la nature du fond ne permettent pas l'établissement d'une tour. Ils servent surtout à signaler l'entrée des passages de navigation ou les bancs de fond qui les barrant.

Les bateaux doivent présenter une grande stabilité d'oscillation, de manière que le feu éclaire toujours l'horizon et que les conditions de l'équipage, isolé en mer pendant de longues périodes, soient aussi confortables que possible. Les transatlantiques horizontaux on plongeant et le langage ont peu d'effet; c'est surtout le vent qui eil imposé de réduire. La forme de sons.
marin ne convient pas, par suite des conditions de navigation, d’occupation et d’exploitation. Mais on emploie des coques de forme très spéciale, en demi-fusée, à grand tirant d’eau, munies d’une quille centrale et de deux quilles de rouelier latérales. On a pu ainsi obtenir un feu flottant "Sandetté" : T = 6 sec. pour le roulier ; 1,75 sec. pour le langage. Le navire ayant été incliné de 20°, se redresse et s’arrête en 15 oscillations complètes. Les résultats ont été considérés comme satisfaisants. Des Ballasts proposés, basés sur l’effet gyroscopique (turbine à vapeur à axe vertical) placé dans une chambre suspendue à un axe horizontal transversal freiné ou sur la résistance interne des liquides (pont liquide traversant des orifices obliques pour passer d’un compartiment dans un autre) ne se sont pas développés, à cause de la dépense, de la complication d’installation même de l’effet dangereux aux grandes oscillations, dans le cas du pont liquide.

Il faut que la période propre des oscillations du bateau soit supérieure à celle des lames, qui est de $T = 5$ sec. en moyenne dans la Manche et la Mer du Nord et de 10 sec. environ dans le Golfe de Gascogne.

Il faut ensuite que le feu oscille le moins possible ; il est suspendu au pylône du bateau - phare à la cardan. La demi-période d’oscillation est

$$T = \pi \sqrt{\frac{L}{g}} \cdot \frac{L'}{L} + \frac{L''}{L},$$

$T$ étant la fois de levier du centre de gravité $L$, le rayon de gyration central. Pour un travail de choix c., la demi-divertissement angulaire est $\phi$ telle que $C = P_{6} (1 - \cos^{2} \phi)$.

Pratiquement, le feu cardan porte une tige axiale lestée d’un poids important $P_{2}$ sous le cardan. Le feu cardan porte à la partie supérieure une couronne en fonte $P_{1}$, servant aussi de lest. Le centre de gravité de l’ensemble se trouve légèrement sous le plateau du cardan. C’est donc petit, mais comme $P$ est très grand, il est petit. Mais l’est grand parce que $T$ est petit et que $L$ est très grand. Donc la période est longue et atteint $T = 7$ sec. Le mouvement doit être amorti et le pendule être libre sur son support. Pour cela, on constitue le cardan par des supports à côneaux en acier dur. Le plateau mobile du cardan repose par une double rangée de têches sur le plateau fixe, de manière à transmettre les réactions verticales et horizontales. Il est immédiatement encorné descendu attaqué par un pignon. Pour les détails de ces renforts, voir l’ouvrage de M. Rivières.
Par ces dispositions, on a constaté sur le "Sandettien", que malgré une amplitude totale de rouis de 32°, l'amplitude totale d'oscillation du funal ne dépassait pas 10 à 12°.

On constata aussi des feux flottants non gardés, à service automatique. Ils sont visités régulièrement, pour renouveler les provisions de combustible pour l'éclairage, d'air comprimé pour les sirènes et la force motrice, enfin les mécanismes, etc. Deux dispositions sont analogues à celles des bateaux-phares.

5 Bouées et balises. La signalisation secondaire et approchée des passés, hauts fonds, écueils, mousoirs, etc. se fait au moyen de bouées flottantes et de balises fixes.

Les bouées sont des flotteurs liés à faible surface de flottaison, maintenus aux endroits connus par des chaînes attachées par une chaîne à un corps mort ; masse pesante, ancre, pique à vis, etc. La chaîne, liée à un sifflet, est nécessaire pour le manœuvrage de marée. Pour éviter le frottement de la chaîne sur le fond, qui l'usur, on tient la partie inférieure toujours tendue par un flotteur flottant.

Les flotteurs en pièces de bois superposées et assujetties ne conviennent guère, ils sont peu visibles et peu stables. On ne les emploie que pour l'amarrage des marnières. On se sert surtout de flotteurs creux en tôles rivées ou souduées, lestés inférieurement et visibles par elles-mêmes ou portant un signal (panneau), ou funal allumé, la nuit, ou un signal sonore animé par les flammes (cloche, trompe à ancre ou commandée [sirene]).

Comme forme, on emploie le cylindre surmonté d'un mât en treillis, ou la bouée sphéro-conique, ou la bouée à fuseau (à queue effilée et lestée), parfois une forme de coque de navire.
Lorsque les lampes portent un fanal, elles possèdent un réservoir de pétrole ou de gaz éclairant.

Par les fonds peu profonds, on établit des balises, signaux portés par des poteaux ou piquets en béton armé ou en acier chromé, scellés dans le fond