Elastic scattering, total cross sections and ρ parameters at the LHC

(mainly) with O.V. Selyugin

Analytic S matrix theory

 $\mathcal{A}(s,t,u)$

elastic amplitude dominated at large *s* by singularities in the complex *j* plane

in the case of simple poles

simple poles imply cuts Knowing the discontinuities of the (C=+1 and C=-1) amplitudes (the imaginary part) allows one to reconstruct the whole amplitude

$$+=pp; -=pp, t=0$$

The unitarity of the S matrix (i.e. $\sigma_{\text{elastic}} < \sigma_{\text{tot}}$) implies

$$|A(s,b)|^2 \leq 2Im(A(s,b)) |A(s,b)| = \mathcal{A}(s,b)/s)$$

Fourier transform of transverse momentum variable \approx partial wave $(\ell = b\sqrt{s})$

This leads to

 $\frac{\sigma_{tot}}{\log^2 s} \to constant \ \text{as} \ s \to \infty$

2 classes of models

Analytic fits: many parameters

- pick a number of known analytic functions
 fit the data
- reduce the number of parameters via some assumption (universality, quark counting, etc.)

Physical models: many assumptions choose a low-energy parametrisation extrapolate it to high energy implement unitarity

Analytic parametrisations

Usually for t=0 Start with a cross section parametrisation (about 6 parameters for pp/pp) Extend it to the real part using dispersion relations Use s^{α} , log(s), log²(s)

Physical models

Regge trajectory $J = \alpha_0 + \alpha' M^2$

Elastic amplitude $\mathcal{A} = c(t)c'(t) \ (is)^{\alpha_0 + \alpha' t}$

All meson and baryon exchanges lead to falling total cross sections

 $\Im m \mathcal{A}/s \propto \sigma_{tot}$

Pomeron amplitude for \sqrt{s} <100 GeV

 $\mathcal{A} = c(t)c'(t) \ (is)^{\alpha_0 + \alpha't}$

 $\alpha_0 \approx 1.1$ $\alpha' \approx 0.3 \text{ GeV}^{-2}$ $c(t) \approx F_1(t)$

Glueball exchange?

Get the trajectories and form factors directly from the data

 $5 \text{ GeV} < \sqrt{s} < 100 \text{ GeV}, 0.1 \text{ GeV}^2 < |t| < 0.5 \text{ GeV}^2$

non exponential form factors

linear trajectory

10

Unitarity

Unitarisation

Even in the simplest case we cannot calculate the resummation

True unitarisation

eikonal **U** $(s, b) = \frac{i}{\omega} (1 - \exp(i\omega A(s, b)))$ or U-matrix **U** $(s, b) = \frac{A(s,b)}{1 - i\omega A(s,b)/2}$

JRC, O. Selyugin & E. Predazzi, arXiv:0812.0735

Black disk limit

Total cross sections @ LHC

$\Im m \mathcal{A}(s,0)/s \propto \sigma_{tot}$

COMPETE fits

qcd.theo.phys.ulg.ac.be/compete

J.R. Cudell, V.V. Ezhela, P. Gauron, K. Kang, 4 Yu.V. Kuyanov, S.B. Lugovsky, E. Martynov, B. Nicolescu, E.A. Razuvaev, and N.P. Tkachenko, PRL double poles $(log(s))/triple poles (log^2(s))$ + 2 undegenerate lower trajectories

 $\sigma_{tot}^{pp}(10 \text{ TeV})$ 84 – 112 mb $\sigma_{tot}^{pp}(14 \text{ TeV})$ 90 – 117 mb

Reminiscent of the TeVatron problem

Simple eikonal (Black disk)

A Vanthieghem & JRC, https://matheo.ulg.ac.be/handle/2268.2/1301

U Matrix (full unitarity)

A Vanthieghem & JRC, https://matheo.ulg.ac.be/handle/2268.2/1301

The elastic cross section @ LHC

 $|\mathcal{A}(s,t)|^2 \propto \frac{d\sigma}{dt}$

Simplest parametrisation

$$\mathcal{A}(s,t) = \frac{ihs}{4\pi} \log^2\left(\frac{s}{s_0}\right) \left(\frac{s}{s_0}\right)^{\frac{B_1}{2}t + \frac{B_2}{2}t^2} F_1^2(t)$$

+divide each dataset by a factor n_i

	statistical	statistical+	statistical+
		systematic	normalisation
χ^2	48337	421	1812
$h \; (\text{GeV}^{-2})$	0.30	0.30	0.31
$B_1 \; ({\rm GeV}^{-2})$	0.55	0.55	0.58
$B_2 \; ({\rm GeV}^{-4})$	-0.39	-0.39	-0.26
$\sigma_{tot}(7 \text{ TeV}) \text{ (mb)}$	95.3	95.1	96.8
$\sigma_{tot}(8 \text{ TeV}) \text{ (mb)}$	98.2	98.0	99.7
TOTEM n_i at 7 TeV			1.03
TOTEM n_i at 8 TeV			1.05, 1.06
ATLAS n_i at 7 TeV			0.98
ATLAS n_i at 8 TeV			0.94

O. Selyugin & JRC, arXiv:1710.08696

More sophisticated: Selyugin's High Energy Generalised Structure (HEGS)

- Eikonal unitarisation
- Vector and tensor form factors from GPD's
- Coulomb region
- ●s⇔u crossing symmetry
- normalisation coefficients for each dataset

 $n_{\text{TOTEM}} \approx 0.9, n_{\text{ATLAS}} \approx 1$

Small |t| description

Large |t| description

Figure 2: The model calculation of the diffraction minimum in $d\sigma/dt$ of pp at $\sqrt{s} = 13.4$; 16.8; 19.4; 30.4; 52.8; 7000 GeV; (lines correspondingly - dots; short dash; dot-dash; solid; solid+circles; solid+ants); the squares - the data at $\sqrt{s} = 16.82$ GeV, and the circles - the data at $\sqrt{s} = 7$ TeV [32].

Small |t|

TABLE V. The obtained [85] and predicted sizes of $\sigma_{tot}(s)$ (in mb) and $\rho(t = 0, s)$.

\sqrt{s} , GeV	$\sigma_{ m tot-exp}$	$\sigma_{ m tot}$	$\rho(t=0,s)$
19.42	38.98 ± 0.4	39.58 ± 0.8	-0.005 ± 0.0006
22.96	39.42 ± 0.4	39.89 ± 0.8	-0.005 ± 0.0006
52.8	42.85 ± 0.7	43.15 ± 0.5	0.074 ± 0.005
541	62.72 ± 0.2	62.72 ± 0.2	0.128 ± 0.005
1800	77.3 ± 0.38	77.3 ± 0.38	0.127 ± 0.02
7000	98.0 ± 2.6	97.16 ± 0.5	0.121
7000	$96.4 \pm 2.$	97.16 ± 0.5	0.121
8000	$101.\pm2.1$	99.4 ± 0.5	0.12
14000	$104 \pm 26.$	108.76 ± 0.5	0.1176
30000	$120. \pm 15$	122.7 ± 0.5	0.11
57000	133 ± 23	135.4 ± 0.5	0.11

The p parameter

$$\frac{\Re e\mathcal{A}(s,0)}{\Im m\mathcal{A}(s,0)} = \rho(s,0)$$

TOTEM 2015

13 TeV?

Conclusions

•What is the source of the disagreement between TOTEM and ATLAS?

- Overall normalisation?
- Single-diffractive background?
- •COMPETE central values are meaningless.
- Models are flexible enough not to favour either dataset.

x_L>0.95, θn < 0.75 mrad