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Factor complexity of infinite words

The Fibonacci word
f =01001010010010100101001001010010...
is the fixed point of the morphism 0 +— 01 and 1 — 0.

Factors of length n:

0,1

00,01,10

001,010,100,101
0010,0100,0101,1001,1010

BIWIN =

It can be shown that there are exactly n+ 1 factors of length nin f.



Notation

v

Alphabet: finite non-empty set, usually denoted by A.
Word over A:

x = xpx1xp---  (infinite word)

X = XoX1 -+ - Xp—1 (finite word of length |x| = n).

v

v

A" is the set of all words of length n over A.

v

Factor u of an infinite word w: v = x; ... xy; for some
i,j €N.
Fac,(x) is the set of the factors of x of length n.

v



Factor complexity

The factor complexity of an infinite word x is the function
px: N — N which counts the number of factors of length n of x:

Vn € N, py(n) = | Faca(x)|.

Some properties:

> Vn €N, pi(n) < |A]".

> px(n) is a non-decreasing function.



Some more examples

» The (binary) Champernowne word

c=011011100101110 111 1000---

has maximal factor complexity 2".

» The Thue-Morse word is the fixed point of the morphism
0+~ 01,1+ 10 beginning with O:

t =0110100110010110- - -

We have p¢(3) = 6: no factors 000, 111.
The factor complexity of Thue-Morse is computed in [Brlek
1987].



Complexity and periodicity

» Purely periodic word: x = v¥ = wwv - -
» Ultimately periodic word: x = uv¥ = uvvv - - -

» Aperiodic means not ultimately periodic.

Theorem (Hedlund-Morse 1940, first part)
An infinite word x is aperiodic iff Vn € N, py(n) > n+ 1.



Sturmian words and balance

» An infinite word over A is C-balanced if for all factors u, v of
the same length and for each a € A, we have ‘|u|a - |v\a’ < C.

Theorem (Hedlund-Morse 1940, second part)

An infinite word x is such that Vn € N, po(n)=n+1 iffitis
binary, aperiodic and 1-balanced.

» Aperiodic binary infinite word of minimal complexity are called
Sturmian words.

» We have already seen that the Fibonacci word is Sturmian.



Several generalizations of Morse-Hedlund

Other complexity functions, and their links with periodicity.

» Abelian complexity, which counts the number of abelian
classes of words of each length n occurring in x:
[Coven-Hedlund 1973], [Richomme-Saari-Zamboni 2011].

» Palindrome complexity, which counts the number of
palindromes of each length n occurring in x:
[Allouche-Baake-Cassaigne-Damanik 2003].

» Cyclic complexity, which counts the number of conjugacy
classes of factors of each length n occurring in x:
[Cassaigne-Fici-Sciortino-Zamboni 2017].

» Maximal pattern complexity: [Kamae-Zamboni 2002].



Several generalizations of Morse-Hedlund

Higher dimensions:

» Nivat conjecture: Any 2-dimensional word having at most mn
rectangular blocks of size m x n must be periodic.

» |t is known that the converse is not true.

» [Durand-Rigo 2013], in which they re-interpret the notion of
periodicity in terms of Presburger arithmetic.



Our contribution

» New notion of complexity by group actions.

» Encompass most complexity functions studied so far.



Abelian complexity

» Two finite words are abelian equivalent if they contain the
same numbers of occurrences of each letter: 00111 ~,, 01101.

» The abelian complexity function a,(n) counts the number of
abelian classes of words of length n occurring in x.

For the Thue-Morse word t = 0110100110010110-- -, we have

ae(n) = { 2 if nis odd

3 if nis even

We have a;(3) = 2 since there are 2 abelian classes of factors of
length 3:
{001,010, 100} and {011,101, 110}.



Abelian complexity and periodicity

We clearly have the following implications:

ultimate periodicity = bounded factor complexity
= bounded abelian complexity.

However, we have just seen that the converse is not true: the
Thue-Morse word is aperiodic and its abelian complexity function is
bounded by 3.

Theorem (Coven-Hedlund 1973, part 1)
An infinite word x is purely periodic iff 3n > 1, ay(n) = 1.

In particular, if x is aperiodic then ¥n > 1, ay(n) > 2.
The converse is false: take x = 01%.



Abelian complexity and balance

We clearly have the following implications:

ultimate periodicity = bounded factor complexity
= bounded abelian complexity.

Theorem (Coven-Hedlund 1973, part 2)

An infinite aperiodic word x is Sturmian iff Yn > 1, a,(n) = 2.

Theorem (Richomme-Saari-Zamboni 2011)

An infinite word has bounded abelian complexity iff it is C-balanced
for some C > 1.



Cyclic complexity

» Two finite words v and v are conjugate if there exist words wy,
wy such that u = wiws and v = wowg.

» The cyclic complexity function c,(n) counts the number of
conjugacy classes of words of length n occurring in x.

For the Thue-Morse word t = 0110100110010110- - -, we have
ct(4) = 4 since there are 4 conjugacy classes of factors of length 4:

{0010, 0100}
{0110, 1001, 1100, 0011}
{0101, 1010}
{1011,1101}



Cyclic complexity, periodicity and Sturmian words

Theorem (Cassaigne-Fici-Sciortino-Zamboni 2014)

An infinite word is ultimately periodic iff it has bounded cyclic
complexity.

One always has
ax(”) < Cx(n) < Px(”)-

Hence cx(n) =1 for some n > 1 implies that x is purely periodic.

In [Cassaigne-Fici-Sciortino-Zamboni 2014] they consider liminf ¢(n):
» Sturmian words satisfy liminf ¢(n) = 2.

» But this is not a characterization of Sturmian words since the
period-doubling word also has liminf ¢,(n) = 2.



Generalization via group actions

» Let G be a subgroup of the symmetric group S,: G < S,,.
» G acts on A" by permuting the letters:

GxA"— A", (g, u) = g *xu= Ug—1(1)Ug—1(2) "+ * Ug—1(p)-

» We write uy - - - u, (gx Ug-1(1)Ug—1(2) """ Ug—1(p)-

(1234)
» 0100  ~ " 0010.

» abcab (12%45) cabba.

> In particular g x u ~,p 0.

» G-equivalence relation on A™: for u,v € A", u ~¢ v if
dge G, gxu=v.

> u~g vimplies u ~,p v.



Complexity by actions of groups

» Now we consider a sequence of subgroups w = (Gp)n>1: for
eachn>1, G, < §,,.

» The group complexity p, «(n) of x counts the number of
Gp-classes of words of length n occurring in x.

For the Thue-Morse word t = 0110100110010110--- and
Gs = ((13), (24)), we have p, +(4) = 7 while p¢(4) = 10.

We have six singleton classes of length 4:
[0010],[0100], [0101],[1010],[1011],[1101]

and one class of order 4:

120 “2%¥ 1001 2 1100 W 0011].



Group actions: generalization of factor, abelian and cyclic
complexities

Each choice of sequence w = (Gp)n>1 defines a unique complexity
which reflects a different combinatorial property of an infinite word.

As particular cases, we recover
» factor complexity: if w = (/d,)p>1 then py, «(n) = px(n)
> abelian complexity: if w = (S5)n>1 then py, «(n) = ax(n)
» cyclic complexity: if w =< (12---n) >,>1 then
P x(n) = cx(n). -



The quantity ¢(G)

v

For G < S, and i € {1,2,...,n}, the G-orbit of i is
G(i)={g(i)|g € G}.
The number of distinct G-orbits is denoted
£(G)=[{G(i)|ie{1,2,...,n}}
For n =6 and G =< (13),(256) >, we have ¢(G) = 3:

v

v

123456.

v

If G =Id, then £(G) = n.
If G contains an n-cycle, then £(G) = 1.

v



Complexity by group actions: £(G)

» For G < S, 2(G) is the number of G-orbits of {1,...,n}.

Example (The Klein group Z /2 Z X Z |2 Z)
First take G = {id, (12),(34),(12)(34)}.
Then the G-orbits are {1,2} and {3,4}, hence ¢(G) = 2.

Second, consider G’ = {id, (12)(34), (13)(24), (14)(23)}.
Then the only G’-orbit is {1,2, 3,4}, hence ¢(G’) = 1.

» This shows an interesting phenomenon: the quantity £(G)
depends on the embedding of G into S,.



Generalisation of the Morse-Hedlund theorem

Theorem 1 (Charlier-Puzynina-Zamboni 2017)

Let x be an infinite aperiodic word, w = (Gp)n>1, Gp < S
» Then Vn > 1, p, «x(n) > e(G,) + 1.
» IfVn>1, p,x(n) =¢(Gy)+ 1 then x is Sturmian.

Corollary

An infinite aperiodic word is Sturmian iff there exists w = (Gp)n>1,
Gn < S, such that Vn > 1, p, x(n) =¢(G,) + 1.



Sketch of the proof

Theorem 1, second part

Let x be an infinite aperiodic word, w = (Gn)n>1, Gn < Sy
If Vn > 1, p, x(n) =e(Gp) + 1 then x is Sturmian.

» Since €(G1) = 1, then p,, (1) = 2, and hence x is binary.

v

Suppose that x is not Sturmian, that is, not 1-balanced.

v

Key lemma: 3n > 2, a Sturmian word y and a bispecial factor
u€{0,1}"72 of y s.t. Facy(x) = Fac,(y) U {0u0,1ul}.

u is a bispecial factor of y means that v0, vl, Ou, 1u are
factors of y.

v

v

Since y is Sturmian, exactly one of 0u0 and 1ul is a factor of
y. hence p,, x(n) > pyy(n) + 1.

Apply first part of the theorem to y to get

Pux(n) > puy(n) +1 > €(Gy) + 2, a contradiction.

v



Generalisation of the Morse-Hedlund theorem

Partial converse:

Theorem 2 (Charlier-Puzynina-Zamboni 2017)

Let x be a Sturmian word and w = (Gp)s>1, where G, is an abelian
subgroup of S,. Then 3w’ = (G))n>1. G, < Sp, such that Vn > 1,

» G} is isomorphic to G,
» pura() = (G} + 1.

As particular cases, we recover:
» Morse-Hedlund theorem: w = (Idy)p>1, pu,x(n) = px(n),
e(Gp) = n.
> Abelian complexity: w = (Sp)n>1, pux(n) = ax(n), e(G,) = 1.



We cannot always take G’ = G

Theorem 2

Let x be a Sturmian word and w = (G,)n>1, where G, is an abelian
subgroup of S,. Then 3w’ = (G}),>1, G, < Sy, such that Vn > 1, G} is
isomorphic to G, and p. x(n) = &(G}) + 1.

Consider the factors of length 4 of the Fibonacci word:
0010,0100,0101,1001, 1010.

Let G4 = ((1234)). Then e(Gs) =1 and p, r(4) =3 > ¢(G4) +1

1234 1234
o200 “ZY 0010}, [or01 "B 1010], [2001].

But we can take G, = ((1324)). Then £(G;) =1 and
p(4) =2 = £(G}) + 1

(1324) (1324) (13 )

[0010 "~ 0100], [0101 "~ 1001 1010].



We cannot replace “isomorphic" by “conjugate"

Theorem 2

Let x be a Sturmian word and w = (G,)n>1, where G, is an abelian
subgroup of S,. Then 3w’ = (G})p>1. G, < S, such that Vn > 1, G} is
isomorphic to G, and p. x(n) = ¢(G}) + 1.

Let G =< (123)(456) >< Se. This is a cyclic subgroup of order 3.
Then £(G) = 2 and we can show that

} Face(f)/~¢,

>4

for each subgroup G’ of Sg which is conjugate to G.



Sketches of proof
Theorem 2

Let x be a Sturmian word and w = (G,)n>1, where G, is an abelian
subgroup of S,. Then 3w’ = (G )p>1, G, < S, such that Vn > 1,

> G} is isomorphic to G,

> purx(n) = () + 1.

First we prove Theorem 2 for an n-cycle.

abc-permutation [Pak-Redlich 2008]: The numbers 1,2,...,n are
divided into three subintervals of length a, b and ¢ which are
rearranged in the order c, b, a:

1,2,....,n— ct+b+1l,c+b+2,...,nc+1l,c+2,...,¢c+b,1,2,...,c



Factors of length 6 in Fibonacci

Consider the abc-permutation with a=1, b =2 ¢ = 3 on the
lexicographic array of length 6.

001001
001 010
010010
01 0100
100100
100101
101001

This abc-permutation can be seen as a 6-cycle: (163524).

For G < S, we say that ~¢ is abelian transitive on x if
Yu,v € Facy(x): ur~ap v ung v.



Factors of length 6 in Fibonacci

Consider the abc-permutation with a=1, b =2 ¢ = 3 on the
lexicographic array of length 6.

001001
0 01 010
010010
01 0100
100100
100101
101001

This abc-permutation can be seen as a 6-cycle: (163524).

For G < S, we say that ~¢ is abelian transitive on x if
Yu,v € Facy(x): ur~ap v ung v.



Factors of length 6 in Fibonacci

Consider the abc-permutation with a=1, b =2 ¢ = 3 on the
lexicographic array of length 6.

001001
001010
010010
01 0100
100100
100101
101001

This abc-permutation can be seen as a 6-cycle: (163524).

For G < S, we say that ~¢ is abelian transitive on x if
Yu,v € Facy(x): ur~ap v ung v.



(abc)-permutations

Lemma
Let x be a Sturmian word. Then for each n > 1 there exists an
(a, b, ¢)-permutation on {1,2,..., n} which is an n-cycle o such

that ~ ) is abelian transitive on x.

Comments:
» We exhibit our (a, b, ¢)-permutation candidate.
» We show that it is actually an n-cycle [Pak, Redlich, 2008].
» We use lexicographic arrays for the proof of the abelian
transitivity.
> In fact, we prove that w(;11) = o(w(;)) in each abelian class,
where w(;) are ordered lexicographically.



A corollary

Corollary

If x is a Sturmian word then for each n there exists a cyclic group
Gn generated by an n-cycle such that | Fac,,(x)/NGn| =2.

In contrast, if we set G, = ((1,2,...,n)) for each n > 1, then
limsup p,, x(n) = 400, while liminf p, x = 2.
[Cassaigne, Fici, Sciortino, Zamboni, 2015]



Theorem 2: construction for abelian groups

Theorem (Fundamental theorem of finite abelian groups)

Every finite abelian group G can be written as a direct product of
cyclic groups Z. /m1 Z X Z | mp Z X - - - X 7 | mg 7 where the m; are
prime powers.

» The sequence (my, my, ..., mg) determines G up to
isomorphism.

» The trace of G is given by T(G) = my + mp + -+ + my.

Proposition (Hoffman 1987)
If an abelian group G is embedded in Sy, then T(G) < n.



Open problem

Does Theorem 2 hold for non-abelian groups?

Question
Let x be a Sturmian word and w = (Gp),>1, where G, < Sp,.
Does there exist w’ = (G})n>1, G}, < Sp, such that for all n > 1,

» G/ is isomorphic to G,
> pura(n) = <(G)) + 1.



Minimal complexity

complexity type | minimal complexity | words family

factor n+1 Sturmian

abelian 2 Sturmian

cyclic liminf =2 Sturmian+

group e(Gp)+1 Sturmian

maximal pattern 2n+1 Sturmian+

arithmetical linear (asymptotically) Toeplitz

Arithmetical complexity: [Avgustinovich-Cassaigne-Frid 2006]



