UEE Urban & Environmental Engineering

6th European Drying Conference

Convective drying : experimental campaign and numerical modelling

J. Hubert¹ – E. Plougonven² – A. Leonard² – F. Collin¹

¹ Université de Liège – Dept. ArGEnCo
 ² Université de Liège – Dept. Chemical Engineering

Thesis director : Frédéric Collin

Monday 19th of June

SUMMARY OF THE PRESENTATION

- Scope of the study
- Experimental campaign
- Experimental results
- Model
- Numerical results
- Conclusion

NUCLEAR WASTE DISPOSAL

- High activity long life radioactive wastes need to be isolated for a long period of time ⇒ Deep geological storage
 - Stable and low permeability rock formation required
 - \Rightarrow in Belgium the studied formation is Boom Clay

19/06/2017

2

DEEP GEOLOGICAL STORAGE

Burial shaft and multi barrier principle:

SUMMARY OF THE PRESENTATION

- Scope of the study
- Material and method
- Experimental results
- Model
- Numerical results
- Conclusion

EXPERIMENTAL CAMPAIGN

Samples preparation

Initial core

Extracted samples

Saturation

Optimization

Finished samples

EXPERIMENTAL CAMPAIGN

Convective drying tests

Drying conditions		
Temperature	25°C	
Humidity	3,5 %	
Air flow	0,8 m/s	

EXPERIMENTAL CAMPAIGN

Data acquisition

thethouse

Hole filling and binarization

Skyscan 1172

MATERIAL AND METHOD

7

SUMMARY OF THE PRESENTATION

- Scope of the study
- Material and method
- Experimental results
- Model
- Numerical results
- Conclusion

Theory of porous media convective drying

Julien Hubert

Theory of porous media convective drying

Theory of porous media convective drying

Julien Hubert

EXPERIMENTAL RESULTS

Drying kinetics

EXPERIMENTAL RESULTS

Shrinkage

SUMMARY OF THE PRESENTATION

- Scope of the study
- Material and method
- Experimental results
- Model
- Numerical results
- Conclusion

Porous medium

Julien Hubert

Internal Water transfer

Boundary layer model

Julien Hubert

Thermal model

- Mechanical model
 - Expressed in effective stress

$$\sigma_{ij}' = \sigma_{ij} - p_g \delta_{ij} + S_{r,w} (p_g - p_w) \delta_{ij}$$

• 3D orthotropic elastic model

• Non linear elasticity :

$$E = E_0 + E_{ref} \left(\frac{p'}{p_{ref}}\right)^b$$

$$\epsilon_{ij} = \mathsf{D}^{\mathsf{e}}_{\mathsf{i}\mathsf{j}\mathsf{k}\mathsf{l}}\sigma'_{ij}$$

$$\mathsf{D}^{\mathsf{e}}_{\mathsf{l}\mathsf{k}\mathsf{l}} = \begin{pmatrix} \frac{1}{E_{\parallel}} & -\frac{\nu_{\perp,\parallel}}{E_{\perp}} & -\frac{\nu_{z,\parallel}}{E_{\perp}} & 0 & 0 & 0\\ -\frac{\nu_{\parallel,\perp}}{E_{\parallel}} & \frac{1}{E_{\perp}} & -\frac{\nu_{z,\perp}}{E_{z}} & 0 & 0 & 0\\ -\frac{\nu_{\parallel,z}}{E_{\parallel}} & -\frac{\nu_{\perp,z}}{E_{\perp}} & \frac{1}{E_{z}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2G_{\parallel,\perp}} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{2G_{\parallel,z}} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{\parallel,z}} \end{pmatrix}$$

NUMERICAL MODELING

Meshing and parameters

PARAMETERS	VALUES	Units
	Hydraulic Parameters	
$k_{sat,\perp}$	6.10 ⁻¹²	[m/s]
$k_{sat,\parallel}$	3.10 ⁻¹²	[m/s]
n	0.39	[-]
	Mechanical Parameters	
$E_{\parallel,ref}$	350	[MPa]
$E_{\perp,ref}$	175	[MPa]
$E_{z,ref}$	300	[MPa]
$ u_{\parallel\perp}$	0.125	[-]
$ u_{\parallel z}$	0.0625	[-]
$ u_{\perp z}$	0.0625	[-]
$G_{\parallel\perp}$	140	[MPa]
$G_{\perp z}$	140	[MPa]
ρ_s	2670	$[kg/m^3]$
	THERMAL PARAMETERS	
C _{p,s}	2080	[J/kg/K]
$ ho_s$	2670	$[kg/m^3]$
$c_{\mathrm{p,w}}$	4185	[J/kg/K]
$ ho_w$	1000	$[kg/m^3]$
C _{p,a}	1004	[J/kg/K]
$ ho_a$	1.2	$[kg/m^3]$
$c_{p,v}$	1864	[J/kg/K]
$ ho_{v}$	0.59	$[kg/m^3]$

19/06/2017

SUMMARY OF THE PRESENTATION

- Scope of the study
- Material and method
- Experimental results
- Model
- Numerical results
- Conclusion

NUMERICAL RESULTS

Drying kinetics

NUMERICAL RESULTS

Shrinkage

19

NUMERICAL RESULTS

20

NUMERICAL RESULTS

CONCLUSION

Dessication cracking

References

Andra (2005a). Dossier 2005 Argile. Synthesis: Evaluation of the feasibility of a geological repository in an argillaceous formation, Meuse/Haute Marne site. Technical report, Paris, France.

Bastiens W., Demarche M., 2003. The extension of the URF HADES: realization and observation. Proceedings of the WN'03 Conference, Tucson, USA.

Craeye B., De Schutter G., Van Humbeeck H., Van Cotthem, 2009. *Early age behaviour of concrete supercontainers for radioactive waste disposal.* Nuclear Engineering and Design, 239, 23-35.

Gerard P., Charlier, R, Chambon, R, & Collin, F. 2008. Influence of evaporation and seepage on the convergence of a ventilated cavity. Water resources research, 44(5), W00C02.

Léonard A., Étude du séchage convectif de boues de station d'épuration. Suivi de la texture par microtomographie à rayons X. Thèse de doctorat, Université de Liège, Faculté des Sciences appliquées, 2003.

SCK-CEN. R and D for the geological disposal of medium and high level waste in the Boom clay, 2009. URLence.sckcen.be/en/Projects/Project/RD_waste_disposal/Geological_disposal

Lehmann, P., Assouline, S., & Or, D. (2008). Characteristic lengths affecting evaporative drying of porous media. *Physical Review E*, *77*(5), 056309.

$Sensitivity \ study$

QUESTIONS

NUMERICAL MODELING

Boundary layer model in FEM code:

- Water pressure at the environmental node n_4 : $p_c = -\frac{\rho RT}{M} ln(HR)$
- Temperature at the environmental node $n_4 : T = 25^{\circ}C$
- Transfer coeffcients:

<i>α</i> [<i>m</i> / <i>s</i>]	$\beta [W/m^2/K]$
0.048	53

WATER RETENTION CURVE

- Samples put into chamber with controlled suction (saline solution)
- Water content measured ⇒ saturation degree deduced

Van Genuchten formulation :

$$S_{r,w} = S_{res} + (S_{sat} - S_{res}) \left[\left(1 + \frac{p_c}{\alpha} \right)^{n_{vG}} \right]^{-m_{vG}}$$

VAN GENUCHTEN FORMULATION			
S _{res}	0	[-]	
S _{sat}	1	[-]	
α_{vg}	15	[MPa]	
m_{vg}	0.449	[-]	
n_{vg}	1.70	[-]	

24

BOOM CLAY COMPOSITION

Composition	Al-Mukhtar et	Wouters et	Decleer et al., 1983	Horseman et al.,
minéralogique en [%]	al., 1996	Vandenberghe, 1994		1986
Quartz	20-25	20	23.8-58.3	30
Interstratifié illite- smectite	33	40-50		
Illite	16	25-35	3-23	19
Smectite			19-42	22
Kaolinite	13	15-25	1-9	29
Feldspaths:		5-10		
Microcline	4-5		6.5-11.3	
Plagioclase	4-5		3.2-6.2	
Chlorite		5-10		
Pyrite	4-5	1-5	0.7-2.5	
Carbonates	traces	1-5	0.0-4.3	
Matières organiques		1-5		

 Tableau 3 : Revue bibliographique de la composition minéralogique de l'Argile de Boom

$MATERIALS \ AND \ METHODS$

- X-Ray tomography characteristics
 - Cross section acquisition using a X-Ray microtomography

Skyscan 1172

Source Voltage = 100 kV	Filter = Al 0.5 mm	4x4 binning = 900x666 pixel radiograms
Pixel size = 27.27 μm	Exposure time = 510 ms	Rotation Step (deg)= 0.65
180° rotation	2 vertically-connected scans	Scan duration = 8 minutes

EXPERIMENTAL RESULTS

Numerical filter

QUESTIONS