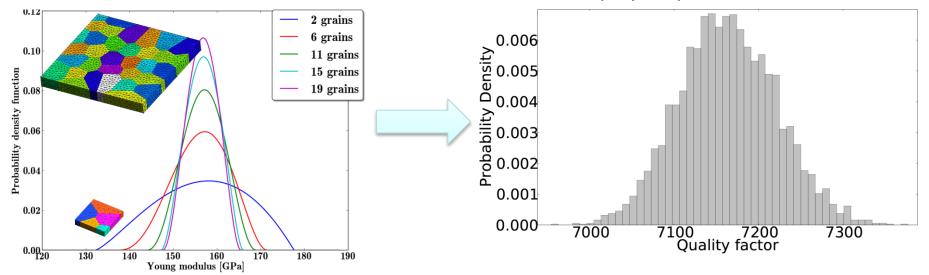
Computational & Multiscale Mechanics of Materials

A stochastic 3-scale method to predict the thermo-elastic

behaviors of polycrystalline structures

Wu Ling, Lucas Vincent, Golinval Jean-Claude, Paquay Stéphane, Noels Ludovic



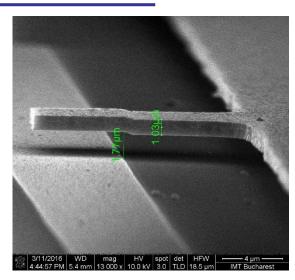
3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework. Experimental measurements provided by IMT Bucharest (Voicu Rodica, Baracu Angela, Muller Raluca)

The problem

MEMS structures

- Are not several orders larger than their micro-structure size
- Parameters-dependent manufacturing process
 - Low Pressure Chemical Vapor Deposition (LPCVD)
 - Properties depend on the temperature, time process, and flow gas conditions
- Scatter in the structural properties
 - Due to the fabrication process (photolithography, etching ...)
 - Due to uncertainties of the material
 -

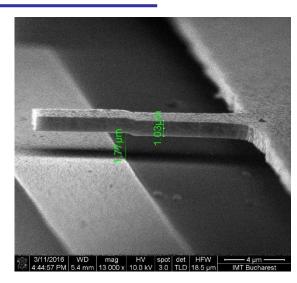
The objective of this work is to estimate this scatter



The problem

MEMS structures

- Are not several orders larger than their micro-structure size
- Parameters-dependent manufacturing process
 - Low Pressure Chemical Vapor Deposition (LPCVD)
 - Properties depend on the temperature, time process, and flow gas conditions
- Scatter in the structural properties
 - Due to the fabrication process (photolithography, etching ...)
 - Due to uncertainties of the material

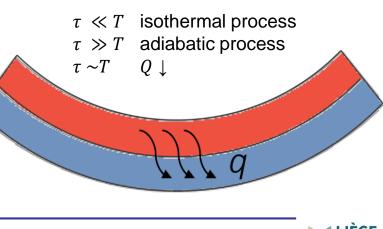


•

The objective of this work is to estimate this scatter

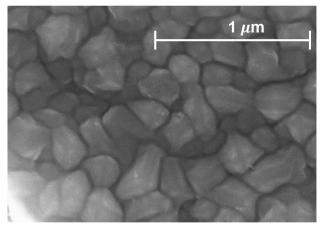
• Application example

- Poly-silicon resonators
- Quantities of interest
 - Eigen frequency
 - Quality factor due to thermoelastic damping Q ~ W/∆W
 - Thermoelastic damping is a source of intrinsic material damping present in almost all materials

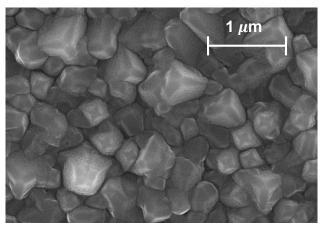


7 - 9 November 2017, Paris, France

- Material structure: grain size distribution SEM Measurements (Scanning Electron Microscope)
 - Grain size dependent on the LPCVD temperature process
 - 2 µm-thick poly-silicon films



Deposition temperature: 580 °C

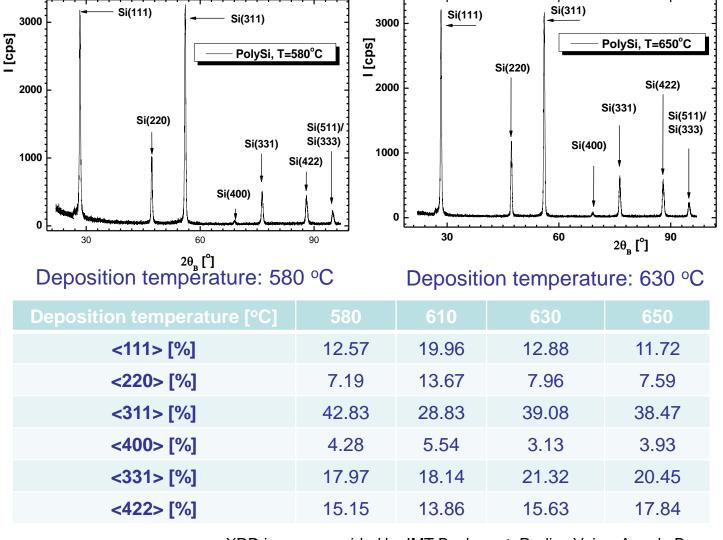


Deposition temperature: 650 °C

Deposition temperature [°C]	580	610	630	650
Average grain diameter [µm]	0.21	0.45	0.72	0.83

SEM images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

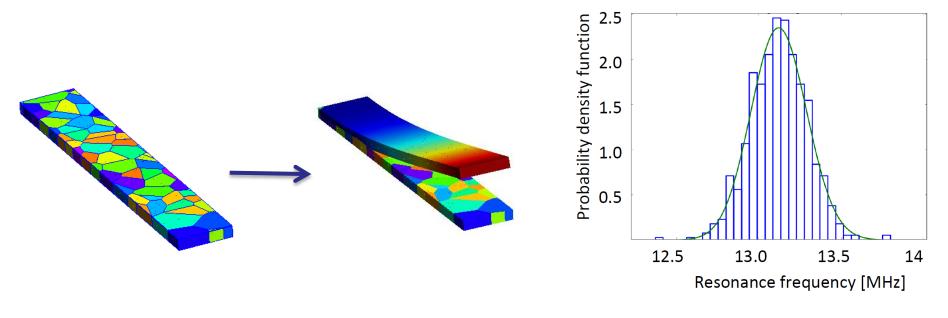
- Material structure: grain orientation distribution
 - Grain orientation by XRD (X-ray Diffraction) measurements on 2 µm-thick poly-silicon films



XRD images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

EGE

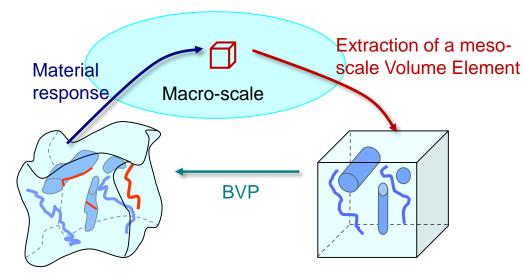
- The first mode frequency distribution can be obtained with
 - A 3D beam with each grain modelled
 - Grains distribution according to experimental measurements
 - Monte-Carlo simulations



Considering each grain is expensive and time consuming
 Motivation for stochastic multi-scale methods

Motivations

- Multi-scale modelling
 - 2 problems are solved concurrently
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)



 $L_{\text{macro}} >> L_{\text{VE}} >> L_{\text{micro}}$

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading To be statistically representative: Size of the meso-scale volume element larger than the characteristic length of the microstructure

• For structures not several orders larger than the micro-structure size

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading Meso-scale volume element no longer statistically representative: Stochastic Volume Elements*

• Possibility to propagate the uncertainties from the micro-scale to the macro-scale

*M Ostoja-Starzewski, X Wang, 1999 P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015 X. Yin, W. Chen, A. To, C. McVeigh, 2008 J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011

A 3-scale process

Grain-scale or micro-scale	Meso-scale	Macro-scale	
 Samples of the microstructure (volume elements) are generated Each grain has a random orientation 	 Intermediate scale The distribution of the material property P(C) is defined 	 Uncertainty quantification of the macro-scale quantity E.g. the first mode frequency P(f₁) /Quality factor P(Q) 	
Stochastic Homogenization	Mean value of material property SVE size Variance of material property SVE size	Probability density	
	7 0 November 2017 Daria Eropea	o 📐 🕨 🖌 LIÈGE	

CM3

CMCS2017 -

7 - 9 November 2017, Paris, France

- 9 **LIEGE** université

- Thermo-mechanical homogenization
- Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
- Need for a meso-scale random field

• The meso-scale random field

- Definition of the thermo-mechanical meso-scale random field
- Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale

- 3-Scale approach verification
- Application to extract the quality factor

Accounting for roughness effect

- From the micro-scale to the meso-scale
- The meso-scale random field
- From the meso-scale to the macro-scale

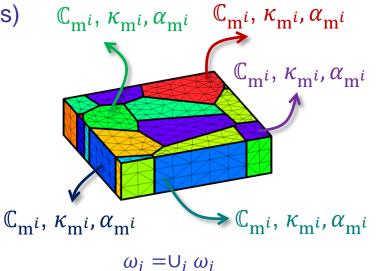
CM3

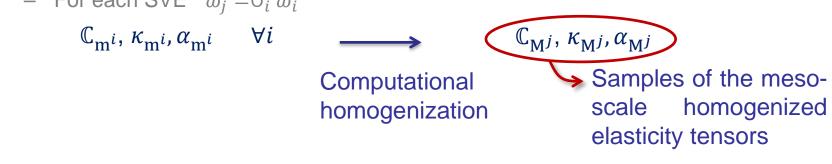
Content

• From the micro-scale to the meso-scale

- Thermo-mechanical homogenization
- Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
- Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor
- Accounting for roughness effect
 - From the micro-scale to the meso-scale
 - The meso-scale random field
 - From the meso-scale to the macro-scale

- Definition of Stochastic Volume Elements (SVEs)
 - Poisson Voronoï tessellation realizations
 - SVE realization ω_i
 - Each grain ω_i is assigned material properties
 - Elasticity tensor \mathbb{C}_{m^i} ;
 - Heat conductivity tensor κ_{m^i} ; •
 - Thermal expansion tensors α_{m^i} .
 - Defined from silicon crystal properties
 - Each set \mathbb{C}_{m^i} , κ_{m^i} , α_{m^i} is assigned a random orientation
 - Following XRD distributions
- Stochastic homogenization
 - Several SVE realizations
 - For each SVE $\omega_i = \bigcup_i \omega_i$



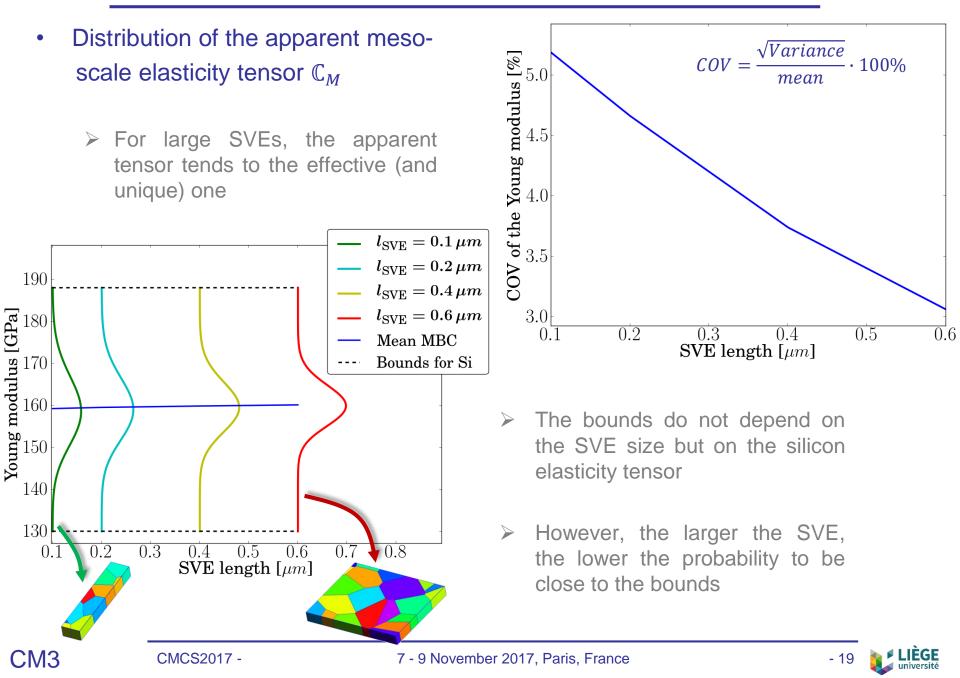


Homogenized material tensors not unique as statistical representativeness is lost* *"C. Huet. 1990-

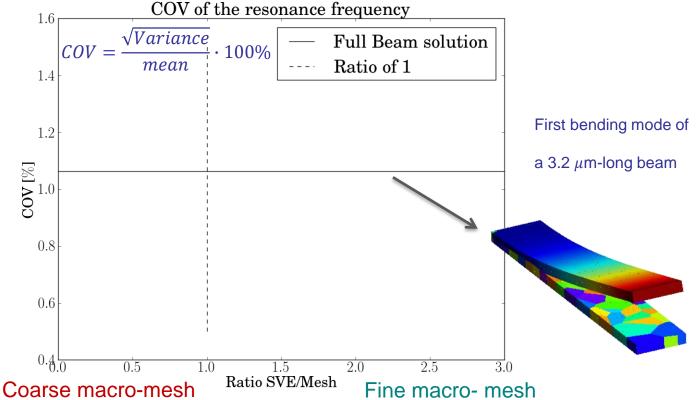
CMCS2017 -

CM3

Thermo-mechanical homogenization ۲ Х Down-scaling $\boldsymbol{\sigma}_{\mathrm{M}}, \boldsymbol{q}_{\mathrm{M}}, (\rho_{\mathrm{M}} \mathcal{C}_{\nu \mathrm{M}})$ **ε**_M, $\begin{cases} \boldsymbol{\varepsilon}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\varepsilon}_{\mathrm{m}} d\omega \\ \nabla_{\mathrm{M}} \vartheta_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \nabla_{\mathrm{m}} \vartheta_{\mathrm{m}} d\omega \\ \vartheta_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \frac{\rho_{\mathrm{m}} C_{\nu\mathrm{m}}}{\rho_{\mathrm{M}} C_{\nu\mathrm{M}}} \vartheta_{\mathrm{m}} d\omega \end{cases}$ $\mathbb{C}_{M}, \kappa_{M}, \boldsymbol{\alpha}_{M} \mathbb{C}_{M}, \boldsymbol{\alpha}_{M} \mathbb{C}$ $\nabla_{\mathrm{M}} \vartheta_{\mathrm{M}},$ ϑ_{M} Meso-scale BVP resolution $\omega = \bigcup_i \omega_i$ Up-scaling $\begin{cases} \boldsymbol{\sigma}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\sigma}_{\mathrm{m}} d\omega \\ \boldsymbol{q}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{q}_{\mathrm{m}} d\omega \\ \rho_{\mathrm{M}} C_{\nu\mathrm{M}} = \frac{1}{V(\omega)} \int \rho_{\mathrm{m}} C_{\nu\mathrm{m}} dV \end{cases}$ $\begin{cases} \mathbb{C}_{M} = \frac{\partial \boldsymbol{\sigma}_{M}}{\partial \boldsymbol{u}_{M} \otimes \boldsymbol{\nabla}_{M}} & \& \quad \boldsymbol{\alpha}_{M} : \mathbb{C}_{M} = -\frac{\partial \boldsymbol{\sigma}_{M}}{\partial \vartheta_{M}} \\ \kappa_{M} = -\frac{\partial \boldsymbol{q}_{M}}{\partial \nabla_{M} \vartheta_{M}} \end{cases}$ Consistency — Satisfied by periodic boundary conditions CM₃ CMCS2017 -7 - 9 November 2017, Paris, France - 17

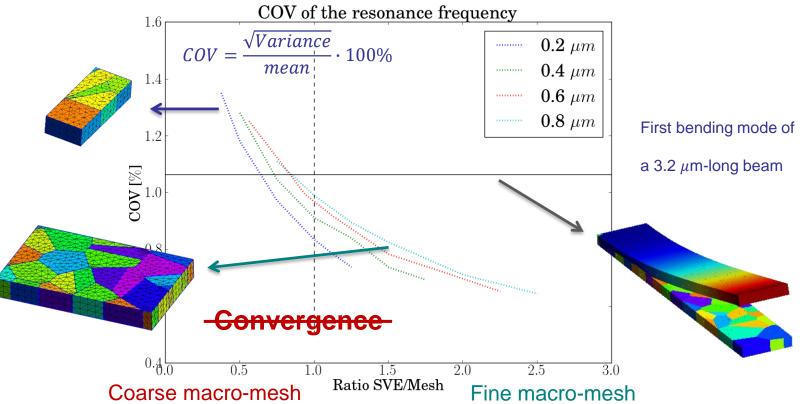


- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable
 - Monte-Carlo simulations



 \mathbb{C}_{M^1} \mathbb{C}_{M^2} \mathbb{C}_{M^3}

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable
 - Monte-Carlo simulations



 No convergence: the macro-scale distribution (first resonance frequency) depends on SVE and mesh sizes

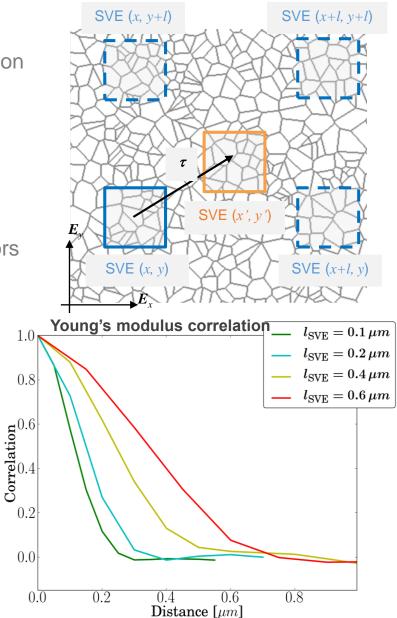
 \mathbb{C}_{M^1} \mathbb{C}_{M^2} \mathbb{C}_{M^3}

- Need for a meso-scale random field
 - Introduction of the (meso-scale) spatial correlation
 - Define large tessellations
 - SVEs extracted at different distances in each tessellation
 - Evaluate the spatial correlation between the components of the meso-scale material operators
 - For example, in 1D-elasticity
 - Young's modulus correlation

$$R_{E_{x}}(\tau) = \frac{\mathbb{E}\left[\left(E_{x}(x) - \mathbb{E}(E_{x})\right)\left(E_{x}(x+\tau) - \mathbb{E}(E_{x})\right)\right]}{\mathbb{E}\left[\left(E_{x} - \mathbb{E}(E_{x})\right)^{2}\right]}$$

Correlation length

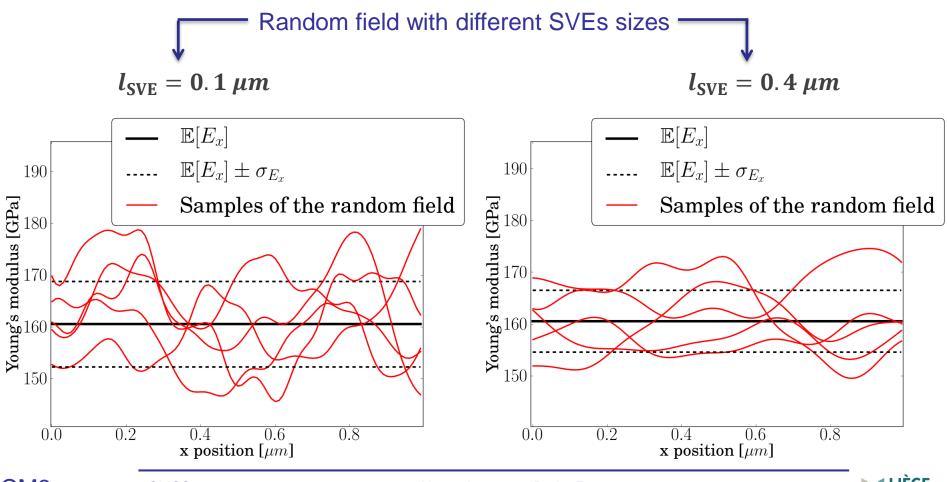
$$L_{E_x} = \frac{\int_{-\infty}^{\infty} R_{E_x}(\tau) d\tau}{R_{E_x}(0)}$$



- 23

CM3

- Need for a meso-scale random field (2)
 - The meso-scale random field is characterized by the correlation length L_{E_x}
 - The correlation length L_{E_x} depends on the SVE size



CMCS2017 -

7 - 9 November 2017, Paris, France

Content

- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor
- Accounting for roughness effect
 - From the micro-scale to the meso-scale
 - The meso-scale random field
 - From the meso-scale to the macro-scale

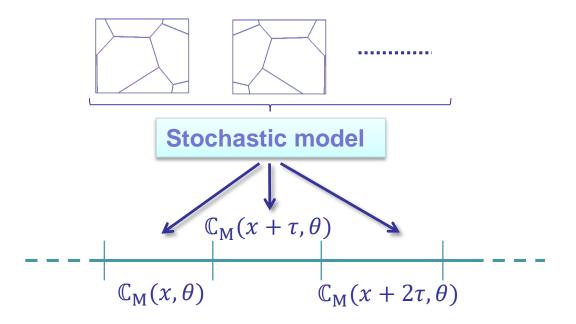
- Use of the meso-scale distribution with stochastic (macro-scale) finite elements
 - Use of the meso-scale random field

Monte-Carlo simulations at the macro-scale

- BUT we do not want to evaluate the random field from the stochastic homogenization

for each simulation — Meso-scale random field from a generator

→ Need for a stochastic model of meso-scale elasticity tensors



- Definition of the thermo-mechanical meso-scale random field
 - Elasticity tensor $\mathbb{C}_{M}(x,\theta)$ (matrix form C_{M}) & thermal conductivity κ_{M} are bounded
 - Ensure existence of their inverse
 - Define lower bounds \mathbb{C}_L and $\pmb{\kappa}_L$ such that

$$\begin{cases} \boldsymbol{\varepsilon} : (\mathbb{C}_{M} - \mathbb{C}_{L}) : \boldsymbol{\varepsilon} > 0 & \forall \boldsymbol{\varepsilon} \\ \nabla \boldsymbol{\vartheta} \cdot (\boldsymbol{\kappa}_{M} - \boldsymbol{\kappa}_{L}) \cdot \nabla \boldsymbol{\vartheta} > 0 & \forall \nabla \boldsymbol{\vartheta} \end{cases}$$

- Use a Cholesky decomposition when semi-positive definite matrices are required

$$\begin{cases} \boldsymbol{C}_{\mathrm{M}}(\boldsymbol{x},\boldsymbol{\theta}) = \boldsymbol{C}_{\mathrm{L}} + \left(\bar{\boldsymbol{\mathcal{A}}} + \boldsymbol{\mathcal{A}}'(\boldsymbol{x},\boldsymbol{\theta})\right)^{T} \left(\bar{\boldsymbol{\mathcal{A}}} + \boldsymbol{\mathcal{A}}'(\boldsymbol{x},\boldsymbol{\theta})\right) \\ \boldsymbol{\kappa}_{\mathrm{M}}(\boldsymbol{x},\boldsymbol{\theta}) = \boldsymbol{\kappa}_{\mathrm{L}} + \left(\bar{\boldsymbol{\mathcal{B}}} + \boldsymbol{\mathcal{B}}'(\boldsymbol{x},\boldsymbol{\theta})\right)^{T} \left(\bar{\boldsymbol{\mathcal{B}}} + \boldsymbol{\mathcal{B}}'(\boldsymbol{x},\boldsymbol{\theta})\right) \\ \boldsymbol{\alpha}_{\mathrm{M}_{ij}}(\boldsymbol{x},\boldsymbol{\theta}) = \bar{\boldsymbol{\mathcal{V}}}^{(t)} + {\boldsymbol{\mathcal{V}}'}^{(t)}(\boldsymbol{x},\boldsymbol{\theta}) \end{cases}$$

- We define the homogenous zero-mean random field $\mathcal{V}'(x, \theta)$, with as entries

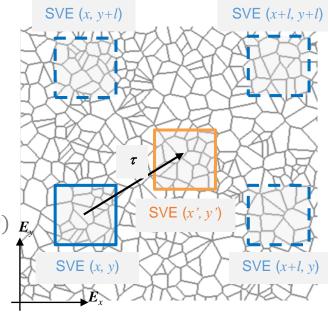
- Elasticity tensor $\mathcal{A}'(\mathbf{x}, \boldsymbol{\theta}) \Rightarrow \mathcal{V}'^{(1)} \dots \mathcal{V}'^{(21)}$,
- Heat conductivity tensor $\mathcal{B}'(x, \theta) \Rightarrow \mathcal{V}'^{(22)} \dots \mathcal{V}'^{(27)}$
- Thermal expansion tensors $\mathcal{V}'^{(t)} \Rightarrow \mathcal{V}'^{(28)} \dots \mathcal{V}'^{(33)}$

The meso-scale random field

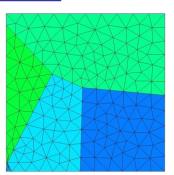
- Characterization of the meso-scale random field
 - Generate large tessellation realizations
 - For each tessellation realization
 - Extract SVEs centered on $x + \tau$
 - For each SVE evaluate $\mathbb{C}_{M}(x + \tau)$, $\kappa_{M}(x + \tau)$, $\alpha_{M}(x + \tau)$
 - From the set of realizations $\mathbb{C}_{M}(x, \theta)$, $\kappa_{M}(x, \theta)$, $\alpha_{M}(x, \theta)$
 - Evaluate the bounds \mathbb{C}_{L} and $\boldsymbol{\kappa}_{L}$
 - Apply the Cholesky decomposition $\Rightarrow \mathcal{A}'(x, \theta), \mathcal{B}'(x, \theta)$
 - Fill the 33 entries of the zero-mean homogenous field $\mathcal{V}'(x, \theta)$
 - Compute the auto-/cross-correlation matrix

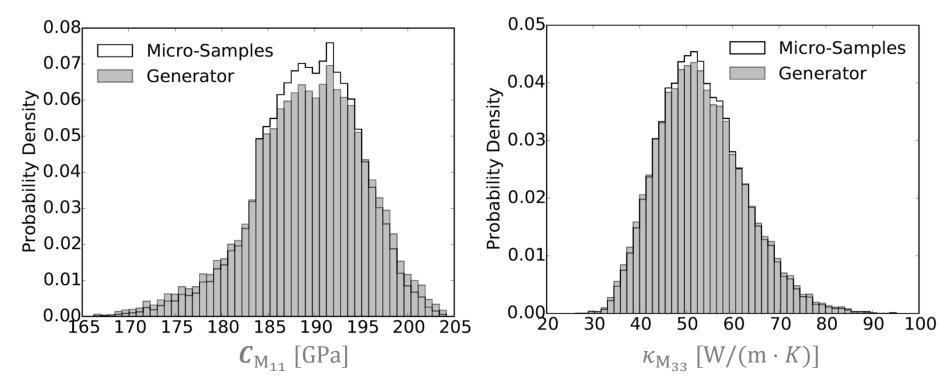
$$R_{\mathcal{V}'}^{(rs)}(\boldsymbol{\tau}) = \frac{\mathbb{E}\left[\mathcal{V}'^{(r)}(\boldsymbol{x})\mathcal{V}'^{(s)}(\boldsymbol{x}+\boldsymbol{\tau})\right]}{\sqrt{\mathbb{E}\left[(\mathcal{V}'^{(r)})^2\right]\mathbb{E}\left[(\mathcal{V}'^{(s)})^2\right]}}$$

- Generate zero-mean random field $\mathcal{V}'(x, \theta)$
 - Spectral generator & non-Gaussian mapping

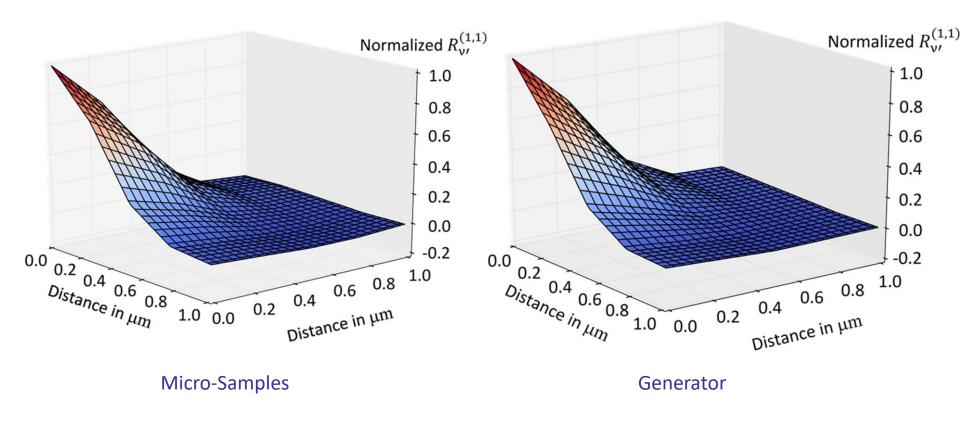


- Polysilicon film deposited at 610 °C
 - SVE size of 0.5 x 0.5 μ m²
 - Comparison between micro-samples and generated field PDFs



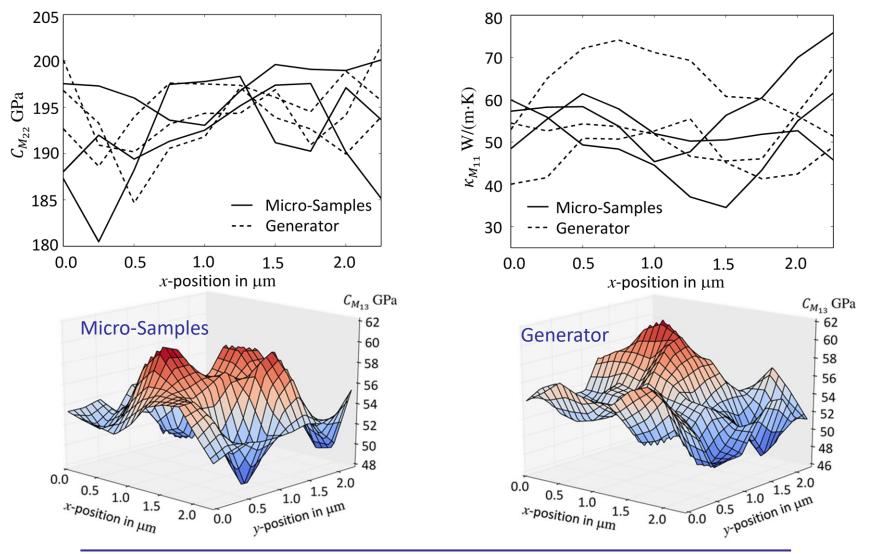


- Polysilicon film deposited at 610 °C (2)
 - Comparison between micro-samples and generated field cross-correlations



• Polysilicon film deposited at 610 °C (3)

- Comparison between micro-samples and generated random field realizations



- 35

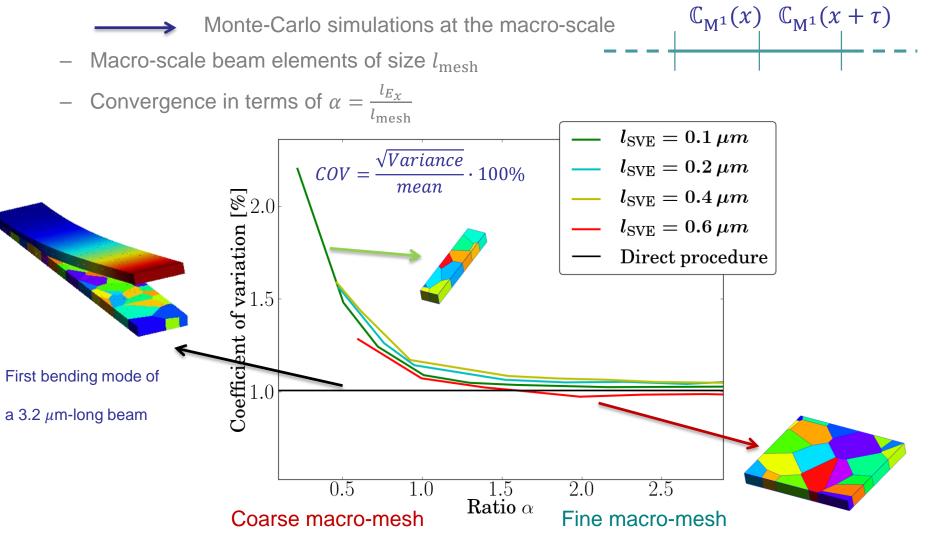
Content

- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping

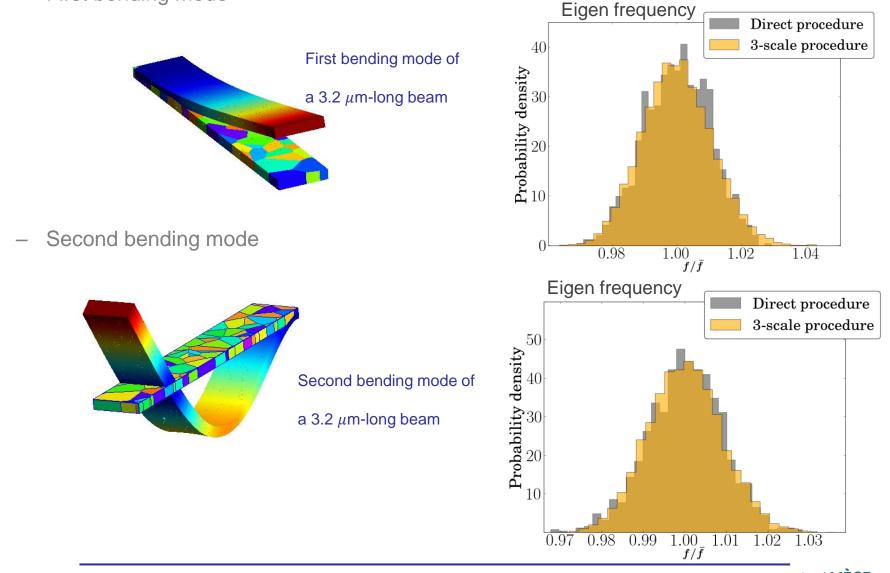
• From the meso-scale to the macro-scale

- 3-Scale approach verification
- Application to extract the quality factor
- Accounting for roughness effect
 - From the micro-scale to the meso-scale
 - The meso-scale random field
 - From the meso-scale to the macro-scale

- 3-Scale approach verification with direct Monte-Carlo simulations
 - Use of the meso-scale random field



- 3-Scale approach verification ($\alpha \sim 2$) with direct Monte-Carlo simulations
 - First bending mode

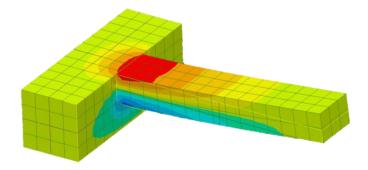


- 38

From the meso-scale to the macro-scale

Quality factor

- Micro-resonators
 - Temperature changes with compression/traction
 - Energy dissipation
- Eigen values problem
 - Governing equations



- $\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\mathrm{u}\vartheta}(\boldsymbol{\theta}) & \mathbf{D}_{\vartheta\vartheta} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathrm{u}\mathrm{u}}(\boldsymbol{\theta}) & \mathbf{K}_{\mathrm{u}\vartheta}(\boldsymbol{\theta}) \\ \mathbf{0} & \mathbf{K}_{\vartheta\vartheta}(\boldsymbol{\theta}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} F_{\mathrm{u}} \\ F_{\vartheta} \end{bmatrix}$
- Free vibrating problem

$$\begin{bmatrix} \mathbf{u}(t) \\ \boldsymbol{\vartheta}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{u}_0 \\ \boldsymbol{\vartheta}_0 \end{bmatrix} e^{i\omega t}$$

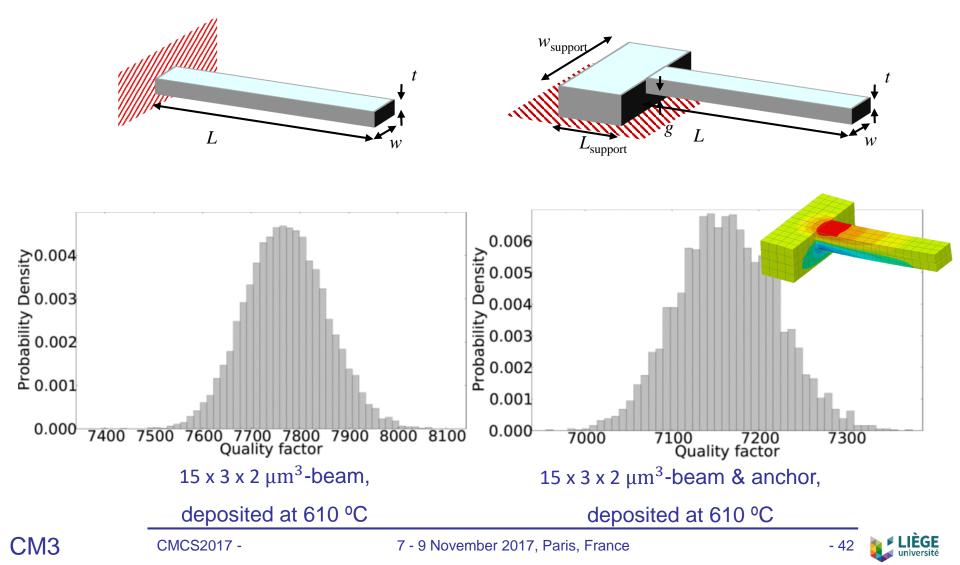
$$\begin{array}{c|c} & -\mathbf{K}_{\mathrm{uu}}(\boldsymbol{\theta}) & -\mathbf{K}_{\mathrm{u}\vartheta}(\boldsymbol{\theta}) & \mathbf{0} \\ \mathbf{0} & -\mathbf{K}_{\vartheta\vartheta}(\boldsymbol{\theta}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{array} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \\ \dot{\mathbf{u}} \end{bmatrix} = i\omega \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{M} \\ \mathbf{D}_{\vartheta\mathrm{u}}(\boldsymbol{\theta}) & \mathbf{D}_{\vartheta\vartheta} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \\ \dot{\mathbf{u}} \end{bmatrix}$$

- Quality factor
 - From the dissipated energy per cycle

•
$$Q^{-1} = \frac{2|\Im\omega|}{\sqrt{(\Im\omega)^2 + (\Re\omega)^2}}$$

From the meso-scale to the macro-scale

- Application of the 3-Scale method to extract the quality factor distribution
 - 3D models readily available
 - The effect of the anchor can be studied



Content

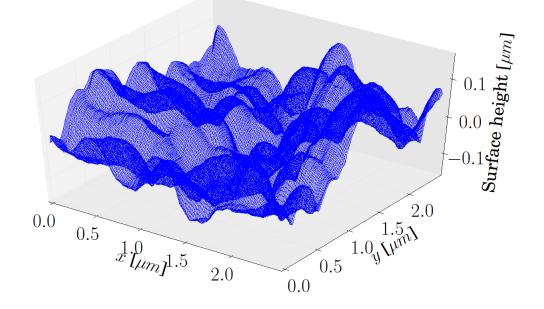
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor

Accounting for roughness effect

- From the micro-scale to the meso-scale
- The meso-scale random field
- From the meso-scale to the macro-scale

• Surface topology: asperity distribution

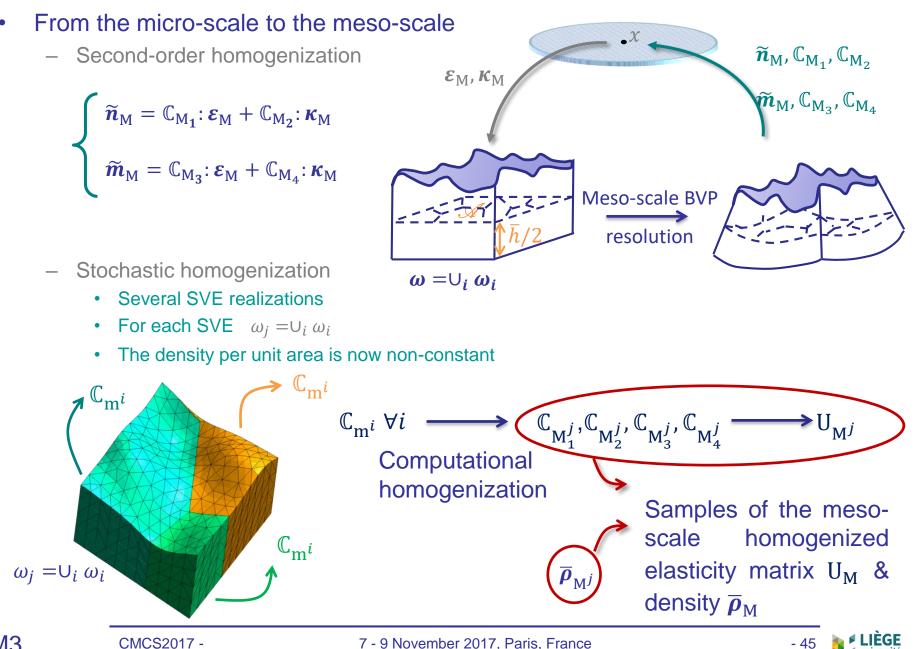
 Upper surface topology by AFM (Atomic Force Microscope) measurements on 2 µmthick poly-silicon films



Deposition temperature [°C]	580	610	630	650
Std deviation [nm]	35.6	60.3	90.7	88.3

AFM data provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

Accounting for roughness effect

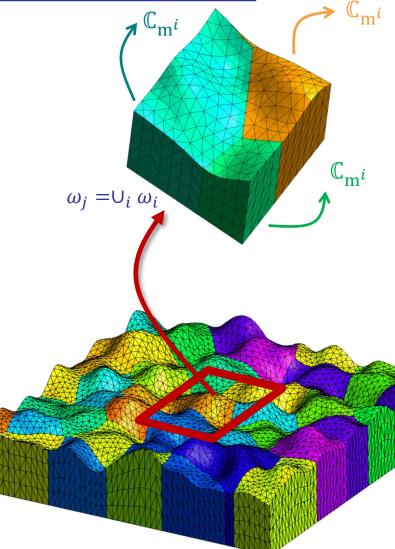


7 - 9 November 2017, Paris, France

Accounting for roughness effect

- The meso-scale random field
 - Generate large tessellation realizations
 - For each tessellation realization
 - Extract SVEs centred at $x + \tau$
 - For each SVE evaluate $U_M(x + \tau)$, $\overline{\rho}_M(x + \tau)$
 - From the set of realizations $U_M(x, \theta), \overline{\rho}_M(x, \theta)$,
 - Evaluate the bounds \mathbf{U}_{L} and $\overline{\boldsymbol{\rho}}_{L}$
 - Apply the Cholesky decomposition $\Rightarrow \mathcal{A}'(x, \theta)$
 - Fill the 22 entries of the zero-mean homogenous field $\mathcal{V}'(x, \theta)$
 - Compute the auto-/cross-correlation matrix

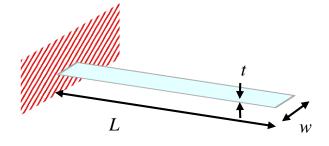
$$R_{\boldsymbol{\mathcal{V}}'}^{(rs)}(\boldsymbol{\tau}) = \frac{\mathbb{E}[\boldsymbol{\mathcal{V}}'^{(r)}(\boldsymbol{x})\boldsymbol{\mathcal{V}}'^{(s)}(\boldsymbol{x}+\boldsymbol{\tau})]}{\sqrt{\mathbb{E}[(\boldsymbol{\mathcal{V}}'^{(r)})^2]\mathbb{E}[(\boldsymbol{\mathcal{V}}'^{(s)})^2]}}$$

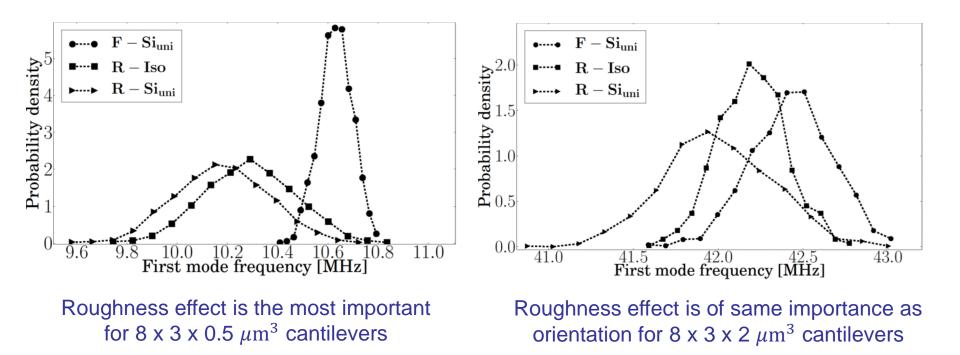


Accounting for roughness effect

- From the meso-scale to the macro-scale
 - Cantilever of 8 x 3 x $t \,\mu m^3$ deposited at 610 °C

Flat SVEs (no roughness) - F Rough SVEs (Polysilicon film deposited at 610 °C) - R Grain orientation following XRD measurements – Si_{pref} Grain orientation uniformly distributed – Si_{uni} Reference isotropic material – Iso





Efficient stochastic multi-scale method

- Micro-structure based on experimental measurements
- Computational efficiency relies on the meso-scale random field generator
- Used to study probabilistic behaviors

• Perspectives

- Other material systems
- Non-linear behaviors
- Non-homogenous random fields

- 48

CM3

Thank you for your attention !

• Governing equations

- Thermo-mechanics
 - Linear balance $\rho \ddot{\boldsymbol{u}} \nabla \cdot \boldsymbol{\sigma} \rho \boldsymbol{b} = 0$
 - Clausius-Duhem inequality in terms of volume entropy rate $\dot{S} = -\frac{\nabla \cdot q}{T}$
 - Helmholtz free energy

$$\begin{cases} \mathcal{F}(\boldsymbol{\varepsilon},T) = \mathcal{F}_0(T) - \boldsymbol{\varepsilon}: \frac{\partial^2 \psi}{\partial \boldsymbol{\varepsilon} \partial \boldsymbol{\varepsilon}}: \alpha(T - T_0) + \psi(\boldsymbol{\varepsilon}) \\ \boldsymbol{\sigma} = \left(\frac{\partial \mathcal{F}}{\partial \boldsymbol{\varepsilon}}\right)_T, \quad S = \left(\frac{\partial \mathcal{F}}{\partial T}\right)_{\boldsymbol{\varepsilon}} & \& \quad \left(\frac{\partial^2 \mathcal{F}_0}{\partial T \partial T}\right) = \rho C_{\boldsymbol{v}} \end{cases}$$

- Strong form in terms of the displacements u and temperature change ϑ (linear elasticity)

$$\int \rho \ddot{\boldsymbol{u}} - \nabla \cdot (\mathbb{C} : \dot{\boldsymbol{\varepsilon}} - \mathbb{C} : \boldsymbol{\alpha} \vartheta) - \rho \boldsymbol{b} = 0$$

$$\rho C_v \dot{\vartheta} + T_0 \boldsymbol{\alpha} : \mathbb{C} : \dot{\boldsymbol{\varepsilon}} - \nabla \cdot (\boldsymbol{\kappa} \nabla \vartheta) = 0$$

Finite element discretization

$$\searrow \begin{bmatrix} \mathbf{M}(\rho) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\vartheta u}(\boldsymbol{\alpha}, \mathbb{C}) & \mathbf{D}_{\vartheta \vartheta}(\rho C_{\upsilon}) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{uu}(\mathbb{C}) & \mathbf{K}_{u\vartheta}(\boldsymbol{\alpha}, \mathbb{C}) \\ \mathbf{0} & \mathbf{K}_{\vartheta \vartheta}(\boldsymbol{\kappa}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} F_{u} \\ F_{\vartheta} \end{bmatrix}$$

CM3

- Stochastic model of the meso-scale random field: Spectral generator*
 - Start from the auto-/cross-covariance matrix

 $\tilde{R}_{\boldsymbol{\mathcal{V}}'}^{(rs)}(\boldsymbol{\tau}) = \sigma_{\boldsymbol{\mathcal{V}}'^{(r)}}\sigma_{\boldsymbol{\mathcal{V}}'^{(s)}}R_{\boldsymbol{\mathcal{V}}'}^{(rs)}(\boldsymbol{\tau}) = \mathbb{E}\left[\left(\boldsymbol{\mathcal{V}}'^{(r)}(\boldsymbol{x}) - \mathbb{E}(\boldsymbol{\mathcal{V}}'^{(r)})\right)\left(\boldsymbol{\mathcal{V}}'^{(s)}(\boldsymbol{x}+\boldsymbol{\tau}) - \mathbb{E}(\boldsymbol{\mathcal{V}}'^{(s)})\right)\right]$

- Evaluate the spectral density matrix from the periodized zero-padded matrix $\widetilde{R}_{\nu'}^{P}(\tau)$

$$S_{\nu}^{(rs)}[\omega^{(m)}] = \sum_{n} \widetilde{R}_{\nu'}^{P} {}^{(rs)}[\tau^{(n)}] e^{-2\pi i \tau^{(n)} \cdot \omega^{(m)}} \qquad \& \qquad S_{\nu}[\omega^{(m)}] = H_{\nu}[\omega^{(m)}] H_{\nu}^{*}[\omega^{(m)}]$$

- ω gathers the discrete frequencies
- *τ* gathers the discrete spatial locations
- Generate a Gaussian random field $\mathcal{V}'(x, \theta)$

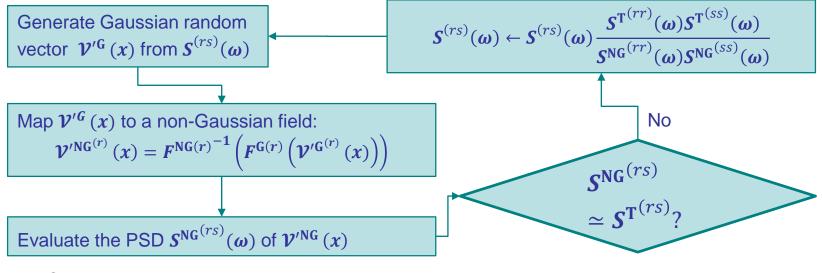
$$\mathcal{V}^{\prime(r)}(\boldsymbol{x},\boldsymbol{\theta}) = \sqrt{2\Delta\omega} \,\Re\left(\sum_{s} \sum_{\boldsymbol{m}} \boldsymbol{H}_{\mathcal{V}_{s}}^{(rs)} [\boldsymbol{\omega}^{(m)}] \,\eta^{(s,m)} \,e^{2\pi i \left(\boldsymbol{x} \cdot \boldsymbol{\omega}^{(m)} + \boldsymbol{\theta}^{(s,m)}\right)}\right)$$

- η and θ are independent random variables
- Quid if a non-Gaussian distribution is sought?

- Stochastic model of the meso-scale random field: non-Gaussian mapping*
 - Start from micro-sampling of the stochastic homogenization
 - The continuous form of the targeted PSD function

$$\boldsymbol{S}^{\mathrm{T}(rs)}(\boldsymbol{\omega}) = \Delta \boldsymbol{\tau} \boldsymbol{S}^{(rs)}_{\boldsymbol{\mathcal{V}}'} \big[\boldsymbol{\omega}^{(m)} \big] = \Delta \boldsymbol{\tau} \sum_{n} \widetilde{\boldsymbol{R}}^{\mathrm{P}}_{\boldsymbol{\mathcal{V}}'} \big[\boldsymbol{\tau}^{(n)} \big] e^{-2\pi i \boldsymbol{\tau}^{(n)} \cdot \boldsymbol{\omega}^{(m)}}$$

- The targeted marginal distribution density function $F^{NG(r)}$ of the random variable $\mathcal{V}'^{(r)}$
- A marginal Gaussian distribution $F^{G(r)}$ of zero-mean and targeted variance $\sigma_{\nu'^{(r)}}$
- Iterate



*"Deodatis, G., Micaletti, R., 2001

