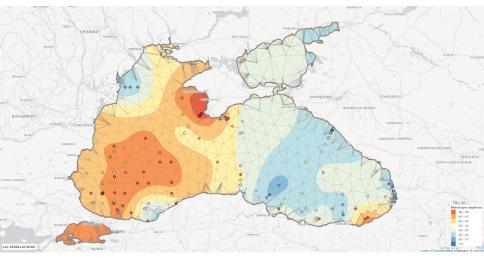
A. Barth, C. Troupin, S. Watelet & J.-M. Beckers


GHER-University of Liège (ULiège)

New Diva capabilities for climatologies

SeaDataCloud - Product Meeting

Diva: from in situ data to gridded fields

• https://github.com/gher-ulg/DIVA

DivaND: generalised, n-dimensional interpolation

https://www.geosci-model-dev.net/7/225/2014/gmd-7-225-2014.pdf

divand-1.0: n-dimensional variational data analysis for ocean observations

A. Barth^{1,*}, J.-M. Beckers¹, C. Troupin², A. Alvera-Azcárate¹, and L. Vandenbulcke^{3,4}

Correspondence to: A. Barth (a.barth@ulg.ac.be)

Received: 7 June 2013 - Published in Geosci. Model Dev. Discuss.: 23 July 2013 Revised: 18 October 2013 - Accepted: 12 December 2013 - Published: 29 January 2014

https://github.com/gher-ulg/divand.il

2013: Octave/MATLAB

2016: Julia

faster, better, stronger

¹GHER, University of Liège, Liège, Belgium

²IMEDEA, Esporles, Illes Balears, Spain

³seamod.ro/Jailoo srl, Sat Valeni, Com. Salatrucu, Jud. Arges, Romania

⁴CIIMAR, University of Porto, Porto, Portugal

^{*} Invited contribution by A. Barth, recipient of the EGU Arne Richter Award for Outstanding Young Scientists 2010.

DivaND: generalised, n-dimensional interpolation

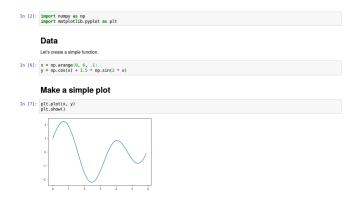
- Variational inverse method
- Smoothness and other constraints

Differences with Diva (2D)

- n-dimensional, $n \ge 2$
- Different formulations, kernels & solvers
- Programming languages

Fortran vs. Julia

User interfaces:


Jupyter notebooks and WPS

Notebooks: interactive computational environments

Notebooks combine:

- code fragments that can be executed,
- text for the description of the application and
- 3 figures illustrating the data or the results.

Notebooks: interactive computational environments

Notebooks combine:

- 1 code fragments that can be executed,
- text for the description of the application and
- 3 figures illustrating the data or the results.

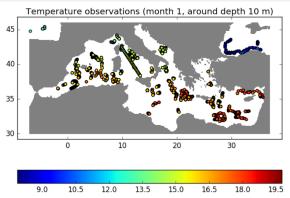
"Digital Playground"

"Data Story Telling"

"Computational Narratives"

Notebooks: interactive computational environments

Notebooks combine:


- 1 code fragments that can be executed,
- text for the description of the application and
- figures illustrating the data or the results.

"Interactive notebooks: Sharing the code", Nature (2014) http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261

divand in a notebook

Setup the domain using the bathymetry from the file bathname.

Example online

New climatologies

and products

Specifications for the new products

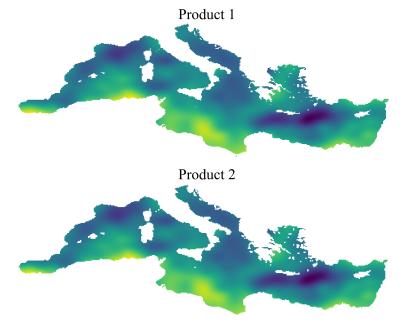
Depth levels:

- Common to all the products
- Follow IODE levels
- Consider World Ocean Atlas

allows combined product 33 levels from 0 to 5500 m more than 100 levels!

Specifications for the new products

Spatial resolution:


Grid resolution \neq real resolution!!

1 divand: $1/8^{\circ} \times 1/8^{\circ}$

2 post-processing: $1/24^{\circ} \times 1/24^{\circ}$

based on data availability match model resolution

1 Field 1 is 161×426 Field 2 is 641×1701

- Field 1 is 161×426 Field 2 is 641×1701
- 2 File 2 is 30 times larger

- Field 1 is 161×426 Field 2 is 641×1701
- 2 File 2 is 30 times larger
- 3 Product 2 would take wayyyyyyyyyyyyyyy longer to be created with divand

Re-gridding/re-interpolation: use nco?

NC@

- nco = netCDF Operators
 - = set of standalone programs to manipulate netCDF files
 - ightarrow renaming, averaging, **re-gridding**, binary operations...

http://nco.sourceforge.net/

Re-gridding based on Earth System Modeling Framework (ESMF, https://www.earthsystemcog.org/projects/esmf/)

Re-gridding/re-interpolation: use nco?


```
Usage:
```

```
ncremap -i data.nc -d grid.nc -o output.nc
where:
```

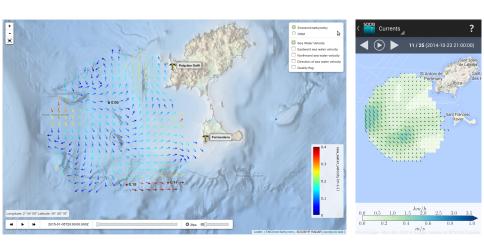
```
data.nc = original netCDF containing field
  grid.nc = file containing the new (finer) grid
output.nc = new netCDF with field interpolated
  onto the new grid
```


1 Decrease the model resolution $(1/24^{\circ})$ to match that of the climatology $(1/8^{\circ})$

- 1 Decrease the model resolution $(1/24^{\circ})$ to match that of the climatology $(1/8^{\circ})$
- Detect where there is a high density of data and perform an analysis over that area with a higher resolution

- 1 Decrease the model resolution $(1/24^{\circ})$ to match that of the climatology $(1/8^{\circ})$
- Detect where there is a high density of data and perform an analysis over that area with a higher resolution
- Increase resolution locally where the geometry forces it (strait, islands, ...)

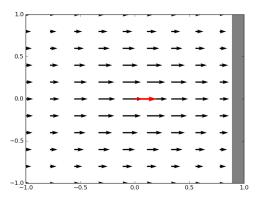
- 1 Decrease the model resolution $(1/24^{\circ})$ to match that of the climatology $(1/8^{\circ})$
- Detect where there is a high density of data and perform an analysis over that area with a higher resolution
- 3 Increase resolution locally where the geometry forces it (strait, islands, ...)
- 4 Re-interpolate the climatologies at $1/24^{\circ}$ and use it as a background Perform analysis with divand by window (larger than correlation length and shorter than domain size)


- 1 Decrease the model resolution $(1/24^{\circ})$ to match that of the climatology $(1/8^{\circ})$
- Detect where there is a high density of data and perform an analysis over that area with a higher resolution
- 3 Increase resolution locally where the geometry forces it (strait, islands, ...)
- 4 Re-interpolate the climatologies at $1/24^{\circ}$ and use it as a background Perform analysis with divand by window (larger than correlation length and shorter than domain size)
- 5 Assign lower weight for high-resolution data

(Very) new product

Velocity field from HF radar

H2020 SeaDataCloud call: emphasis on coastal data



Data: SOCIB HF radar in the Ibiza Channel

New product: currents

- → hypothetical measurement
- $\rightarrow \quad \text{ analyzed field}$

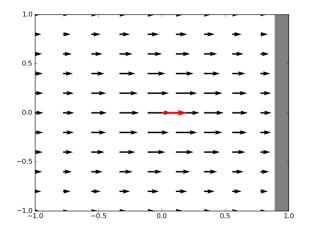
- Analysis of radial currents to derive total currents
- Observation operator links the radial currents of the different radar sites

Formulation: couple velocity components

Norm:
$$|\varphi|^2 = \int_{\Omega} (\alpha_2 \nabla \nabla \varphi : \nabla \nabla \varphi + \alpha_1 \nabla \varphi \cdot \nabla \varphi + \alpha_0 \varphi^2) d\Omega$$

Cost function:
$$J(\vec{u}) = |u|^2 + |v|^2 + \sum_{i=1}^{N} \frac{(\vec{u}_i \cdot \vec{p}_i - u_{r_i})^2}{\epsilon_i^2}$$

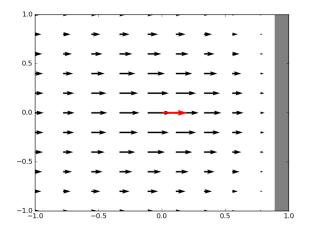
$$\vec{u} = (u, v)$$


 $\vec{p}_i =$ normalized vector pointing toward the correspond HF radar site of the *i*-th radial observation u_{ri}

Coastline as a boundary condition $(\vec{u} \cdot \vec{n} = 0)$

Cost function (OFF)

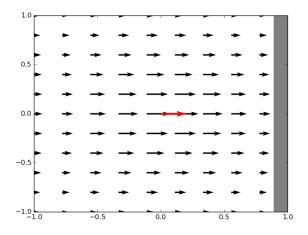
$$J_{bc}(\vec{u}) = \frac{1}{\epsilon_{bc}^2} \int_{\partial \Omega} (\vec{u} \cdot \vec{n})^2 ds$$



Coastline as a boundary condition $(\vec{u} \cdot \vec{n} = 0)$

Cost function (ON)

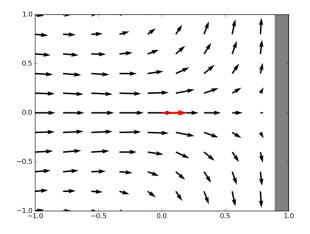
$$J_{\mathrm{b}c}(\vec{u}) = rac{1}{\epsilon_{\mathrm{b}c}^2} \int_{\partial\Omega} (\vec{u} \cdot \vec{n})^2 ds$$



Low horizontal divergence of currents $(\nabla \cdot \vec{n} = 0)$

Cost function (OFF)

$$J_{\mathsf{d}iv}(\vec{u}) = \frac{1}{\epsilon_{\mathsf{d}iv}^2} \int_{\Omega} (\vec{\nabla} \cdot \vec{u})^2 dx$$



Low horizontal divergence of currents $(\nabla \cdot \vec{n} = 0)$

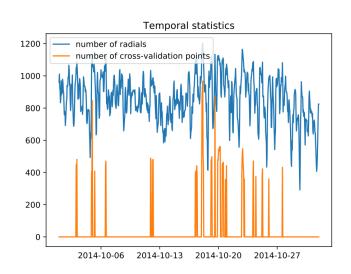
Cost function (ON)

$$J_{\mathsf{d}iv}(\vec{u}) = \frac{1}{\epsilon_{\mathsf{d}iv}^2} \int_{\Omega} (\vec{\nabla} \cdot \vec{u})^2 dx$$

3D analysis: longitude, latitude and time

- Include the data the hour before and after
- ► Temporal correlation length
- Coriolis force

Coriolis force and geostrophically balanced mean flow


$$\begin{array}{lcl} \frac{\partial u}{\partial t} & = & fv - g \frac{\partial \eta}{\partial x} \\ \frac{\partial v}{\partial t} & = & -fu - g \frac{\partial \eta}{\partial y} \end{array}$$

f = Coriolis frequency $\eta = sea surface elevation$

Cross validation

In 30 current maps with the best coverage, some data points are marked as missing (for both sites)

Test cases: more constrains (physics) in the interpola

Case	Description		
2D	classical 2D-analysis (longitude, latitude)		
2D_bc	as 2D, but with boundary conditions		
2D_iv	as 2D, but imposing small horizontal divergence		
3D	3D-analysis (longitude, latitude, time)		
3D_Coriolis	3D-analysis with the Coriolis force		
3D_Coriolis_geo	3D-analysis with the Coriolis force and the surface pressure gradient		

Skill score

$$\mathsf{S}(\mathsf{Case}) = 1 - \frac{\mathsf{MSE}(\mathsf{Case})}{\mathsf{MSE}(2D)}$$

- The 2D case is the base-line for computing the relative improvement
- ► MSE(C) is the mean square error (relative to the cross-validation dataset)
- ▶ If S = 0: reconstruction as "good/bad" as the base-line
- If S = 1: reconstruction matches perfectly the validation dataset.

Comparison: increased skill with more constrains

Case	RMS	Skill score	Optimal parameter(s)
2D	0.0652	0.000	$\epsilon^2 = 0.0001161$
2D_bc			$\epsilon^2 = 0.0001, \ \epsilon_{bc}^2 = 10$
2D_div	0.0650	0.005	$\epsilon^2 = 9.799 \text{e-}05, \ \epsilon_{div}^2 = 2.778 \text{e} + 08$
3D	0.0606		ϵ^2 =0.1219, lent=6904
3D_Coriolis	0.0547		$\epsilon^2 = 5.673 \text{e-}05, \ \epsilon_{Cor}^2 = 9.207 \text{e-}05$
3D_Coriolis_geo	0.0485	0.447	ϵ^2 =5.37e-05, ϵ_{Cor}^2 =5.65e-05, ratio=26.46

DIVA framework was extended to handle surface currents and able to handle observations when only one component of the velocity vector is measured.

- DIVA framework was extended to handle surface currents and able to handle observations when only one component of the velocity vector is measured.
- 2 D analyses were used as a base-line for different test cases.

- DIVA framework was extended to handle surface currents and able to handle observations when only one component of the velocity vector is measured.
- 2 D analyses were used as a base-line for different test cases.
- 3 Including boundary conditions and the constrain on small divergence did not improve the accuracy of the constructions.

- DIVA framework was extended to handle surface currents and able to handle observations when only one component of the velocity vector is measured.
- 2 D analyses were used as a base-line for different test cases.
- 3 Including boundary conditions and the constrain on small divergence did not improve the accuracy of the constructions.
- 4 Taking for every time instance the previous and the following radial maps into account (i.e. a 3D analysis) improves the skill score .

- DIVA framework was extended to handle surface currents and able to handle observations when only one component of the velocity vector is measured.
- 2 D analyses were used as a base-line for different test cases.
- 3 Including boundary conditions and the constrain on small divergence did not improve the accuracy of the constructions.
- 4 Taking for every time instance the previous and the following radial maps into account (i.e. a 3D analysis) improves the skill score .
- 5 Additional dynamical information improves the skill score.

- DIVA framework was extended to handle surface currents and able to handle observations when only one component of the velocity vector is measured.
- 2 D analyses were used as a base-line for different test cases.
- 3 Including boundary conditions and the constrain on small divergence did not improve the accuracy of the constructions.
- 4 Taking for every time instance the previous and the following radial maps into account (i.e. a 3D analysis) improves the skill score .
- 5 Additional dynamical information improves the skill score.
- 6 Dynamical information appears to be highly beneficial when analyzing surface currents.