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Abstract We consider two Riemannian geometries for the manifold M(p, m × n)

of all m × n matrices of rank p. The geometries are induced on M(p, m × n) by
viewing it as the base manifold of the submersion π : (M, N ) �→ M N T, selecting
an adequate Riemannian metric on the total space, and turning π into a Riemannian
submersion. The theory of Riemannian submersions, an important tool in Riemannian
geometry, makes it possible to obtain expressions for fundamental geometric objects
on M(p, m × n) and to formulate the Riemannian Newton methods on M(p, m × n)

induced by these two geometries. The Riemannian Newton methods admit a stronger
and more streamlined convergence analysis than the Euclidean counterpart, and the
computational overhead due to the Riemannian geometric machinery is shown to be
mild. Potential applications include low-rank matrix completion and other low-rank
matrix approximation problems.
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1 Introduction

Let m, n, and p ≤ min{m, n} be positive integers and let M(p, m × n) denote the set
of all rank-p matrices of size m × n,

M(p, m × n) = {X ∈ R
m×n : rank(X) = p}. (1)

Given a smooth real-valued function f defined on M(p, m × n), we consider the
problem

min f (X) subject toX ∈ M(p, m × n). (2)

Problem (2) subsumes low-rank matrix approximation problems, where f (X) ≡
‖C − X‖2 with C ∈ R

m×n given and ‖ · ‖ a (semi)norm. In particular, it includes
low-rank matrix completion problems, which have been the topic of much attention
recently; see Keshavan et al. (2010), Dai et al. (2011, 2012), Boumal and Absil (2011),
Vandereycken (2013), Mishra et al. (2011a) and references therein, and also Sect. 7. We
also mention the recent e-prints Mishra et al. (2012a,b) that appeared after the present
paper was submitted. Interestingly, low-rank matrix completion problems combine
two sparsity aspects: only a few elements of C are available, and the vector of singular
values of X is restricted to have only a few nonzero elements.

This paper belongs to a trend of research, see Helmke and Moore (1994), Helmke
and Shayman (1995), Simonsson and Eldén (2010), Vandereycken (2013), Mishra et
al. (2011a,b), where problem (2) is tackled using differential-geometric techniques
exploiting the fact that M(p, m × n) is a submanifold of R

m×n . We are interested in
Riemannian Newton methods (see Smith 1994; Adler et al. 2002; Absil et al. 2008) for
problem (2), with a preference for the pure Riemannian setting (Smith 1994). This set-
ting involves defining a Riemannian metric on M(p, m × n) and providing an expres-
sion for the Riemannian connection—which underlies the Riemannian Hessian—and
for the Riemannian exponential. When M(p, m × n) is viewed as a Riemannian sub-
manifold of R

m×n , the necessary ingredients for computing the Riemannian Hessian
are available (Vandereycken 2013, §2.3), but a closed-form expression of the Rie-
mannian exponential has been elusive in that geometry.

In this paper, we follow a different approach that strongly relies on two-term fac-
torizations of low-rank matrices. To this end, let

R
m×p∗ = {X ∈ R

m×p : rank(X) = p} (3)

denote the set of all full-rank m × p matrices, and observe that, since the function

π : R
m×p∗ × R

n×p∗ → M(p, m × n) : (M, N ) �→ M N T (4)
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Two Newton methods on the manifold of fixed-rank matrices 571

is surjective, problem (2) amounts to the optimization over its domain of the function
f̄ = f ◦ π , i.e.,

f̄ : R
m×p∗ × R

n×p∗ → R : (M, N ) �→ f (M N T). (5)

Pleasantly, where as M(p, m × n) is a nonlinear space, Rm×p∗ × R
n×p∗ is an open sub-

set of a linear space; more precisely, R
m×p∗ × R

n×p∗ is the linear space R
m×p × R

n×p

with a zero-measure nowhere-dense set excerpted. (Indeed, the excerpted set is an
algebraic variety of codimension greater than or equal to 1.) The downside is that the
minimizers of f̄ are never isolated; indeed, for all (M, N ) ∈ R

m×p∗ × R
n×p∗ , f̄ = f ◦π

assumes the same value f̄ (M, N ) at all points of

π−1(M N T) = {(M R, N R−T) : R ∈ GL(p)}, (6)

where

GL(p) = {R ∈ R
p×p : det(R) 
= 0}

denotes the general linear group of degree p. In the context of Newton-type methods,
this can be a source of concern since, where as the convergence theory of Newton’s
method to nondegenerate minimizers is well understood (see, e.g., Dennis and Schn-
abel 1983, Theorem 5.2.1), the situation becomes more intricate in the presence of
non-isolated minimizers (see, e.g., Griewank and Reddien 1985).

The proposed remedy to this downside consists in elaborating a Riemannian
Newton method that evolves conceptually on M(p, m × n)—avoiding the structural
degeneracy in R

m×p∗ × R
n×p∗ —while still being formulated in R

m×p∗ × R
n×p∗ . This

is made possible by endowing R
m×p∗ × R

n×p∗ and M(p, m × n) with Riemannian
metrics that turn π into a Riemannian submersion. The theory of Riemannian sub-
mersions (O’Neill 1966, 1983) then provides a way of representing the Riemannian
connection and the Riemannian exponential of M(p, m × n) in terms of the same
objects of R

m×p∗ × R
n×p∗ .

It should be pointed out that the local quadratic convergence of the Riemannian
Newton method is retained if the Riemannian connection is replaced by any affine
connection and the Riemannian exponential is replaced by any first-order approxi-
mation, termed retraction; see Absil et al. (2008, §6.3). The preference for the pure
Riemannian setting is thus mainly motivated by the mathematical elegance of a method
fully determined by the sole Riemannian metric.

Some of the material of this paper is inspired from the PhD thesis Meyer (2011)
and the talk Amodei et al. (2009).

The paper is organized as follows. In the short Sects. 2 and 3, we show that π

is a submersion and we recall some fundamentals of Riemannian submersions. A
first, natural but unsuccessful attempt at turning π into a Riemannian submersion is
presented in Sect. 4. Two ways of achieving success are then presented in Sects. 5 and 6.
In Sect. 5, the strategy consists of introducing a non-Euclidean Riemannian metric on
R

m×p∗ × R
n×p∗ , whereas in Sect. 6, the plan of action is to restrict R

m×p∗ × R
n×p∗ by

imposing orthonormality of one of the factors. We obtain closed-form expressions for
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the Riemannian connection (in both cases) and for the Riemannian exponential (in
the latter case). Numerical experiments are conducted in Sect. 7, and conclusions are
drawn in Sect. 8.

2 M( p, m × n) as a quotient manifold

The set M(p, m × n) of rank-p matrices of size m × n is known to be an embedded
submanifold of dimension p(m+n−p)of R

m×n , connected whenever max{m, n} > 1;
see Helmke and Moore (1994, Ch. 5, Prop. 1.14). Hence π (4) is a smooth surjective
map between two manifolds.

We show that π is a submersion, i.e., that the differential of π is everywhere
surjective. Observe that the tangent space to R

m×p∗ × R
n×p∗ at (M, N ) is given by

T(M,N )R
m×p∗ × R

n×p∗ = R
m×p × R

n×p;

this comes from the fact that R
m×p∗ × R

n×p∗ is an open submanifold of the Euclidean
space R

m×p × R
n×p Absil et al. (2008, §3.5.1). For all (M, N ) ∈ R

m×p∗ × R
n×p∗

and all (Ṁ, Ṅ ) ∈ R
m×p × R

n×p, we have Dπ(M, N )[(Ṁ, Ṅ )] = Ṁ N T + M Ṅ T.
Working in a coordinate system where M = [

I 0
]T and N = [

I 0
]T, one readily sees

that the dimension of the range of the map (Ṁ, Ṅ ) �→ Dπ(M, N )[(Ṁ, Ṅ )] is equal
to p(m + n − p), the dimension of the codomain of π . Hence π is a submersion.

As a consequence, by the submersion theorem (Absil et al. 2008, Proposition 3.3.3),
the fibers π−1(M N T) are p2-dimensional submanifolds of R

m×p∗ × R
n×p∗ . More-

over, by Abraham et al. (1988, Proposition 3.5.23), the equivalence relation ∼ on
R

m×p∗ × R
n×p∗ , defined by (Ma, Na) ∼ (Mb, Nb) if and only if π(Ma, Na) =

π(Mb, Nb), is regular and R
m×p∗ × R

n×p∗ / ∼ is a quotient manifold diffeomorphic to
M(p, m × n).

3 Riemannian submersion: principles

Turning π into a Riemannian submersion amounts to endowing its domain
R

m×p∗ × R
n×p∗ with a Riemannian metric ḡ that satisfies a certain invariance con-

dition, described next.
By definition, the vertical space V(M,N ) at a point (M, N ) ∈ R

m×p∗ × R
n×p∗ is the

tangent space to the fiber π−1(M N T) (6). We obtain

V(M,N ) = {(M Ṙ,−N ṘT) : Ṙ ∈ R
p×p}. (7)

Let ḡ be a Riemannian metric on R
m×p∗ × R

n×p∗ . Then one defines the horizontal
space H(M,N ) at (M, N ) to be the orthogonal complement of V(M,N ) in R

m×p × R
n×p

relative to ḡ(M,N ), i.e.,

H(M,N ) = {(Ṁ, Ṅ ) ∈ R
m×p × R

n×p : ḡ(M,N )((Ṁ, Ṅ ), (M Ṙ,−N ṘT))

= 0,∀Ṙ ∈ R
p×p}. (8)
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Next, given a tangent vector Ẋ M N T ∈ TM N TM(p, m × n), there is one and only one

Ẋ↑(M,N ) ∈ H(M,N ) such that Dπ(M, N )[Ẋ↑(M,N )] = Ẋ M N T , (9)

where Dπ(X)[Ẋ ] denotes the differential of π at X applied to Ẋ . This Ẋ↑(M,N )

is termed the horizontal lift of Ẋ M N T at (M, N ). If (and only if), for all (M, N ) ∈
R

m×p∗ × R
n×p∗ , all Ẋ M N T , X̌ M N T ∈ TM N TM(p, m × n), and all R ∈ GL(p), it holds

that

ḡ(M,N )(Ẋ↑(M,N ), X̌↑(M,N ))= ḡ(M R,N R−T)(Ẋ↑(M R,N R−T), X̌↑(M R,N R−T)), (10)

then there is a (unique) Riemannian metric g on M(p, m × n) consistently defined
by

gM N T(Ẋ M N T , X̌ M N T) = ḡ(M,N )(Ẋ↑(M,N ), X̌↑(M,N )).

The submersion π : (R
m×p∗ × R

n×p∗ , ḡ) → (M(p, m × n), g) is then termed a Rie-
mannian submersion, and (M(p, m × n), g) is termed a Riemannian quotient mani-
fold of (R

m×p∗ × R
n×p∗ , ḡ). (We will sometimes omit the Riemannian metrics in the

notation when they are clear from the context or undefined.)
In summary, in order to turn π into a Riemannian submersion, we “just” have to

choose a Riemannian metric ḡ of R
m×p∗ × R

n×p∗ that satisfies the invariance condi-
tion (10).

4 M( p, m × n) as a non-Riemannian quotient manifold

In this section, we consider on R
m×p∗ × R

n×p∗ the Euclidean metric ḡ, defined by

ḡ(M,N )

(
(Ṁ, Ṅ ), (M̌, Ň )

)
:= trace(ṀT M̌) + trace(Ṅ T Ň ), (11)

and we show that the invariance condition (10) does not hold. Hence π :
(R

m×p∗ × R
n×p∗ , ḡ) → M(p, m × n) cannot be turned into a Riemannian submer-

sion.
The horizontal space (8) is

H(M,N ) = {(Ṁ, Ṅ ) : trace(ṀT M Ṙ) + trace(−Ṅ T N ṘT) = 0,∀Ṙ ∈ R
p×p}.

Using the identities trace(A) = trace(AT) and trace(AB) = trace(B A), we obtain
the identity trace(ṀT M Ṙ) + trace (−Ṅ T N ṘT) = trace

(
(ṘT(MT Ṁ − Ṅ T N )

)
. It

follows that the following propositions are equivalent:

1. (Ṁ, Ṅ ) ∈ H(M,N ),
2. MT Ṁ = Ṅ T N , Ṁ ∈ R

m×p∗ , Ṅ ∈ R
n×p∗ ,

3. ∃L M ∈ R
(m−p)×p, L N ∈ R

(n−p)×p, S ∈ R
p×p :

{
Ṁ = M⊥L M +M(MT M)−1S

Ṅ = N⊥L N +N (N T N )−1ST,
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where M⊥ denotes an orthonormal m × (m − p) matrix such that MT M⊥ = 0, and
likewise for N⊥.

Let X = M N T and let Ẋ M N T ∈ TM N TM(p, m × n). We seek an expression for
the horizontal lift Ẋ↑(M,N ) = (Ẋ↑M(M,N ), Ẋ↑N(M,N )) of Ẋ M N T at (M, N ), defined
by (9). By a reasoning similar to the one detailed in Sect. 5.3 below, we obtain

Ẋ↑M(M,N ) = (Ẋ M N T N − M K )(N T N )−1 and

Ẋ↑N(M,N ) = (ẊT
M N T M − N K T)(MT M)−1,

where K solves the Sylvester equation

MT M K + K N T N = MT Ẋ M N T N .

One sees by inspection, or by a numerical check, that the invariance condition (10)
does not hold, and this concludes the argument.

We will now consider two approaches to obtain the invariance condition (10). The
first one, followed in Sect. 5, is to modify the Riemannian metric ḡ without altering the
total space R

m×p∗ × R
n×p∗ . The other one, investigated in Sect. 6, consists of restricting

the total space without modifying the expression (11) of the Riemannian metric ḡ.

5 M( p, m × n) as a Riemannian quotient manifold of R
m× p
∗ × R

n× p
∗

In this section, we proceed as in Sect. 4, but now with a different Riemannian metric ḡ,
defined in (12) below. As we will see, the rationale laid out in Sect. 4 now leads to the
conclusion thatπ : (R

m×p∗ × R
n×p∗ , ḡ) → M(p, m × n), with ḡ given by (12) instead

of (11), can be turned into a Riemannian submersion. This endows M(p, m × n)

with a Riemannian metric, g. We then work out formulas for the Riemannian gradient
and Hessian of f on the Riemannian manifold (M(p, m × n), g), and we state the
corresponding Newton method.

5.1 Riemannian metric in total space

Inspired from the case of the Grassmann manifold viewed as a Riemannian quotient
manifold of R

n×p∗ (Absil et al. 2008, Example 3.6.4), we consider the Riemannian
metric ḡ on R

m×p∗ × R
n×p∗ defined by

ḡ(M,N )

(
(Ṁ, Ṅ ), (M̌, Ň )

)
:= trace

(
(MT M)−1 ṀT M̌ + (N T N )−1 Ṅ T Ň

)
. (12)

We now proceed to show that it satisfies the invariance condition (10).

5.2 Horizontal space

The elements (Ṁ, Ṅ ) of the horizontal space H(M,N ) (8) are readily found to be
characterized by
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MT Ṁ(MT M)−1 = (N T N )−1 Ṅ T N . (13)

In other words,

H(M,N ) = {(Ṁ, Ṅ ) ∈ R
m×p × R

n×p : N T N MT Ṁ = Ṅ T N MT M}. (14)

5.3 Horizontal lift

Let X = M N T and let Ẋ M N T belong to TM N TM(p, m × n). We seek an expression
for the horizontal lift Ẋ↑(M,N ) = (Ẋ↑M(M,N ), Ẋ↑N(M,N )) defined in (9). In view
of (13), we find that the horizontality condition (Ẋ↑M(M,N ), Ẋ↑N(M,N )) ∈ H(M,N ) is
equivalent to

Ẋ↑M(M,N ) = M⊥LM + M(MT M)−1 K (MT M) (15a)

Ẋ↑N(M,N ) = N⊥LN + N (N T N )−1 K T(N T N ), (15b)

where LM ∈R
(m−p)×p, LN ∈ R

(n−p)×p and K ∈R
p×p. Since Dπ(M, N )[Ẋ↑M(M,N ),

Ẋ↑N(M,N )] ≡ M ẊT
↑N(M,N ) + Ẋ↑M(M,N )N T, the definition (9) implies that

Ẋ M N T = M ẊT
↑N(M,N ) + Ẋ↑M(M,N )N T. (16)

Replacing (15) in (16) yields

Ẋ M N T = M LT
N N T⊥ + M(N T N )K (N T N )−1 N T + M⊥LM N T + M(MT M)−1

K (MT M)N T. (17)

Multiplying (17) on the left by (MT M)−1 MT and on the right by N⊥ yields

LT
N = (MT M)−1 MT Ẋ M N T N⊥, (18a)

multiplying (17) on the left by MT⊥ and on the right by N (N T N )−1 yields

LM = MT⊥ Ẋ M N T N (N T N )−1, (18b)

and multiplying (17) on the left by MT and on the right by N yields

MT Ẋ M N T N = MT M N T N K + K MT M N T N . (18c)

Replacing (18) into (15) yields
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Ẋ↑M(M,N ) = M⊥MT⊥ Ẋ M N T N (N T N )−1 + M(MT M)−1 K MT M (19a)

Ẋ↑N(M,N ) = N⊥N T⊥ ẊT
M N T M(MT M)−1 + N (N T N )−1 K T N T N . (19b)

We can further exploit the identities M⊥MT⊥ = I − M(MT M)−1 MT, and likewise for
N , as well as (18c), to rewrite (19) as

Ẋ↑M(M,N ) = (Ẋ M N T N − M N T N K )(N T N )−1 (20a)

Ẋ↑N(M,N ) = (ẊT
M N T M − N MT M K T)(MT M)−1. (20b)

This result is formalized as follows:

Proposition 5.1 Consider the submersion π (4) and the horizontal distribution (14).
Let (M, N ) ∈ R

m×p∗ × R
n×p∗ and let Ẋ M N T be in TM N TM(p, m × n). Then the

horizontal lift of Ẋ M N T at (M, N ) is Ẋ↑(M,N ) = (Ẋ↑M(M,N ), Ẋ↑N(M,N ))given by (20),
where K is the solution of the Sylvester equation (18c).

5.4 Constitutive equation of horizontal lifts

A horizontal lift Ẋ↑(M,N ) fully specifies Ẋ M N T = Dπ(M, N )[Ẋ↑(M,N )] ∈
TM N TM(p, m × n) as well as its horizontal lift at any other point of the fiber
π−1(M N T) (6). Let us obtain an expression for Ẋ↑(M R,N R−T) in terms of Ẋ↑(M,N ).
The expression (20) of horizontal lifts yields after routine manipulations

Ẋ↑M(M R,N R−T) = Ẋ↑M(M,N ) R, Ẋ↑N(M R,N R−T) = Ẋ↑N(M,N ) R−T. (21)

We have obtained:

Proposition 5.2 Consider the submersion π (4) and the horizontal distribution (14).
Then a vector field R

m×p∗ × R
n×p∗ � (M, N ) �→ Ẋ↑(M,N ) ∈ R

m×p × R
n×p is a

horizontal lift if and only if (21) holds for all (M, N ) ∈ R
m×p∗ × R

n×p∗ and all
R ∈ GL(p).

5.5 Riemannian submersion

Routine manipulations using (21) yield that ḡ (12) satisfies the invariance condi-
tion (10). (As an aside, we point out that this result can also be obtained from the fact
that we have a principal fiber bundle (R

m×p∗ × R
n×p∗ ,M(p, m × n), π, GL(p)) and

that the Riemannian metric ḡ is invariant by the action of GL(p) on R
m×p∗ × R

n×p∗ .)
Hence there is a (unique) Riemannian metric g on M(p, m × n) that makes

π : (R
m×p∗ × R

n×p∗ , ḡ) → (M(p, m × n), g) : (M, N ) �→ M N T (22)

a Riemannian submersion. The Riemannian metric g is consistently defined by

gM N T(Ẋ M N T , X̌ M N T) := ḡ(M,N )(Ẋ↑(M,N ), X̌↑(M,N )). (23)
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5.6 Horizontal projection

We will need an expression for the projection Ph
(M,N )(Ṁ, Ṅ ) of (Ṁ, Ṅ ) ∈

R
m×p × R

n×p onto the horizontal space (14) along the vertical space (7).
Since the projection is along the vertical space, we have

Ph
(M,N )(Ṁ, Ṅ ) = (Ṁ + M Ṙ, Ṅ − N ṘT) (24)

for some Ṙ ∈ R
p×p. It remains to obtain Ṙ by imposing horizontality of (24). Since

horizontal vectors are characterized by (13), we find that (24) is horizontal if and only
if

MT(Ṁ + M Ṙ)(MT M)−1 = (N T N )−1(Ṅ T − ṘN T)N ,

that is,

MT M Ṙ(MT M)−1 + (N T N )−1 ṘN T N = −MT Ṁ(MT M)−1 + (N T N )−1 Ṅ T N ,

which can be rewritten as the Sylvester equation

N T N MT M Ṙ + ṘN T N MT M = −N T N MT Ṁ + Ṅ T N MT M. (25)

In summary:

Proposition 5.3 The projection Ph
(M,N )(Ṁ, Ṅ ) of (Ṁ, Ṅ ) ∈ R

m×p × R
n×p onto the

horizontal space (14) along the vertical space (7) is given by (24) where Ṙ is the
solution of the Sylvester equation (25).

5.7 Riemannian connection on the total space

Since the chosen Riemannian metric ḡ (12) on the total space R
m×p∗ × R

n×p∗ is not
the Euclidean metric (11), it can be expected that the Riemannian connection on
(R

m×p∗ × R
n×p∗ , ḡ) is not the plain differential. We show that this is indeed the case

and we provide a formula for the Riemannian connection ∇̄ on (R
m×p∗ × R

n×p∗ , ḡ).
The motivation for obtaining this formula is that the Riemannian Newton equation on
(M(p, m × n), g) requires the Riemannian connection on (M(p, m × n), g), which
is readily obtained from ∇̄ as we will see in Sect. 5.8. The general theory of Riemannian
connections (also called Levi-Civita connections) can be found in Absil et al. (2008,
§5.3) or in any Riemannian geometry textbook such as do Carmo (1992).

The development relies on Koszul’s formula

2g(∇χη, ξ) = ∂χ g(η, ξ) + ∂ηg(χ, ξ) − ∂ξ g(χ, η) + g([χ, η], ξ) − g([χ, ξ ], η)

−g([η, ξ ], χ), (26)
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that characterizes the Riemannian connection ∇ on a manifold endowed with a Rie-
mannian metric g, where χ, η, ζ are tangent vector fields, ∂χ denotes the derivative
along χ , and [χ, η] denotes the Lie bracket of χ and η.

After lengthy but routine calculations, we obtain the following expression for the
Riemannian connection ∇̄ on (R

m×p∗ × R
n×p∗ , ḡ), where sym(A) := 1

2 (A + AT)

denotes the symmetric part of A:

(∇̄Ẋ Ẏ
)

M = ∂Ẋ ẎM − ẎM(MT M)−1sym(ẊT
M M) − ẊM(MT M)−1sym(Ẏ T

M M)

+M(MT M)−1sym(ẊT
MẎM) (27a)

and

(∇̄Ẋ Ẏ
)

N = ∂Ẋ ẎN − ẎN(N T N )−1sym(ẊT
N N ) − ẊN(N T N )−1sym(Ẏ T

N N )

+N (N T N )−1sym(ẊT
NẎN), (27b)

for all (M, N ) ∈ R
m×p∗ × R

n×p∗ , all Ẋ ∈ T(M,N )R
m×p∗ × R

n×p∗ and all tangent vector
fields Ẏ on R

m×p∗ × R
n×p∗ .

5.8 Riemannian connection on the quotient space

Let ∇ denote the Riemannian connection on the quotient space M(p, m × n) endowed
with the Riemannian metric g (23). A classical result in the theory of Riemannian
submersions (see O’Neill 1966, Lemma 1 or Absil et al. 2008, §5.3.4) states that

(∇Ẋ M NT
Ẏ )↑(M,N ) = Ph

(M,N )(∇̄Ẋ↑(M,N )
Ẏ↑),

for all Ẋ M N T ∈ TM N TM(p, m × n) and all tangent vector fields Ẏ on M(p, m × n).
That is, the horizontal lift of the Riemannian connection of the quotient space is given
by the horizontal projection (24) of the Riemannian connection (27) of the total space.

5.9 Riemannian Newton equation

For a real-valued function f on a Riemannian manifold M with Riemannian metric
g, we let grad f (x) denote the gradient of f at x ∈ M—defined as the unique tangent
vector to M at x that satisfies gx (grad f (x), ξx ) = D f (x)[ξx ] for all ξx ∈ TxM—and
the plain Riemannian Newton equation is given by

∇ηx grad f = −grad f (x)

for the unknown ηx ∈ TxM, where ∇ stands for the Riemannian connection; see,
e.g., Absil et al. (2008, §6.2).

We now turn to the manifold M(p, m × n) endowed with the Riemannian metric
g (23) and we obtain an expression of the Riemannian Newton equation by means of
its horizontal lift through the Riemannian submersion π (22). First, on the total space
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R
m×p∗ × R

n×p∗ endowed with the Riemannian metric ḡ (12), we readily obtain the
following expression for the gradient of f̄ (5):

grad f̄ (M, N ) = (∂M f̄ (M, N )MT M, ∂N f̄ (M, N )N T N ),

where ∂M f̄ (M, N ) denotes the Euclidean (i.e., classical) gradient of f̄ with respect to
its first argument, i.e., (∂M f̄ (M, N ))i, j = d

dt f̄ (M + tei e
T
j , N )|t=0, and likewise for

∂N f̄ (M, N ) with the second argument. Then the horizontal lift of the Newton equation
at a point (M, N ) of the total space R

m×p∗ × R
n×p∗ , for the unknown Ẋ↑(M,N ) in the

horizontal space H(M,N ) (14), is

Ph
(M,N )(∇̄Ẋ↑(M,N )

grad f̄ ) = −grad f̄ (M, N ), (28)

where Ph is the horizontal projection given in Sect. 5.6 and ∇̄ is the Riemannian
connection on (R

m×p∗ × R
n×p∗ , ḡ) given in Sect. 5.7. To obtain (28), we have used the

fact (see Absil et al. 2008, (3.39)) that (grad f )↑(M,N ) = grad f̄ (M, N ), where the
left-hand side denotes the horizontal lift of grad f (M N T) at (M, N ).

Intimidating as it may be in view of the expressions of Ph and ∇̄, the Newton
equation (28) is nevertheless merely a linear system of equations. Indeed, Ẋ↑(M,N ) �→
Ph

(M,N )(∇̄Ẋ↑(M,N )
grad f̄ ) is a linear transformation of the horizontal space H(M,N ).

Thus (28) can be solved using “matrix-free” linear solvers such as GMRES. Moreover,
in addition to computing the Euclidean gradient of f̄ and the Euclidean derivative of the
Euclidean gradient of f along Ẋ↑(M,N ), computing Ph

(M,N )(∇̄Ẋ↑(M,N )
grad f̄ ) requires

only O(p2(m + n + p)) flops.

5.10 Newton’s method

In order to spell out on (M(p, m × n), g) the Riemannian Newton method as defined
in Absil et al. (2008, §6.2), the last missing ingredient is a retraction R that turns
the Newton vector Ẋ M N T into an updated iterate RM N T Ẋ M N T in M(p, m × n). The
general definition of a retraction can be found in Absil et al. (2008, §4.1).

The quintessential retraction on a Riemannian manifold is the Riemannian expo-
nential; see Absil et al. (2008, §5.4). However, computing the Riemannian exponential
amounts to solving the differential equation ∇Ẋ Ẋ = 0, which may not admit a closed-
form solution. In the case of (M(p, m × n), g), we are not aware of such a closed-form
solution, and this makes the exponential retraction impractical.

Fortunately, other retractions are readily available. A retraction on M(p, m × n)

is given by

RM N T(Ẋ M N T) := (M + Ẋ↑M(M,N ))(N + Ẋ↑N(M,N ))
T, (29)

where Ẋ↑M(M,N ) and Ẋ↑N(M,N ) are horizontal lifts as defined in Proposition 5.1. It is
readily checked that the definition is consistent, i.e., it depends on M N T and not on
the specific choices of (M, N ) in the fiber (6).

With all these elements in place, we can describe Newton’s method as follows.
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Theorem 5.4 (Riemannian Newton onM(p, m × n)with Riemannian metric (23))
Let f be a real-valued function on the Riemannian manifold M(p, m × n) (1),
endowed with the Riemannian metric g (23), with the associated Riemannian con-
nection ∇, and with the retraction (29). Then the Riemannian Newton method (Absil
et al. 2008, Algorithm 5) for f maps M N T ∈ M(p, m × n) to (M + ẊM)(N + ẊN)T,
where (ẊM, ẊN) is the solution Ẋ↑(M,N ) of the Newton equation (28).

Note that, in practice, it is not necessary to form M N T. Given an initial point M0 N T
0 ,

one can instead generate a sequence {(Mk, Nk)} in R
m×p∗ × R

n×p∗ by applying the
iteration map (M, N ) �→ (M+ ẊM, N + ẊN). The Newton sequence on M(p, m × n)

is then {Mk N T
k }, and it depends on M0 N T

0 but not on the particular M0 and N0.
The following convergence result follows directly from the general convergence

analysis of the Riemannian Newton method (Absil et al. 2008, Theorem 6.3.2). A
critical point of f : M(p, m × n) → R is a point X∗ where grad f (X∗) = 0.
It is termed nondegenerate if the Hessian TX∗M(p, m × n) � Ẋ �→ ∇Ẋ grad f ∈
TX∗M(p, m × n) is invertible. These definitions do not depend on the Riemannian
metric nor on the affine connection ∇.

Theorem 5.5 (quadratic convergence) Let X∗ be a nondegenerate critical point of f .
Then there exists a neighborhood U of X∗ in M(p, m × n) such that, for all initial
iterates X0 ∈ U , the iteration described in Theorem 5.4 generates an infinite sequence
{Xk} converging superlinearly (at least quadratically) to X∗.

6 M( p, m × n) as a Riemannian quotient manifold with an orthonormal factor

We now follow the second plan of action mentioned at the end of Sect. 1. Bear in mind
that the meaning of much of the notation introduced above will be superseded by new
definitions below.

6.1 A smaller total space

Let

St(p, m) = {M ∈ R
m×p : MT M = Ip}, (30)

denote the Stiefel manifold of orthonormal m× p matrices. For all X ∈ M(p, m × n),
there exists (M, N ) with M orthonormal such that X = M N T. To see this, take
(M, N ) ∈ R

m×p∗ × R
n×p∗ such that X = M N T, let M = Q R be a QR decom-

position of M , where R is invertible since M has full rank, and observe that
X = M R−1(N RT)T = Q(N RT)T. Hence

π : St(p, m) × R
n×p∗ → M(p, m × n) : (M, N ) �→ M N T (31)

is a smooth surjective map between two manifolds.
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As in Sect. 2, but now with the restricted total space St(p, m) × R
n×p∗ , we show

that π (31) is a submersion. The tangent space at M to St(p, m) is given by (see Absil
et al. 2008, Example 3.5.2)

TM St(p, m) = {Ṁ ∈ R
m×p : MT Ṁ + ṀT M = 0}

= {MΩ + M⊥W : Ω = −ΩT ∈ R
p×p, W ∈ R

(m−p)×p},

and we have

T(M,N )

(
St(p, m) × R

n×p∗
)

= (TM St(p, m)) × R
n×p.

For all (M, N ) ∈ St(p, m) × R
n×p∗ and all (Ṁ, Ṅ ) ∈ T(M,N )

(
St(p, m) × R

n×p∗
)

, we

have Dπ(M, N )[(Ṁ, Ṅ )] = Ṁ N T + M Ṅ T. Here again, we can work in a coordinate
system where M = [

I 0
]T and N = [

I 0
]T. We have that {Dπ(M, N )[(Ṁ, Ṅ )] :

(Ṁ, Ṅ ) ∈ T(M,N )

(
St(p, m) × R

n×p∗
)
} = {

[
Ω + N T

1 N T
2

W 0

]
: Ω = −ΩT ∈

R
p×p, N1 ∈ R

p×p, N2 ∈ R
(n−p)×p, W ∈ R

(m−p)×p}, a linear subspace of dimension
p2 +(n − p)p+(m − p)p = p(m +n − p), which is the dimension of M(p, m × n).
Hence π (31) is a submersion.

The fiber of π (31) at M N T is now

π−1(M N T) = {(M R, N R) : R ∈ O(p)}, (32)

where

O(p) = {R ∈ R
p×p : RT R = Ip}

denotes the orthogonal group of degree p.
The vertical space V(M,N ) at a point (M, N ) ∈ R

m×p∗ × R
n×p∗ , i.e., the tangent

space to the fiber π−1(M N T) at (M, N ), is given by

V(M,N ) = {(MΩ, NΩ) : Ω = −ΩT ∈ R
p×p}. (33)

6.2 Riemannian metric in total space

We consider St(p, m) × R
n×p∗ as a Riemannian submanifold of the Euclidean space

R
m×p × R

n×p. This endows St(p, m) × R
n×p∗ with the Riemannian metric ḡ defined

by

ḡ(M,N )

(
(Ṁ, Ṅ ), (M̌, Ň )

)
:= trace

(
ṀT M̌ + Ṅ T Ň

)
(34)

for all (Ṁ, Ṅ ) and (M̌, Ň ) in T(M,N )

(
St(p, m) × R

n×p∗
)

.
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Adapting the rationale of Sect. 5, we will obtain in Sect. 6.6 below that, with this
ḡ, π (31) can be turned into a Riemannian submersion.

6.3 Horizontal space

The horizontal space H(M,N ) is the orthogonal complement to V(M,N ) (33) in

T(M,N )

(
St(p, m) × R

n×p∗
)

with respect to ḡ (34). The following propositions are

equivalent:

1. (Ṁ, Ṅ ) ∈ H(M,N ),
2. Ṁ ∈ TM St(p, n), Ṅ ∈ R

n×p, tr(Ω̃T(MT Ṁ + N T Ṅ )) = 0,∀Ω̃ = −Ω̃T,
3.

MT Ṁ = −(MT Ṁ)T, MT Ṁ + N T Ṅ = (MT Ṁ + N T Ṅ )T, (35)

4. Ṁ = MΩ + M⊥W, Ṅ = N (N T N )−1(−Ω + S) + N⊥L , with W ∈
R

(m−p)×p,Ω = −ΩT ∈ R
p×p, S = ST ∈ R

p×p, L ∈ R
(n−p)×p.

In summary,

H(M,N ) = {(Ṁ, Ṅ ) : MT Ṁ = −(MT Ṁ)T, MT Ṁ + N T Ṅ = (MT Ṁ + N T Ṅ )T}.
(36)

6.4 Horizontal lift

Proceeding as in Sect. 5.3 but now with the horizontal space (36) and taking
into account that MT M = I , we obtain that the horizontal lift of Ẋ M N T ∈
TM N T St(p, m) × R

n×p∗ is given by

Ẋ↑M(M,N ) = MΩ + M⊥MT⊥ Ẋ M N T N (N T N )−1 (37a)

Ẋ↑N(M,N ) = N (N T N )−1(S − Ω)+N⊥N T⊥ ẊT
M N T M (37b)

where Ω(N T N + I ) + S = MT Ẋ M N T N , Ω = −ΩT, S = ST. (37c)

Equation (37c) is equivalent to

Ω(N T N + I ) + (N T N + I )Ω = MT Ẋ M N T N − N T ẊT
M N T M, (38a)

S = MT Ẋ M N T N − Ω(N T N + I ). (38b)

(To see that (37c) implies (38), add the first equation of (37c) to its transpose. The
equivalence can then be deduced from the fact that both systems of equations have
one and only one solution, the former because the horizontal lift is known to exist and
be unique, and the latter because (38a) is a Sylvester equation with a unique solution
since, (N T N + I ) being symmetric positive definite, (N T N + I ) and −(N T N + I )
have no common eigenvalue.) As for the first two equations of (37), using (37c), they
can be rewritten as
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Ẋ↑M(M,N ) = Ẋ M N T N (N T N )−1 − M(Ω + S)(N T N )−1 (39a)

Ẋ↑N(M,N ) = ẊT
M N T M + NΩ. (39b)

In summary,

Proposition 6.1 Consider the submersion π (31) and the horizontal distribution (36).
Let (M, N ) ∈ St(p, m) × R

n×p∗ and let Ẋ M N T ∈ TM N TM(p, m × n). Then the
horizontal lift of Ẋ M N T at (M, N ) is Ẋ↑(M,N ) = (Ẋ↑M(M,N ), Ẋ↑N(M,N ))given by (39),
where Ω is the solution of the Sylvester equation (38a) and S is given by (38b).

6.5 Constitutive equation of horizontal lifts

From Proposition 6.1, routine manipulations lead to the following constitutive equation
for horizontal lifts:

Ẋ↑M(M R,N R) = Ẋ↑M(M,N ) R, Ẋ↑N(M R,N R) = Ẋ↑N(M,N ) R. (40)

Hence we have the following counterpart of Proposition 5.2.

Proposition 6.2 Consider the submersion π (31) and the horizontal distribu-
tion (36). Then a tangent vector field St(p, m) × R

n×p∗ � (M, N ) �→ Ẋ↑(M,N ) ∈
T(M,N )

(
St(p, m) × R

n×p∗
)

is a horizontal lift if and only if (40) holds for all

(M, N ) ∈ St(p, m) × R
n×p∗ and all R ∈ O(p).

6.6 Riemannian submersion

From Proposition 6.2 and the properties of the trace, it is direct that ḡ (34) satisfies
the invariance condition

ḡ(M,N )(Ẋ↑(M,N ), X̌↑(M,N )) = ḡ(M R,N R)(Ẋ↑(M R,N R), X̌↑(M R,N R)). (41)

Hence one consistently defines a Riemannian metric g on M(p, m × n) by

gM N T(Ẋ M N T , X̌ M N T) = ḡ(M,N )(Ẋ↑(M,N ), X̌↑(M,N )), (42)

and π : (St(p, m) × R
n×p∗ , ḡ) → (M(p, m × n), g) is a Riemannian submersion.

6.7 Horizontal projection

We now obtain an expression for the projection Ph
(M,N )(Ṁ, Ṅ ) of (Ṁ, Ṅ ) ∈

T(M,N )

(
St(p, m) × R

n×p∗
)

onto the horizontal space (36) along the vertical space (33).

Since the projection is along the vertical space, we have

Ph
(M,N )(Ṁ, Ṅ ) = (Ṁ + MΩ, Ṅ + NΩ) (43)
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for some Ω = −ΩT ∈ R
p×p. It remains to obtain Ω by imposing horizontality

of (43). The characterization of horizontal vectors given in (35) yields the Sylvester
equation

(N T N + I )Ω + Ω(N T N + I ) = ṀT M − MT Ṁ + Ṅ T N − N T Ṅ . (44)

In summary:

Proposition 6.3 The projection Ph
(M,N )(Ṁ, Ṅ )of (Ṁ, Ṅ ) ∈ T(M,N )

(
St(p, m)×R

n×p∗
)

onto the horizontal space (36) along the vertical space (33) is given by (43) where Ω

is the solution of the Sylvester equation (44).

6.8 Riemannian connection on the total space

Let PSt
M denote the orthogonal projection from R

m×p onto TM St(p, m), given by
(see Absil et al. 2008, Example 5.3.2)

PSt
M Ṁ = (I − M MT)Ṁ + Mskew(MT Ṁ) = Ṁ − Msym(MT Ṁ), (45)

where skew(Z) := 1
2 (Z − ZT) and sym(Z) := 1

2 (Z + ZT). We also let PSt×R

(M,N ) denote

the orthogonal projection from R
m×p × R

n×p onto T(M,N )

(
St(p, m) × R

n×p∗
)

, given

by

PSt×R

(M,N )(Ṁ, Ṅ ) = (PSt
M Ṁ, Ṅ ). (46)

Since St(p, m) × R
n×p∗ , endowed with the Riemannian metric ḡ (34), is a Rie-

mannian submanifold of the Euclidean space R
m×p × R

n×p, a classical result of
Riemannian geometry (see Absil et al. 2008, §5.3.3) yields that the Riemannian con-
nection ∇̄ on (St(p, m) × R

n×p∗ , ḡ) is given by

∇̄Ẋ Ẏ = PSt×R

(M,N )∂Ẋ Ẏ ,

that is,

(∇̄Ẋ Ẏ
)

M = PSt
M (∂Ẋ ẎM) (47a)

(∇̄Ẋ Ẏ
)

N = ∂Ẋ ẎN (47b)

for all (M, N ) ∈ St(p, m) × R
n×p∗ , all Ẋ ∈ T(M,N )

(
St(p, m) × R

n×p∗
)

and all tan-

gent vector fields Ẏ on St(p, m) × R
n×p∗ .
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6.9 Riemannian connection on the quotient space

As in Sect. 5.8, we can now provide an expression for the Riemannian connection ∇
on the manifold M(p, m × n) endowed with the Riemannian metric g (42):

(∇Ẋ M NT
Ẏ )(M,N ) = Ph

(M,N )(∇̄Ẋ↑(M,N )
Ẏ↑)

= Ph
(M,N ) PSt×R

(M,N )∂Ẋ↑(M,N )
Ẏ↑,

with Ph as in (43) and PSt×R as in (46).

6.10 Riemannian Newton equation

Given f : M(p, m × n) → R, define f̄ = f ◦ π , i.e.,

f̄ : St(p, m) × R
n×p∗ → R : (M, N ) �→ f (M N T),

and define

¯̄f : R
m×p∗ × R

n×p∗ → R : (M, N ) �→ f (M N T).

Let ∂ ¯̄f denote the Euclidean gradient of ¯̄f . We have (see Absil et al. 2008, (3.37))

grad f̄ (M, N ) = PSt×R

(M,N )∂
¯̄f (M, N ) (48)

and (see Absil et al. 2008, (3.39))

(grad f )↑(M,N ) = grad f̄ (M, N ),

where the left-hand side stands for the horizontal lift at (M, N ) of grad f (M N T).
We can now obtain the counterpart of the (lifted) Newton equation (28) with nor-

malization on the M factor:

Ph
(M,N )(∇̄Ẋ↑(M,N )

grad f̄ ) = −grad f̄ (M, N ), (49)

where Ph is the horizontal projection given in Sect. 6.7, ∇̄ is the Riemannian con-
nection on (St(p, m) × R

n×p∗ , ḡ) given in Sect. 6.8, and grad f̄ is obtained from the

Euclidean gradient of ¯̄f from (48).
The Newton equation (49) can be considered less intricate than in the non-

orthonormal case (28) because the expression for ∇̄ in (47) is simpler than in (27).
In any case, the discussion that follows (28) applies equally: the Newton equation
is merely a linear system of equations, and the Riemannian overhead requires only
O(p2(m + n + p)) flops.
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6.11 Newton’s method

Another reward that comes with the orthonormalization of the M factor is that the
Riemannian exponential with respect to g (42) admits a closed-form expression. First,
we point out that, in view of Edelman et al. (1998, §2.2.2), the Riemannian exponential
on St(p, m) × R

n×p∗ for the Riemannian metric ḡ (34) is given by

Exp(M,N )(Ṁ, Ṅ ) =
([

M Ṁ
]

exp

[
A −S
I A

]
I2p,p exp(−A), N + Ṅ

)
, (50)

where A := MT Ṁ, S := ṀT Ṁ, I2p,p denotes the 2p× p matrix with ones on its main
diagonal and zeros elsewhere, and where exp stands for the matrix exponential (expm
in Matlab). Second, since by O’Neill (1983, Corollary 7.46) horizontal geodesics in
(St(p, m) × R

n×p∗ , ḡ) map to geodesics in (M(p, m × n), g), we have that

ExpM N T(Ẋ M N T) = π(Exp(M,N )(Ẋ↑M(M,N ), Ẋ↑N(M,N ))), (51)

with (Ẋ↑M(M,N ), Ẋ↑N(M,N )) as in Proposition 6.1. (In (51), Exp on the right-hand side
is given by (50) and Exp on the left-hand side denotes the Riemannian exponential of
(M(p, m × n), g).)

Observe that the matrix exponential is applied in (50) to matrices of size 2p × 2p
and p × p; hence, when p � m, the cost of computing the M component of (50) is
comparable to the cost of computing the simple sum M+Ṁ . Note also that, in practice,
the M component of the Newton iterates may gradually depart from orthonormality
due to the accumulation of numerical errors; a remedy is to restore orthonormality
by taking the Q factor of the unique QR decomposition where the diagonal of the R
factor is positive.

We can now formally describe Newton’s method in the context of this Sect. 6.

Theorem 6.4 (Riemannian Newton onM(p, m × n) with Riemannian metric (42))
Let f be a real-valued function on the Riemannian manifold M(p, m × n) (1),
endowed with the Riemannian metric g (42), with the associated Riemannian con-
nection, and with the exponential retraction (51). Then the Riemannian Newton
method (Absil et al. 2008, Algorithm 5) for f maps M N T ∈ M(p, m × n) to
π(Exp(M,N )(ẊM, ẊN)), where π is given in (31), Exp is defined in (50), and (ẊM, ẊN)

is the solution Ẋ↑(M,N ) of the Newton equation (49).

The quadratic convergence result in Theorem 5.5 still holds, replacing the reference
to Theorem 5.4 by a reference to Theorem 6.4.

7 Numerical experiments

In this section, we report on numerical experiments that illustrate the impact of the
choice of the geometry on the performance of second-order low-rank optimization
algorithms. The salient observation is that, whereas the geometries of Sects. 5 and 6
yield quite similar performance in terms of the number of outer iterations in our
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experiments, the latter may require many more inner iterations than the former. This
should be put in perspective with the recent finding in Mishra et al. (2012b, §5.1) that
the geometry of Sect. 6 yields much poorer performance in a first-order optimization
method. These conclusions are however based on a limited number of experiments
conducted on one class of low-rank optimization problems. A wider set of experiments
is needed to confirm these trends.

This section, written after the first version of this paper became public, conveniently
benefited from recent developments in this very active area of research. In particular,
the geometry of Sect. 6 was implemented in the Manopt toolbox (Boumal and Mishra
2013) by Nicolas Boumal and Bamdev Mishra.

As in Mishra et al. (2012b), we conduct numerical experiments on low-rank matrix
completion problems. The objective function f on M(p, m × n) is given by

f (X) = 1

2
‖PΩ(X − C)‖2

F ,

where C is a given m × n matrix, Ω ⊂ {1, . . . , m} × {1, . . . , n} is the set of indices
of the observed entries, PΩ sets to zero the entries not in Ω while leaving the other
entries unchanged, and ‖ · ‖F denotes the Frobenius norm.

We tackle the optimization problem (2) with a Riemannian trust-region Newton
approach (Absil et al. 2007, 2008). Specifically, we follow the Riemannian trust-region
(RTR) meta-algorithm (Absil et al. 2008, Alg. 10) where the trust-region subproblems
are solved approximately using the truncated CG (tCG) method (Absil et al. 2008,
Alg. 11) with the inner stopping criterion given in Absil et al. (2008, (7.10)), i.e.,

‖r j+1‖ ≤ ‖r0‖ min(‖r0‖θ , κ) (52)

with r j denoting the residual in the j th step of the tCG inner iteration. The resulting
algorithm depends on the choice of (i) the Riemannian metric on M(p, m × n), (ii)
the affine connection on M(p, m × n) that enters the definition (Absil et al. 2008,
(7.2)) of the Hessian involved in the quadratic model (Absil et al. 2008, (7.1)), and
(iii) the retraction on M(p, m × n). For the affine connection, we invariably choose
the Riemannian connection, which is fully specified by the Riemannian metric. For the
Riemannian metric and the retraction, we use those provided in Sects. 5 (Riemannian
metric induced by (12) and non-exponential retraction (29)) and 6 (Riemannian metric
induced by (34) and exponential retraction (51)).

Working out the lifted expression of the gradient and Hessian of f in both geome-

tries is rather straightforward. In the process, one obtains that ∂ f̄ (M, N ) (or ∂ ¯̄f (M, N )

in the notation of Sect. 6) is given by (PΩ(M N T − C)N , (PΩ(M N T − C))T M).
The experiments are run with Matlab R2011b using the Manopt toolbox (Boumal

and Mishra 2013). Matrix C is generated as C = ABT, where A of size m× p and B of
size n × p are drawn from the standard normal distribution. The index set Ω is chosen
uniformly at random with a sampling ratio of 5d/(mn), where d = p(m + n − p) is
the dimension of M(p, m × n). The initial iterate X0 = M0 N T

0 is chosen as follows:
compute the QR decomposition A = M∗ R, set N∗ = B RT (hence C = M∗N T∗ ),
compute the QR decomposition M∗ + εEM = M0 R̃ where ε > 0 and EM is drawn
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Table 1 Numerical experiments with m = n = 100, p = 5, ε = 10−8

Iter Section 5 Section 6

‖grad‖ Inner iter ‖grad‖ Inner iter

0 1.185670e−05 0 1.185670e−05 0

1 1.366235e−08 10 1.065745e−07 7

2 1.677951e−14 24 9.751445e−13 128

Table 2 Numerical experiments with m = 10, n = 100, p = 5, ε = 10−6

Iter Section 5 Section 6

‖grad‖ Inner iter ‖grad‖ Inner iter

0 1.814751e−04 0 1.814751e−04 0

1 2.095396e−06 9 2.195920e−05 7

2 7.887987e−11 14 1.097058e−13 16

from the standard normal distribution, finally set N0 = N∗ + εEN where EN is
drawn from the standard normal distribution. Parameters θ and κ in the inner stopping
criterion (52) are set to 1 (aiming at quadratic convergence) and 10−1, respectively.

In order to assess the convergence of the algorithms to a stationary point of the
optimization problem, we monitor the evolution of ‖grad f (Mk N T

k )‖, where grad f
stands for the gradient in the embedded geometry (Vandereycken 2013) and ‖ · ‖ is
the Frobenius norm. In the context of our comparative experiments, this is a more
neutral comparison measure than the norm of the gradient in one of the two proposed
geometries. We also report the number of inner (tCG) iterations.

In a first set of experiments, we chose m = n = 100 and p = 5. We set ε = 10−8,
a small value, in order to focus on the asymptotic behavior of the algorithms. In this
setting, we observed in our experiments that the boundary of the trust region was never
reached, which means that the trust-region method is equivalent to an inexact Newton
method, where the inexactness comes from the fact that the Newton equation is solved
approximately by means of a (linear) CG iteration stopped by the criterion (52). The
results for a typical run are provided in Table 1.

In a second set of experiments, we chose m = 10, n = 100, p = 5 and ε = 10−6.
The results for an exemplative run are displayed in Table 2.

Finally, in order to compare the global behavior of the algorithms, we conducted
experiments with ε = 1; see Table 3 for an illustrative instance.

The superlinear (quadratic) local convergence predicted by the theory is clearly
visible in all the experiments. The geometry of Sect. 6 is seen to yield slightly faster
convergence on some problem instances with respect to the number of (outer) itera-
tions. However, the geometry of Sect. 6 also tends to produce many more inner (tCG)
iterations. This remark points in the direction of Mishra et al. (2012b, §5.1) where the
geometry of Sect. 6 was observed to yield much slower convergence in a first-order
method.
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Table 3 Numerical experiments with m = n = 100, p = 5, ε = 1

Iter Section 5 Section 6

‖grad‖ Inner iter ‖grad‖ Inner iter

0 1.636720e+02 0 1.636720e+02 0

1 1.636720e+02 3 1.636720e+02 2

2 1.636720e+02 3 1.636720e+02 2

3 1.636720e+02 3 1.636720e+02 2

4 1.636720e+02 3 1.636720e+02 2

5 1.636720e+02 3 1.636720e+02 2

6 1.636720e+02 3 5.085657e+01 1

7 1.216769e+02 2 1.563970e+01 4

8 1.216769e+02 4 1.060595e+01 2

9 6.217289e+01 3 6.700386e+00 9

10 3.728346e+01 3 5.495128e+00 4

11 2.345336e+01 6 1.381830e+00 15

12 6.441494e+00 4 5.603172e−01 15

13 9.937363e−01 4 2.611366e−02 35

14 7.861386e−02 4 4.312611e−03 25

15 5.051588e−03 5 8.784949e−05 48

16 4.540472e−04 5 1.530663e−08 103

17 2.253013e−05 6 4.196742e−14 193

18 4.037523e−08 11

19 1.639055e−13 21

8 Conclusion

We have reached the end of a technical hike that led us to give in Theorem 6.4 what
is, to the best of our knowledge, the first closed-form description of a purely Rie-
mannian Newton method on the set of all matrices of fixed dimension and rank.
By “closed-form”, we mean that, besides calling an oracle for Euclidean first and
second derivatives, the method only needs to perform elementary matrix operations,
solve linear systems of equations, and compute (small-size) matrix exponentials. By
“purely Riemannian”, we mean that it uses the tools provided by Riemannian geom-
etry, namely, the Riemannian connection (instead of any other affine connection) and
the Riemannian exponential (instead of any other retraction).

The developments strongly rely on the theory of Riemannian submersions and are
based on factorizations of low rank matrices X as M N T, where one of the factors is
orthonormal. Relaxing the orthonormality constraint is more appealing for its sym-
metry (the two factors are treated alike), but it did not allow us to obtain a closed-form
expression for the Riemannian exponential.
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