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Abstract

A passive vibration absorber, termed the nonlinear tuned vibration absorber (NLTVA), is designed for the suppression
of chatter vibrations. Unlike most passive vibration absorbers proposed in the literature, the NLTVA comprises both a
linear and a nonlinear restoring force. Its linear characteristics are tuned in order to optimize the stability properties of
the machining operation, while its nonlinear properties are chosen in order to control the bifurcation behavior of the
system and guarantee robustness of stable operation. In this study, the NLTVA is applied to turning machining.
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1 INTRODUCTION

Machine tool vibrations represent a main concern in industry, as they result, for instance, in wavy machined surfaces and decrease
in tool and spindle life [1]. The so-called regenerative effect (where the tool interacts with its delayed displacement via the surface
profile that is cut one revolution earlier) is considered to be one of the main reasons for these vibrations [2, 3].

Active controllers are a possible solution to this problem [4], but they have issues related to unpredictable instabilities and requirements
of external energy source [4]. They do not offer satisfactory vibration reduction, for instance, in case of long boring bars used for
enlargement of deep holes, or in case of milling of thin-walled structures.

Several authors developed various kinds of passive vibration absorbers for the mitigation of such vibrations. These include conven-
tional mechanical linear vibration absorbers [5], vibro-impact absorbers [6], friction damping absorbers [7], self-tunable absorbers [8],
piezoelectric absorbers based on shunt circuits [9] and nonlinear energy sinks [10]. Numerical and experimental studies exhibited their
promising performance in terms of stabilization of machining operations, allowing larger depth of cut in stable conditions, which
enables to increase production speed. However, the intrinsic nonlinearity of machine tool vibrations, combined with the regenerative
time delay effect, generates robust oscillatory motions, which exist also within the stable region of machining operation, causing
dangerous bi-stabilities [3, 11]. These motions, generally related to subcritical bifurcations at the loss of stability, are overlooked by
classical linear stability analysis, which makes them hardly predictable.

In this study, we propose a nonlinear passive vibration absorber, termed the nonlinear tuned vibration absorber (NLTVA), for the
suppression of machine tool vibrations. It combines the beneficial effect of a linear absorber, able to enlarge the stable area of
operation, with a nonlinear characteristic, which enables it to improve the robustness of the stable chatter-free motion and to avoid
bi-stable conditions. It represents a nonlinear extension of the linear tuned vibration absorber (LTVA), as presented in [12] and, for
instance, in [5].

The NLTVA was first introduced for the mitigation of nonlinear resonances [13−15], showing excellent results in terms of vibration
mitigation. Successively, its implementation was extended to self-excited oscillations [16]. The experimental demonstration of the
NLTVA in the case of forced oscillations was carried out in [17].
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Figure 1: Stability chart for ζ1 = 0.05. Dashed blue line: system with no absorber; solid black line: system with LTVA,
µ = 0.05, γ = 1.069 and ζ2 = 0.1437.

The optimal tuning of the NLTVA follows a classical stability analysis for the definition of the most convenient linear parameters,
whereas its nonlinear characteristic is optimized through bifurcation analysis at the loss of stability. Doing so, the nonlinear restoring
force of the absorber is designed such that the system loses stability through supercritical bifurcations, rather than subcritical ones.
The NLTVA is tested numerically using a simplified model of turning operations.

2 MECHANICAL MODEL AND STABILITY ANALYSIS

We consider a two degree-of-freedom (DoF) system, where the first coordinate refers to the motion of the cutting tool in the cutting
direction, while the second coordinate refers to the movement of the attached NLTVA. The dimensionless equations of motion read

ẍ1 + 2ζ1ẋ1 + x1 + 2ζ2γµ (ẋ1 − ẋ2) + γ2µ (x1 − x2) + α2γ
2µ (x1 − x2)2 + α3γ

2µ (x1 − x2)3

= p
(
(x1τ − x1) + η2 (x1τ − x1)2 + η3 (x1τ − x1)3)

ẍ2 + 2ζ2γ (ẋ2 − ẋ1) + γ2 (x2 − x1) + α2γ
2 (x2 − x1)2 + α3γ

2 (x2 − x1)3 = 0,

(1)

where x1τ = x1(t− τ) and τ is the time delay, ζ1 and ζ2 are, respectively, the relative damping factors of the primary system and
of the absorber, γ and µ are, respectively, the natural frequency and mass ratio between the absorber and the primary system, p
is the dimensionless depth of cut, η2 and η3 define the nonlinear part of the cutting force [3], α2 and α3 are the coefficient of the
quadratic and cubic terms, respectively, of the absorber restoring force.

Figure 1 shows the stability chart in the dimensionless space Ωd, p (Ωd is the dimensionless spindle speed) for a system without
and with LTVA and clearly illustrates the advantage given by the absorber in terms of stability. Equations for obtaining an almost
optimal linear tuning of the absorber are given in [5].

3 BIFURCATION ANALYSIS AND NONLINEAR TUNING OF THE ABSORBER

Systems subject to time delay are generally prone to lose stability through subcritical bifurcations. This causes the existence of
solutions, different from the trivial one, within the stable region, often generating bistability. In other words, while machining in
chatter free conditions, it is possible that perturbations cause the system to jump towards another attractor which involves large
chatter oscillations.
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Figure 2: Illustration of stable, bistable and unstable regions (for a single stability lobe) for a system without absorber (a),
with an attached LTVA (b) and with and attached NLTVA (c). Parameter values: ζ1 = 0.05, µ = 0.05, γ = 1.069,
ζ2 = 0.1437, α2 = 0.8 and α3 = 0.71. Cutting force model according to [19] with nominal depth of cut h = 0.07 mm.

Adopting the multiple scales method [18], we investigate the nature of the bifurcations occurring at the loss of stability of the system
under study. A lengthy analytical procedure provides the compact formula

x1 ≈ 2
√

−p− pcr
∆ eiωt (2)

which describes the amplitude of the periodic oscillations generated by the Hopf bifurcation at the loss of stability. pcr indicates
the critical depth of cut, while ∆ characterize the bifurcation. Namely, if ∆ < 0 the bifurcation is supercritical and if ∆ > 0 it is
subcritical.

The results of the bifurcation analysis showed that, if a LTVA is adopted, ∆ is always positive, therefore the bifurcations at the
stability loss are always subcritical. On the contrary, if a NLTVA is implemented, through an accurate tuning of the absorber
nonlinearities, it is possible to enforce a transition of the bifurcations from subcritical to supercritical, with a consequent elimination
of the bistable regions. In this respect, the analytical formulation adopted is particularly convenient, since ∆ is linearly proportional
to α3, which facilitate the tuning.

Interestingly, depending on the spindle speed Ωd of operation, either a softening or a hardening nonlinearity is required to enforce
supercriticality. This precludes the possibility of designing an absorber able to guarantee always supercritical behavior. However, a
combination of quadratic and cubic nonlinearities allows to minimize the unsafe bistable zone, obtaining a significant improvement
from a practical point of view. A comparison of the safe and unsafe regions for a system without absorber, with an LTVA or with an
NLTVA is depicted in Fig. 2. The extent of the bistable regions is estimated following the procedure illustrated in [11]. The figure
clearly illustrates the advantage of the NLTVA over the LTVA in terms of robustness of stable operation.
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