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Abstract. Episodic memories are typically composed of perceptual information derived from the external 

environment and representations of internal states (e.g., one’s thoughts during prior episodes). To date, 

however, research has mostly focused on the remembrance of external stimuli, such that little is known 

about how internal mentation is represented within episodic memory. In the present fMRI study, we 

examined the neural correlates of these two components of episodic memories using a novel method of 

cuing memories from photographs taken during real-life events. We found that, compared to corresponding 

semantic memory tasks, memories for internal thoughts and external elements were associated with activity 

in brain areas supporting episodic recollection. Most importantly, however, the two kinds of memories also 

showed differential activation in large-scale brain networks: the remembrance of external elements was 

associated with greater activity in the dorsal attention network, whereas memories of internal thoughts 

mainly recruited default network areas. These findings shed new light on the representation of internal and 

external aspects of prior experience within episodic memory. The default network may contribute to the 

reinstatement of thoughts experienced during past events, whereas the dorsal attention network may support 

the allocation of attention to visuo-spatial features within episodic memory representations. 
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 Historically, research on episodic memory has mostly focused on the remembrance of stimuli from 

the external environment, such as lists of words or pictures (Baddeley et al. 2002; Tulving 2002). However, 

recent advances in the study of human cognition have shown that we spend a substantial amount of time 

and resources generating thoughts and images that are decoupled from sensory input (Andrews-Hanna, 

Smallwood, et al. 2014; Christoff et al. 2016; Smallwood and Schooler 2015), which may play important 

roles in planning, decision making, mood regulation, and creativity (Andrews-Hanna 2012; Beaty et al. 

2016). Being able to remember one’s own thoughts and ideas (e.g., possible solutions to daily life issues, 

evaluations of recently introduced individuals, personal interpretations of events) may critically contribute 

to adaptive cognitive and social functioning, yet little is currently known about memory for internal 

mentation. Most notably, commonalities and differences in the cognitive and neural mechanisms underlying 

the retrieval of inner thoughts versus stimuli from the external environment remain to be investigated in 

detail. 

 Memory for thoughts has been previously investigated in the context of reality monitoring 

judgments (i.e., as a means to determine whether a past event was real or imagined; Johnson 1988; Horton 

et al. 2007), but it has rarely been a topic of study in itself (but see Brewer 1988; Muhlert et al. 2010). 

Neuroimaging studies have revealed that the medial prefrontal cortex shows higher activity when retrieving 

internally generated versus externally derived source details during recognition memory tasks (for review, 

see Simons et al. 2017). Furthermore, it has been shown that memory vividness ratings for internal (i.e., 

thoughts and feelings) and external (i.e., perceptual) contextual details during word recognition correlate 

with different patterns of hippocampal connectivity (Ford and Kensinger 2016). Taken together, these 

studies suggest that memory for internal versus external aspects of past events is supported, at least in part, 

by distinct mechanisms. However, the conclusions that can be drawn from these studies are limited by their 

focus on memory for laboratory stimuli, which may be fundamentally different from memory for events in 

one’s life (Chen et al. 2017; McDermott et al. 2009; Roediger and McDermott 2013; but see Rissman et al. 

2016). 

Memory for real-life events relies on a distributed set of brain regions that include the Default 

Network (DN; Raichle et al. 2001) and fronto-parietal areas (Addis et al. 2004, 2012; Benoit and Schacter 

2015; Cabeza and St Jacques 2007; Kim 2012; McDermott et al. 2009; Spreng et al. 2009). The experience 

of remembering such events is typically composed of multiple components (e.g., sensory and contextual 

details, thoughts, emotions; Johnson et al. 1988; Rubin et al. 2003), and it is therefore likely that the 

memories produced in previous neuroimaging studies of real-world memory retrieval involved a mix of 

internal and external elements from prior experience (Andrews-Hanna, Saxe, et al. 2014). It remains an 

open question whether these two types of information rely on distinct regions within the brain network 

supporting episodic remembering.  

 Here we sought to address this question using a novel paradigm to elicit memories for external 

details versus internal thoughts occurring during real-life events. Participants were first asked to perform a 

30-minute walk on a university campus while wearing a lifelogging camera that continuously and 

automatically took pictures from the first-person perspective (Chow and Rissman 2017). They then 

immediately underwent an fMRI session in which they saw short sequences of pictures from their walk, in 

response to which they had to remember either associated elements from the external environment or 

internal thoughts that they experienced during the walk. Using these two task conditions, the first aim of 

this research was to identify brain regions that exhibit differential activity during the retrieval of internal 

versus external aspects of past events.  
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A second aim of the present study was to investigate whether these brain regions are specifically 

involved in remembering external versus internal details from specific past episodes or whether they are 

also engaged when processing corresponding (i.e., perceptual versus reflective) information in semantic 

memory. Recent meta-analyses have shown that the neural correlates of episodic and semantic memory 

tasks overlap substantially, particularly within the DN (Binder et al. 2009; Kim 2016). Yet, it remains 

unclear whether episodic and semantic memory share common neural substrates for both perceptual and 

reflective memory representations. To investigate this question, two additional tasks were included in this 

study, which involved the mental representation of visual scenes versus reflective thoughts that were 

decontextualized from any specific past event. More specifically, participants performed a scene 

construction task (Hassabis and Maguire 2007) in which they had to mentally visualize common daily life 

objects in their typical spatial context, and a conceptual reflection task in which they had to mentally 

generate definitions of abstract words. Taken together, the four tasks included in this study constituted a 2 

× 2 factorial design that allowed us to investigate commonalities and differences in the processing of 

perceptual versus reflective information in episodic and semantic memory. 

 We were particularly interested in examining the respective contribution of the default, dorsal 

attention, and frontoparietal control networks to the retrieval of internal thoughts and external elements 

from episodic memory. As noted above, the DN is consistently involved in remembering real-life events 

and research has shown that it comprises at least two subsystems that converge on two hub-like core 

regions—the posterior cingulate cortex and anterior medial prefrontal cortex (Andrews-Hanna et al. 2010; 

Andrews-Hanna, Smallwood, et al. 2014). The first subsystem is anchored in the dorsal part of the medial 

prefrontal cortex and is thought to play an important role in introspecting about mental states and in 

processing abstract (compared to perceptual) information (Christoff et al. 2016; Wang et al. 2010, 2013), 

whereas the second subsystem involves the medial temporal lobe and supports the retrieval and binding of 

episodic elements (Andrews-Hanna 2012; Andrews-Hanna, Saxe, et al. 2014). Based on this fractionation 

of the DN and previous studies of reality monitoring (Simons et al. 2017), we predicted that the retrieval of 

internal and external aspects of past events would both rely on DN regions but that memories for internal 

thoughts would recruit the medial prefrontal cortex and other regions of the dorsal medial subsystem (such 

as the lateral temporal cortex; Andrews-Hanna, Smallwood, et al. 2014) to a greater extent than memories 

for external elements.  

The second network of interest in this study was the Dorsal Attention Network (DAN), which 

supports the top-down control of visuo-spatial attention and thus plays an important role in processing 

stimuli from the external environment (Corbetta and Shulman 2002; Spreng et al. 2013). The DN and DAN 

often show anticorrelated activity, which has led to the view that they support opposite or competitive 

functions respectively corresponding to the processing of internal versus external information (e.g., Fox et 

al. 2005; Sestieri et al. 2010). However, this view has been challenged by recent studies showing that the 

DAN can be transiently activated during memory retrieval (in the absence of external cues), and shows an 

increased functional connectivity with the core midline regions of the DN in this condition (Kragel and 

Polyn 2015; see also Dixon et al. 2017). While this research reveals a role of the DAN in episodic memory 

retrieval, its precise function remains unclear. Here, we investigated the possibility that the DAN may not 

only support the processing of stimuli from the immediate external environment (Corbetta and Shulman 

2002), but may also play a role in processing internally-generated information referring to aspects of the 

external world, such as the sensory-perceptual components of episodic memories. Support for this proposal 

comes from a source memory study showing that remembering prior perceptual versus conceptual 



5 

 

judgements about visual stimuli recruits DAN areas (Dobbins and Wagner 2005). More generally, studies 

on mental imagery have shown that some DAN areas (including the precentral sulcus, superior parietal 

lobule, and visual temporal areas) are not only involved in visual perception but also in visual mental 

imagery (Ganis et al. 2004; Pearson et al. 2015). To further test the hypothesized role of the DAN in the 

processing of perceptual memory representations, we examined whether the DAN exhibits increased 

activation when retrieving perceptual compared to reflective information from episodic and semantic 

memory.  

 Finally, besides the DN and DAN, we were also interested in the contribution of the frontoparietal 

control network (FPCN, Vincent et al. 2008; Spreng et al. 2010), which is also commonly engaged during 

episodic memory retrieval (Benoit and Schacter 2015; Cabeza and St Jacques 2007; Kim 2012; McDermott 

et al. 2009). The FPCN is thought to support effortful control processes to meet task goals, and may play a 

role in integrating information from the DAN and DN (Gao and Lin 2012; Spreng et al. 2010; Vincent et 

al. 2008). During episodic remembering, this network might support the strategic retrieval, monitoring, and 

recombination of episodic details to form an integrated and coherent representation of the remembered 

event (Benoit and Schacter 2015; St Jacques and Cabeza 2012; St Jacques and De Brigard 2015). A previous 

fMRI study (Dobbins and Wagner 2005) found that retrieving internal source information mainly recruited 

left FPCN areas, whereas retrieving external source information was associated with right FPCN activity. 

These results suggest that the retrieval of internal thoughts versus external elements might be associated 

with distinct activations within the FPCN. 

 In summary, the aims of the present study were twofold. Our first goal was to investigate the neural 

correlates of episodic memory for internal thoughts versus elements from the external environment 

experienced during real-life events. Second, we aimed at determining commonalities and differences in the 

processing of perceptual versus reflective information in episodic and semantic memory. To do so, we used 

four task conditions that constituted a 2 (perceptual versus reflective) × 2 (episodic versus semantic) 

factorial design and focused our analyses on three major brain networks commonly involved in memory 

retrieval and externally versus internally directed attention: the DN, DAN, and FPCN. 

 

Materials and Methods 

Participants 

Participants were 27 right-handed young adults (20 women, mean age = 25.11 years, SD = 4.93, 

range = 19-34 years). All were students or employees at the University of Liège and were familiar with the 

university campus. None of the participants reported a current use of psychoactive medication or a history 

of neurological or psychiatric disorder. Six additional participants were tested but were excluded from the 

analyses because of excessive head movement during image acquisition (one participant) or task 

noncompliance either during the pre-scan walk (one participant) or in the scanner (four participants1). All 

participants gave their written informed consent to take part in the study, which was approved by the ethics 

committee of the Medical School of the University of Liège and was performed in accordance with the 

ethical standards described in the Declaration of Helsinki (1964).  

                                                           
1 These four participants completed the two task runs, but the debriefing revealed that they either (1) did not press the response key to indicate 

that they had generated the appropriate mental content, (2) recalled memories of specific past events in the scene construction condition, (3) 

did not specifically focus on external elements or internal thoughts during the recall conditions, or (4) felt physically uneasy during the second 

run and could not properly perform the task. 
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Task Description 

Pre-scan Walk with Lifelogging Device 

Immediately before scanning, participants were instructed to perform a walk on the campus of the 

University of Liège while wearing an Autographer (https://en.wikipedia.org/wiki/Autographer). The 

Autographer is a lifelogging device consisting of a small wearable camera that automatically, continuously, 

and silently takes pictures through a 136° fish-eye lens according to an algorithm based on several electronic 

sensors (e.g, color, temperature, accelerometer, magnetometer, etc.). The main advantage of this device is 

that it provides a dynamic flow of pictures taken from the first-person perspective without disrupting 

ongoing experience by actively taking photographs. A growing number of neuroimaging and behavioral 

studies have shown that the images taken by this kind of device can be used as individually personalized 

retrieval cues that are particularly effective in eliciting vivid episodic memories (Chow and Rissman 2017; 

St Jacques and De Brigard 2015; St Jacques et al. 2013).  

The walk consisted in going to several different buildings on the university campus to perform 

actions chosen to simulate activities that college students perform in their daily life. More specifically, 

participants had to perform four actions at different locations on the campus in the following order: (a) to 

post a letter in a mailbox, (b) to buy a local newspaper at an indoor newsstand, (c) to buy a drink at a 

cafeteria, and (d) to look on the wall of an amphitheater to check the title of a lecture. Following these 

actions, the participants were asked (e) to come back to the testing room for further instructions regarding 

the next parts of the study (see Fig. 1a). Participants could take the route they wanted to go from building 

to building between each action, but they were asked not to perform any additional action during the walk 

(e.g., listening to music, using their smartphones, discussing with acquaintances, etc.). Otherwise, 

participants were asked to behave normally (i.e., as they would in their daily life) and they were given a 

sealed envelope for the first action, as well as five euros to buy the newspaper and the drink. On average, 

the entire walk lasted 34.11 minutes (SD = 4.43). Pictures were taken by the Autographer on average every 

6.69 seconds (SD = 0.30); the mean total number of pictures taken per walk was 307.30 (SD = 45.40). 

Participants were informed that pictures taken during their walk would be presented in the fMRI session 

but, importantly, no mention was made of the memory tasks. As a cover story, participants were told that 

they will have to perform in the scanner aesthetic judgments on the pictures. 

fMRI Tasks 

Immediately following their walk, participants underwent an fMRI session involving four different 

conditions (see Fig. 1b). The task comprised 24 trials for each condition, which were presented in two runs 

of 48 trials (12 trials per condition in each run). The order of presentation of the trials was randomized with 

the constraint that two trials of the same condition were not presented successively and were not more than 

seven trials apart.  

Episodic memory tasks. In the two episodic memory conditions (hereafter referred to as the 

external element and internal thought conditions), participants were asked to remember either elements 

from the external environment or internal thoughts that they experienced during the walk. Each trial began 

with a one-second fixation cross followed by the presentation of a series of five consecutive pictures taken 

during the pre-scan walk of the participant (800 ms per pictures). Each sequence of pictures was determined 

randomly from the pool of pictures taken during the walk, with the following constraints: (a) selected 

pictures were displayed only once and (b) two consecutive sequences of pictures were not associated with 
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the same condition (e.g., if pictures 1 to 5 were used for the external element condition, then picture 6 to 10 

were used for the internal thought condition). This latter constraint was made in order to maximize the 

similarity of the cuing sequences between the two conditions without presenting the same pictures several 

times across trials. In total, 240 pictures were presented (24 trials*5 pictures per condition). When more 

than 240 pictures were taken during the walk, the presented sequences of pictures were selected such that 

they covered the entire route. Each set of selected pictures was reviewed by the experimenter before 

scanning to ensure the absence of excessive blurring or lighting issues, so that the depicted segments of the 

walk were easily recognizable. 

 

Figure 1. Panel A. illustrates the walk performed on the campus of the University of Liège (Belgium) prior entering the scanner. 

Participants had to (1) leave the testing room, (2) put a letter in a mailbox, (3) buy a newspaper at an indoor newsstand, (4) buy 

a drink at a cafeteria, and (5) look on the wall of an amphitheater to check the title of a lecture. Panel B. illustrates the structure 

of trials in the episodic (above the timeline) and semantic (below the timeline) memory conditions. In the scanner, participants 



8 

 

were first presented with sequences of five consecutive pictures from their walk (episodic conditions) or five scrambled pictures 

(semantic conditions). In the two episodic memory conditions, the pictures were followed by a screen asking participants to 

remember either an internal thought that they experienced during the walk (internal thought condition) or an element from the 

external environment that was not displayed in detail in the preceding sequence of pictures (external element condition). In the 

semantic memory conditions, participants were asked to either mentally construct a visual scene associated with an object (scene 

construction condition) or to reflect on the meaning of semantically associated words (conceptual reflection condition). For each 

condition, participants were asked to press a response key once they had retrieved the required information, and then to focus on 

their mental representation until the disappearance of the screen (which was presented for 16 seconds). Finally, each trial ended 

with the successive presentation of two Likert scales asking participants to rate the kind of mental representation that they 

experienced. fMRI analyses focused on the time interval between the key press and the end of the 16 seconds, thus corresponding 

to the main phase of the trials. 

 

During the presentation of each sequence of pictures, participants were asked to focus on the images 

and to try to remember the corresponding moment of the walk. After the last of the five pictures, a second 

fixation cross was shown (with a variable duration ranging between one and three seconds), followed by 

the presentation of written instructions asking participants to remember either an internal thought or an 

element from the external environment. This retrieval phase lasted 16 seconds during which participants 

were first instructed to press a response key as soon as they retrieved the requested information, and then 

to remember this thought or external element in as much detail as possible until the end of the 16 seconds. 

For the external element condition, participants were told that their memory could be of anything that they 

encountered during the walk (e.g., people, objects, events, places, etc.) but it had to be something that was 

not displayed in detail in the immediately preceding sequence of pictures. This latter point was specified to 

ensure that the external element and internal thought conditions both involved the retrieval of information 

that is not directly available in the presented pictures. For the internal thought condition, participants were 

told that they could remember any thought they had experienced during the walk, be it directly related to 

the walk itself (e.g., thoughts about the actions they had to perform) or not (e.g., thoughts about personal 

concerns). Participants were also explained that, depending on the current trial condition, they should try to 

focus their attention only on external elements or on internal thoughts. Finally, the instructions specified 

that participants should retrieve a different external element or internal thought for each trial.  

Following the retrieval phase, participants were shown a one-second fixation cross followed by the 

successive presentation of two four-point Likert scales, the purpose of which was to obtain a subjective 

assessment of the extent to which each retrieved memory involved elements from the external environment 

(first scale) and internal thoughts (second scale). The response options were identical for the two scales and 

ranged from 1 = ‘not at all’ to 4 ‘a lot.’ Responses were self-paced with a maximum of five seconds per 

scale. 

Semantic memory tasks. The two semantic conditions were unrelated to the pre-scan walk and 

required either to imagine a visual scene (scene construction condition) or to reflect upon the meaning of 

words (conceptual reflection condition, see Fig. 1b). The timing of these two conditions was identical to 

the two episodic memory conditions. At the beginning of each trial, participants were presented with a 

sequence of scrambled pictures (the sequences of pictures were the same as in the episodic memory 

conditions, except that each image was cut into 3072 squares of 14 by 14 pixels that were then randomly 

rearranged within each frame). During this phase, participants were simply told to look the sequence of 

images. Next, written instructions (i.e. “scene imagination” or “meaning reflection”) were presented on the 

screen for 16 seconds along with either an object name for the scene construction condition or an abstract 

word for the conceptual reflection condition. Twenty-four French words were selected for each condition, 

based on the norms of Desrochers and Thompson (2009). The two set of words differed in their degree of 
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imageability [t(46) = 50.91; p < .001; M = 6.60, SD = 0.31 for scene construction; M = 2.61, SD = 0.23 for 

conceptual reflection] but not in terms of their subjective frequency [t(46) = 0.20; p = .84; M = 4.71, SD = 

0.54 for scene construction; M = 4.68, SD = 0.48 for conceptual reflection] or number of letters [t(46) = -

0.24; p = .81; M = 7.58, SD = 1.82 for scene construction; M = 7.71, SD = 1.83 for conceptual reflection]. 

The full list of words is presented in Table S1. 

In the scene construction condition, participants were asked to press the response key as soon as 

they found a place commonly associated with the object named on the screen, and then to imagine a scene 

involving the place and object in as much detail as possible until the end of the 16 seconds. It was specified 

that the imagined scene should not refer to personal memories (e.g., in response to the word “parasol”, one 

could imagine a typical beach with a parasol and other features, but not remember a specific past experience 

involving this place and object). In the conceptual reflection condition, participants were asked to press the 

response key as soon as they found a word that was semantically associated with the word on the screen, 

and then to reflect on the meaning of the two words by mentally defining each of them (i.e., as if they had 

to explain their meaning to somebody else) until the end of the 16 seconds. In both conditions, trials ended 

by the successive presentation of two four-point Likert scales assessing to what extent each trial involved 

visual images (first scale) and inner speech (second scale). The response options and duration of the two 

scales were identical to those used in the episodic memory conditions. Participants kept their eyes open for 

the whole duration of each trial in each of the four conditions. 

 

Post-scan Debriefing  

 Immediately after the fMRI session, the participants were shown the sequences of pictures for 20 of 

the trials (five randomly chosen per conditions) that they performed in the fMRI session. For each trial, 

they were asked to describe the external element, internal thought, place, or associated word that they 

generated while lying in the scanner. This was used as a manipulation check to determine whether the 

participants correctly performed the four tasks in the scanner. Participants were also asked to rate on seven-

point Likert scales (a) to what extent they had guessed during the walk that they would receive a memory 

task in the scanner (ranging from 1 = ‘not at all’ to 7 ‘completely’), (b) to what extent the scenes they 

imagined in the scene imagination condition were identical to memories of specific past events (ranging 

from 1 = ‘not at all’ to 7 ‘completely’), and (c) the subjective difficulty of each of the four conditions 

(ranging from 1 = ‘very easy’ to 7 ‘very difficult’). In addition to the Likert scales, participants were asked 

to estimate the number of times they remembered the same external element or internal thought in different 

trials, and the number of times they remembered something that was part of the pictures (rather than an 

additional element) in the external element condition. 

 

fMRI Data Acquisition  

Data were acquired on a whole-body 3 Tesla scanner (Magnetom Prisma, Siemens Medical 

Solutions, Erlangen, Germany) operated with a 20-channel receiver head coil and using a T2*-weighted 

echo-planar imaging (EPI) sequence (TR = 2260 ms, TE = 30 ms, FA 90°, matrix size 72 × 72 × 36, voxel 

size 3 × 3 × 3 mm³). Thirty-six 3 mm thick transverse slices (FOV 216 × 216 mm²) were acquired, with a 

distance factor of 25% and interleaved slice ordering, covering the whole brain. Around 590 functional 

volumes were obtained for each run of the task. The first five volumes were discarded to account for T1 

saturation effects. After the EPI acquisitions for the two runs of the task, field maps were generated from a 
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double echo gradient-recalled sequence (TR = 634 ms, TE = 10 and 12.46 ms, FoV = 192 × 192 mm², 64 × 

64 matrix, 40 transverse slices with 3 mm thickness and 25% gap, flip angle = 90°, bandwidth = 260 

Hz/pixel) and used to correct echo-planar images for geometric distortion due to field inhomogeneities. A 

structural MR scan was obtained between the two runs of the task [T1-weighted 3D magnetization-prepared 

rapid acquisition gradient echo (MP-RAGE) sequence, TR = 1900 ms, TE = 2.19 ms, FOV 256 × 240 mm², 

matrix size 256 × 240 × 224, voxel size 1 × 1 × 1 mm]. Head movement was minimized by restraining the 

subject’s head using a vacuum cushion. Stimuli were displayed on a screen positioned at the rear of the 

scanner, which the subject could comfortably see through a mirror mounted on the standard head coil.  

 

fMRI Data Analyses 

Data were preprocessed and analyzed using SPM12 software (Wellcome Department of Imaging 

Neuroscience, http://www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB (Mathworks, Inc.). EPI time 

series were corrected for motion and distortion with “Realign and Unwarp” (Andersson et al. 2001) using 

the generated field map together with the FieldMap toolbox (Hutton et al. 2002). A mean realigned 

functional image was then calculated by averaging all the realigned and unwarped functional scans, and the 

structural T1-image was coregistered to this mean functional image (rigid body transformation optimized 

to maximize the normalized mutual information between the two images). The mapping from subject to 

MNI space was estimated from the structural image with the “unified segmentation” approach (Ashburner 

and Friston 2005). The warping parameters were then separately applied to the functional and structural 

images to produce normalized images of resolution 2 × 2 × 2 mm³ and 1 × 1 × 1 mm³, respectively. Finally, 

the warped functional images were spatially smoothed with a Gaussian kernel of 8-mm full-width at half 

maximum.  

For each participant, BOLD responses were first modeled at each voxel, using a general linear model 

(GLM). The main phase of each trial was modeled separately for each condition (i.e., external element, 

internal thought, scene construction, and conceptual reflection) as epoch-related responses (beginning at 

the key press and ending at the disappearance of the screen after 16 seconds) and convolved with the 

canonical hemodynamic response function to create the regressors of interest. Trials for which participants 

did not press the response key or pressed 1 (‘not at all’) to the Likert scale assessing the required mental 

content were modelled in a separate regressor of no interest. The sequences of pictures were also modelled 

as epoch-related responses with two regressors, one for the sequences of scrambled pictures preceding the 

two semantic memory conditions and one for the sequences of normal pictures preceding the two episodic 

memory conditions. The two Likert scales ending each trial were also modelled as epoch-related responses 

with a single regressor across all conditions. Finally, we also modelled the motor responses made during 

the task (i.e., the key press made during the retrieval phase as well as the two responses made to the Likert 

scales of each trial) as an event-related response, again with a single regressor across all conditions. The 

design matrix also included the realignment parameters to account for any residual movement-related effect. 

The canonical hemodynamic response function was used and a high-pass filter was implemented using a 

cutoff period of 128 seconds to remove the low-frequency drifts from the time series. Serial autocorrelations 

were estimated with a restricted maximum likelihood algorithm with an autoregressive model of order 1 (+ 

white noise). 

Based on our 2 × 2 factorial design, a series of linear contrasts were computed to identify the brain 

regions involved in the processing of perceptual versus reflective representations in episodic and semantic 



11 

 

memory. We first investigated brain regions showing a main effect for perceptual versus reflective 

representations (External Element and Scene construction > Internal Thought and Conceptual Reflection, 

and vice versa) and regions showing a main effect for episodic versus semantic memory retrieval (External 

Element and Internal Thought > Scene Construction and Conceptual Reflection, and vice versa). Next, the 

interaction terms were examined to determine whether the processing of reflective versus perceptual 

information is associated with specific neural correlates for episodic versus semantic memory: [(Internal 

Thought > External Element) > (Conceptual Reflection > Scene Construction)] and [(External Element > 

Internal thought) > (Scene Construction > Conceptual Reflection)]. Because the first of these interaction 

terms was associated with significant brain activations (see the Results section), we then computed 

individual contrasts to identify brain areas associated with reflective versus perceptual representations 

within episodic (Internal Thought > External Element) and semantic (Conceptual Reflection > Scene 

Construction) memory. On the other hand, given that the second interaction term was not associated with 

significant brain activations, we performed a null conjunction analysis to further determine the neural 

overlap between the two perceptual memory conditions: [(External Element > Internal thought) ∩ (Scene 

Construction > Conceptual Reflection)].  

The contrasts of interest were first computed for each participant and were then entered in random-

effects one-sample t-tests. For all contrasts, we report activations that were statistically significant using a 

threshold of p < .05, corrected for multiple comparisons (familywise error, FWE) using Gaussian random 

field theory at the voxel level over masks of the three networks of interest (DN, DAN, and FPCN), as 

defined by the seven network parcellation of Yeo et al. (2011). For completeness, we also report additional 

clusters of brain activations whose peak voxels were located outside the three masks and that survived a 

threshold of p < .05, corrected for multiple comparisons (FWE) at the voxel level over the whole brain. 

Only clusters with a size of k > 20 voxels are reported. 

 

RESULTS 

Behavioral results 

The behavioral results showed that participants successfully generated the requested information for 

nearly all trials (around 98%, on average, see Table S2), with no difference between conditions [F(3, 78) = 

0.52; p = .67; η�
�  = .02]. Participants’ ratings of their experience following each trial in the episodic memory 

conditions confirmed that they retrieved elements from the external environment to a greater extent in the 

external element condition than in the internal thought condition [t(26) = 18.27; p < .001; Cohen’s d = 3.58] 

and, conversely, they retrieved more internal thoughts in the internal thought condition than in the external 

element condition [t(26) = 24.30; p < .001; Cohen’s d = 4.77]. Responses for the semantic memory 

conditions also followed the expected pattern, with participants reporting more visual imagery for scene 

construction than conceptual reflection [t(26) = 29.92; p < .001; Cohen’s d = 5.87] and more inner speech 

for conceptual reflection than scene construction [t(26) = 29.21; p < .001; Cohen’s d = 5.73] (see the 

Supplementary Material for more detailed behavioral results).  

fMRI results 

Perceptual versus reflective representations 

We first examined the main effect of the nature of retrieved information (perceptual versus reflective) to 

identify the brain regions involved in the processing of perceptual elements versus reflective thoughts, 

independently of the kind of memory representations under consideration (episodic or semantic).  
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Figure 2. Brain regions activated in the contrasts pertaining to the 2 Representation (perceptual versus reflective) × 2 Memory (episodic 

versus semantic) factorial design. Panels A. and B. respectively show the main effects of representation and memory type. Panel C. shows the 

interaction effects. For all three panels orange/cyan colors correspond to the brain activations that were significant at p < .05 (FWE corrected 

for multiple comparisons) over the whole brain and red/blue colors correspond to the additional brain activations that were significant at p < 

.05 (FWE corrected for multiple comparisons over masks of the networks of interest). Activations are displayed on an inflated surface map 

(population average landmark surface: PALS-B12) using CARET software (Van Essen 2005). 

 

Results showed that the mental representation of perceptual elements (External Elements and Scene 

construction > Internal Thoughts and Conceptual Reflection) was mainly associated with increased 

activation in bilateral DAN and right FPCN areas, including the bilateral frontal eye fields, superior and 

inferior parietal lobule, temporal motion complex, as well as the right inferior precentral sulcus for the 

DAN, and the right rostral and dorsolateral prefrontal cortex as well as the anterior inferior parietal cortex 
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for the FPCN (see Fig. 2a, Table S3). Some activated voxels were located in DN areas (mostly in the lateral 

prefrontal cortex, posterior inferior parietal cortex, and midline parietal areas) but an examination of Fig. 

2a shows that these voxels belonged to clusters that were mainly located in the DAN or FPCN and slightly 

extended into DN areas. To get a quantitative estimation of the extent of brain activations in each of the 

three networks, we computed the number of voxels activated in each network relative to the total number 

of voxels comprised in each corresponding mask. This analysis showed that the representation of perceptual 

elements was associated with an activation of 57% of the total number of voxels within the DAN, 28% of 

the total number of voxels within the FCPN, and only 4% of the total number of voxels within the DN. 

Outside of these three networks, other notable clusters of activation were found in the bilateral posterior 

parahippocampal cortex.  

The reverse contrast (Internal Thoughts and Conceptual Reflection > External Elements and Scene 

construction) revealed some clusters of activation in DN areas, mostly in the left lateral temporal cortex and 

left inferior frontal gyrus, but these accounted for only 6% of the total number of voxels in the DN mask 

(see Fig. 2a, Table S4). Almost no voxels were activated in the DAN (0.03%) or FPCN (0.13%). Outside 

of the three networks of interest, activity was detected in the bilateral occipital cortex and right cerebellum. 

Episodic versus semantic memory retrieval 

Next, we examined the brain regions that exhibited differential activity for episodic versus semantic 

memory retrieval, independently of the reflective versus perceptual nature of represented information (see 

Fig. 2b, Table S5). First, we found that the episodic memory conditions were associated with increased 

activation in posterior DN regions, with the largest clusters of activity being located in the bilateral posterior 

inferior parietal lobule and posterior cingulate cortex/precuneus. Smaller clusters were also found in the 

lateral temporal cortex, parahippocampal cortex, and prefrontal cortex. In total, 29% of DN voxels were 

activated in this contrast. Some clusters of activation were also located in the FPCN (accounting for 12% 

of FPCN voxels), including the right lateral prefrontal and parietal cortices, as well as the precuneus. 

Finally, some activity was also found in posterior areas of the DAN (accounting for a total of 10% of DAN 

voxels), but it mostly consisted of DN and FPCN clusters that extended to the DAN. Outside the three 

masks, additional activity was also found in the posterior hippocampus and parahippocampal areas, 

bilaterally. 

The only region of the DN showing higher activation during semantic compared to episodic memory 

tasks was the left inferior frontal gyrus (2% of DN voxels). Other clusters of activation were located in the 

FPCN, more specifically in the left inferior frontal gyrus and precentral sulcus (4% of FPCN voxels). 

Finally, activations in the DAN were also detected, particularly in the left posterior inferior temporal gyrus 

extending to occipital areas, the left precentral sulcus, and the left lateral parietal cortex (13% of DAN 

voxels). For this contrast, substantial activation was found outside the three networks of interest, with 

clusters of activation being located in the bilateral occipital cortex, supramarginal gyrus, inferior frontal 

gyrus, precentral and postcentral sulci, and cerebellum (see Fig. 2b, Table S6). 

Common and differential activity for reflective versus perceptual representations in episodic and 
semantic memory 

As expected, the preceding analyses indicated that the DAN and right FPCN were activated when 

mentally representing aspects of the external environment. On the other hand, the main effects showed only 

a modest activation of the DN when representing internal thoughts, with no significant activation in core 

DN regions. To investigate the possibility that the contribution of DN areas to reflective representations 
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may depend on the kind of memory involved (i.e., episodic versus semantic), we examined brain regions 

that were associated with the following interaction term: [(Internal Thought > External Element) > 

(Conceptual Reflection > Scene Construction)] (see Fig. 2c, Table S7). This revealed large clusters of 

activation in the DN, especially in its core regions (medial prefrontal and posterior cingulate cortices) and 

in the bilateral posterior inferior parietal lobules and lateral temporal cortex. In total, 42% of DN voxels 

were activated in this contrast. This interaction term was also associated with a small cluster of activation 

in the FPCN, more specifically in the precuneus (1% of FPCN voxels), and some activations in the DAN 

were also detected (representing 6% of total DAN voxels), which were mostly located ventrally to the 

posterior inferior parietal lobules and corresponded to extensions of DN clusters. Outside the three masks, 

substantial activity was also found in the bilateral medial temporal lobe, including the 

hippocampus/parahippocampal gyrus and amygdala. 

 

Figure 3 Panel A. illustrates the brain regions showing common and specific activation when representing reflective versus perceptual 

information in episodic and semantic memory. Panel B. illustrates the brain regions showing common and specific activation when representing 

perceptual versus reflective information in episodic and semantic memory. Both panels are displayed at p < .05 (corrected for multiple 

comparisons over masks of the networks of interest) on an inflated surface map (population average landmark surface: PALS-B12) using 

CARET software (Van Essen 2005). 

 

Single contrasts performed for each type of memory retrieval confirmed that episodic memory for 

reflective versus perceptual information was associated with DN activations, more specifically in the medial 

prefrontal cortex, bilateral temporal cortex, left temporal pole, and left inferior frontal gyrus (Fig. 3a, Table 

S8). The corresponding contrast for semantic memory (Conceptual Reflection > Scene Construction) 

revealed DN activity in the left dorsolateral prefrontal cortex, inferior frontal gyrus, lateral temporal cortex, 
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and supplemental motor area, but not in the medial prefrontal cortex. A null conjunction analysis revealed 

that these two contrasts overlapped only in the posterior middle/superior temporal gyrus (MNI coordinates: 

-50, -38, 4; cluster size k = 107; t = 6.24). 

The other interaction term [(External Element > Internal thought) > (Scene Construction > 

Conceptual Reflection)] did not reveal substantial activation in either of the three networks of interest (see 

Fig. 2c, Table S9), suggesting that the processing of perceptual information in episodic and semantic 

memory involves largely similar brain areas. To further determine the extent of overlapping activity when 

representing perceptual (versus reflective) information in episodic and sematic memory, we computed a 

null conjunction analysis: [(External Element > Internal thought) ∩ (Scene Construction > Conceptual 

Reflection)]. This analysis revealed clusters of overlapping activity in the DAN (see Fig. 3b, Table S10), 

more specifically in the bilateral frontal eye fields, dorsal precuneus, superior and anterior inferior parietal 

lobule, temporal motion complex, and right precentral sulcus. In addition, overlapping activity was found 

in the right lateral prefrontal cortex and anterior inferior parietal lobule from the FPCN. No overlapping 

activity was found in the DN. The complete sets of regions activated in each of these two contrasts are 

presented in Table S11 and S12. 

In summary, the above analyses show that the DAN and right FPCN are more activated when 

processing perceptual compared to reflective representations in both episodic and semantic memory. On 

the other hand, the recruitment of core DN areas (and in particular the medial prefrontal cortex) when 

processing reflective thoughts seems specific to episodic remembering. Additional ROI analyses confirmed 

these patterns of activation in the three networks across the four conditions and further demonstrated that 

the level of medial prefrontal and overall DN activity was highest during the episodic remembering of 

internal thoughts (see Supplemental Material).  

DISCUSSION 

The main goal of the present study was to investigate the neural correlates of the retrieval of internal 

thoughts and elements from the external environment experienced during real-life events. Our results 

showed that remembering these external and internal aspects of prior experience activated DN and FPCN 

regions that have been previously associated with episodic recollection (Addis et al. 2012; Benoit and 

Schacter 2015; Kim 2012; Moscovitch et al. 2016; Rugg and Vilberg 2013; Spreng et al. 2009). Episodic 

remembering was associated with particularly marked activity in posterior regions of the DN, which might 

support the retrieval and integration of episodic details to form coherent representations of past events 

(Addis et al. 2004; Gilmore et al. 2017; Martinelli et al. 2013). More importantly, however, episodic 

remembering was also associated with distinct activation profiles depending on the nature of the retrieved 

information: remembering external elements relied to a greater extent on the bilateral DAN and right FPCN, 

whereas memories for internal thoughts were associated with higher activity in some DN regions, notably 

the medial prefrontal and lateral temporal cortices. Our second aim was to determine whether these brain 

regions are specifically involved in remembering external versus internal elements of past episodes or 

whether they are also engaged when processing perceptual versus reflective information in semantic 

memory. We found that the DAN and FPCN were engaged when representing perceptual information in 

both episodic and semantic memory. On the other hand, the recruitment of some DN areas (particularly the 

medial prefrontal cortex) for reflective representations was specific to episodic memory. 

Previous neuroimaging studies have shown that remembering real-life events recruits an extended 

brain network mostly comprising DN and fronto-parietal areas (Addis et al. 2004, 2012; Benoit and Schacter 
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2015; Cabeza and St Jacques 2007; Kim 2012; McDermott et al. 2009; Spreng et al. 2009). This widespread 

brain activity suggests that memory for complex, real-life events involves the retrieval and binding of 

various types of information that were processed at the time of encoding, including visuo-spatial 

representations of the environment initially gathered through perceptual input and self-generated thoughts 

that were experienced during the remembered events (Andrews-Hanna, Saxe, et al. 2014). Little is known, 

however, about how self-generated thoughts are processed within episodic memory. Here we showed that 

remembering such thoughts involves specific sections of the DN: the medial prefrontal cortex and the dorsal 

medial subsystem (including the temporal pole, lateral temporal cortex, and dorsal medial prefrontal 

cortex). Activity was particularly prominent in the medial prefrontal cortex, in line with previous studies 

showing activation of this region when remembering internal mentation in the context of laboratory memory 

tasks, such as previous cognitive operations performed on task stimuli (Simons et al. 2005, 2017) or source 

information about previously imagined stimuli (Turner et al. 2008).  

The medial prefrontal cortex and dorsal medial subsystem of the DN have been associated with 

reflective and introspective processes (Andrews-Hanna et al. 2010; Andrews-Hanna, Smallwood, et al. 

2014) and are among the key areas supporting the formation of self-generated thoughts (Christoff et al. 

2016; Fox et al. 2015; Stawarczyk and D’Argembeau 2015; Stawarczyk et al. 2011). The activation of these 

regions when remembering internal thoughts may reflect the cortical reinstatement of the brain activity 

involved in the initial formation of these thoughts during prior episodes. It is now well established that the 

brain regions supporting the encoding of external information in episodic memory are partially reactivated 

when that information is later remembered, suggesting that the process of remembering an episode involves 

returning to the brain state that was present during that particular episode (Danker and Anderson 2010). 

This reinstatement process has previously been demonstrated in sensory and temporal areas for the retrieval 

of various aspects of external stimuli (e.g., contextual associations; Danker and Anderson 2010; Gordon et 

al. 2014; Wheeler et al. 2000). Our results suggest that a similar replay of neural activity occurs in some 

DN areas when remembering internal thoughts. Studies using techniques such as multi-voxel pattern 

analyses could be conducted to further test this hypothesis, and to investigate whether the reinstatement of 

particular patterns of brain activity is involved in the remembrance of various forms of internal mentation 

such as, for instance, episodic future thoughts (Schacter et al. 2012; Szpunar 2010; Szpunar et al. 2014), 

creative ideas (Beaty et al. 2016; Ellamil et al. 2012), and counterfactual thoughts (Schacter et al. 2015; 

Van Hoeck et al. 2013).  

While our findings suggest that specific regions of the DN support the retrieval of inner thoughts, 

the precise processing operations implemented in these regions remain to be determined. In this respect, the 

role of the medial prefrontal cortex deserves further discussion. Possible explanations of the observed 

activity include that the medial prefrontal cortex represents records of cognitive operations involved in self-

generated thoughts (Simons et al., 2017), mediates self-reflection processes (Murray et al. 2012; Northoff 

et al. 2006; van der Meer et al. 2010) or mentalizing (Spreng et al. 2009; Van Overwalle 2009), or represents 

the subjective value of remembered contents (D’Argembeau 2013; Lin et al. 2016). Another possibility is 

that the observed medial prefrontal activity reflects the influence of pre-existing knowledge structures, such 

as personal goals and schemas, on memory retrieval (Gilboa and Marlatte 2017; Stawarczyk and 

D’Argembeau 2015; van Kesteren et al. 2012), which may contribute to remembering internal aspects of 

prior experience. The role of the medial prefrontal cortex in schema processing might also explain the 

intermediate level of medial prefrontal activity that was observed during scene construction in the present 

study (i.e., medial prefrontal activity in the scene construction condition was lower than in the internal 
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thought condition, but higher than in the external element condition; see Supplemental Material). Indeed, it 

is likely that in the absence of a specific past event of reference, the scenes that participants mentally 

constructed relied to a large extent on schematized knowledge about the imagined places and objects, 

whereas memories for external elements of the walk depended more on episodic details processed in the 

medial temporal lobes and posterior regions of the DN (Bonnici et al. 2013; Bonnici and Maguire 2017; 

Gilmore et al. 2017).  

Our finding that the medial prefrontal cortex showed increased activation when processing reflective 

versus perceptual representations in episodic but not semantic memory might also be related to differences 

in the personal relevance of represented contents in the two memory conditions. Indeed, in the episodic 

memory condition, remembered mentation mainly referred to personal reflections on environmental stimuli 

(46% of thoughts) or personal thoughts that were unrelated to the walk (18% of thoughts; see 

Supplementary Material), whereas the corresponding semantic memory condition required participants to 

process non-personal conceptual information (i.e., the meaning of abstract words). In future studies, it 

would thus be interesting to compare the episodic retrieval of inner thoughts with tasks that involve the 

processing of semantic representations that are more personally relevant (Renoult et al. 2012), such as 

personality trait judgments (Kelley et al. 2002) or theory of mind and other social cognition tasks (Spreng 

et al. 2009; Van Overwalle 2009). 

Another important finding of the present study is that the DAN showed higher activity when 

remembering external elements compared to internal thoughts, and also when processing perceptual versus 

reflective representations in semantic memory. There is ample evidence that the DAN supports the top-

down allocation of attention to visuo-spatial features of the external environment (Corbetta and Shulman 

2002). However, recent studies suggest that this network may not be exclusively involved in controlling 

attention to the external world but may also contribute to memory retrieval (Kragel and Polyn 2015; Wantz 

et al. 2016). Our results fit well with these findings and further suggest that DAN activity during episodic 

and semantic memory retrieval may reflect a greater focus of attention on mental representations of the 

external world rather than internal thoughts. Taken together, the present and previous findings thus suggest 

that the DAN may not only support the top-down processing of stimuli from the immediate external 

environment, but also the controlled allocation of attention to visuo-spatial features within episodic and 

semantic memory representations. This view is consistent with previous studies showing overlapping 

activation in DAN areas when orienting attention to locations in the external world or within mental 

representations (e.g., Nobre et al. 2004; Dobbins and Wagner 2005). Furthermore, our data are also in line 

with the proposal that some regions of the DAN (such as the superior parietal lobe) mediates top-down 

attention to episodic memory contents (Cabeza et al. 2008), and further suggest that such process is 

particularly engaged when attention focuses on representations of the external environment within memory 

representations. 

Interestingly, the proposal that the DAN supports top-down visuo-spatial processing for both 

external stimuli and internal representations is paralleled by recent findings showing that the DN, for its 

part, is not exclusively involved in internal mentation but can also be recruited during externally oriented 

tasks, provided that the processing of perceived stimuli can benefit from prior internal knowledge (Bar 

2004; Crittenden et al. 2015; Konishi et al. 2015; Spreng et al. 2014). Importantly, a recent study 

investigating the functional connectivity of the DN and DAN across a wide range of tasks has shown that, 

on average, the DN and DAN have an independent rather than anticorrelated relationship (Dixon et al. 

2017). When considered together with the present study, these findings suggest that the DAN and DN might 
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not consist of purely opposing networks defined by their role in processing exclusively external versus 

internal information, as is often assumed in the neuroscientific literature (e.g., Fox et al. 2005; Sestieri et 

al. 2010, 2017). Instead, a growing body of evidence suggests that the DAN and DN support different 

cognitive functions (i.e., top-down visuo-spatial processing versus the activation and manipulation of 

internal mentation or knowledge) that can be applied, in varying degrees, to the processing of both 

externally derived and internally generated representations, depending on task goals or other environmental 

circumstances (Spreng et al. 2014; Crittenden et al. 2015; Konishi et al. 2015; Kragel and Polyn 2015; 

Dixon et al. 2017).  

Finally, besides the DN and DAN, our results showed that the right FPCN was activated when 

forming episodic and semantic representations of the external environment. The FPCN is commonly 

engaged in the remembrance of complex daily life events and might support the strategic retrieval, 

monitoring, and recombination of memory details to form an integrated and coherent representation of 

remembered events (Benoit and Schacter 2015; St Jacques and Cabeza 2012; St Jacques and De Brigard 

2015). The present findings suggest that the right FPCN might be more specifically involved in the retrieval 

of perceptual memory components, in agreement with previous findings on source memory judgments 

(Dobbins and Wagner 2005). Furthermore, our results suggest that the role of the right FPCN in retrieving 

perceptual information is not restricted to episodic remembering but extends to the formation of mental 

scenes of the external environment based on semantic memory.  

To conclude, the present study provides new insights into how different aspects of prior experience 

from real-life events are processed during episodic remembering. Specifically, our findings revealed that 

the retrieval of internal versus external aspects of prior experience was associated with different activation 

profiles within large-scale brain networks: the remembrance of previous thoughts mainly relied on some 

DN areas (in particular, medial prefrontal and lateral temporal cortices), suggesting a reinstatement of the 

brain activity involved in the initial formation of these thoughts, whereas the retrieval of external elements 

recruited the right FPCN and the DAN, a set of brain areas known to support top-down visuo-spatial 

processing. Furthermore, our results showed that the DAN and right FPCN were engaged when retrieving 

information about the external environment from both episodic and semantic memory, whereas the 

recruitment of some DN areas (in particular the medial prefrontal cortex) when retrieving internal 

representations was specific to episodic memory. Future studies should be conducted to determine whether 

these distinct contributions of the DN and DAN in the processing of reflective versus perceptual information 

are specific to memories or extend to other kinds of mental representations such as, for instance, future 

thoughts (Schacter et al. 2012; Szpunar 2010; Szpunar et al. 2014) or counterfactual thoughts (Schacter et 

al. 2015; Van Hoeck et al. 2013). Furthermore, it would also be interesting to investigate whether the brain 

networks supporting memory for internal mentation versus external stimuli evolve with age. Indeed, older 

adults tend to remember more thoughts, but fewer perceptual and spatial details, than younger adults 

(Hashtroudi et al. 1990), suggesting that aging might be associated with a shift in the balance between 

perceptual and reflective information within episodic memory representations (Maillet and Rajah 2014). 
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Supplementary Material  

Supplementary Results 

fMRI task performance 
The time needed to access information differed between conditions [F(3, 78) = 10.15; p < .001; η�

�  

= .28], with post-hoc tests showing that response times (RTs) were slower in the external element than in 

the internal thought condition, and slower in the conceptual reflection condition than in both the internal 

thought and scene construction conditions (all p’s < .05, Bonferroni corrected). Although these differences 

in RTs were statistically significant, it should be noted that they were relatively small compared to the 

duration of the main phase of each trial that was modelled in the fMRI analyses, with the largest difference 

being tasks being less than 800 ms (representing a difference of 6% in the mean duration of trials between 

conditions; see Table S2).  

 

Post-scan Debriefing 

In their answer to the Likert scales in the post-scan debriefing, participants reported that they 

somewhat suspected that the walk would be followed by a memory task (M = 4.58; SD = 1.45), although 

none of them knew what the nature of this task would be or reported to expect that they will be asked to 

remember their thoughts in the scanner. There was a significant difference in the subjective ratings of 

difficulty between conditions [F(3, 78) = 5.51; p = .002; η�
�  = .17], with post-hoc tests revealing that the 

scene construction condition was judged easier than the two episodic memory conditions (both p’s < .05, 

Bonferroni corrected, see Table S3 for descriptive statistics); note, however, that difficulty ratings were 

below the midpoint of the scale (i.e., 4 corresponding to ‘moderately easy/difficult’) for all conditions, 

suggesting that participants experienced no difficulty in generating the required mental representations. The 

number of times in which participants reported having erroneously retrieved the same information in 

different trials was very low and did not differ between the two memory conditions [t(26) = .08; p = .94; 

Cohen’s d = .02], the number of times that participants reported having remembered something shown on 

the pictures for the external element condition (rather than an additional element as specified by the 

instructions) was also very low (M = 0.37; SD = 0.95). Finally, the Likert scales confirmed that the scenes 

imagined by the participants in the scene construction condition did not involve memories of specific events 

(M = 1.59; SD = 0.75), indicating that, as requested, participants were able to mentally construct scenes that 

were uncontaminated by episodic details from specific past events. 

Finally, to get an idea of the kind of episodic details that were recalled during the fMRI session, we 

analyzed the content of the five internal thoughts and five external elements trials that the participants were 

asked to describe in the post-scan debriefing. The external elements were classified into two categories: (1) 

‘objects’ when the memories were mainly focused on inanimate objects such as cars, busses, or (parts of) 

buildings and construction sites, and (2) ‘person’ when the memories were mainly focused on a single or a 

group of individuals. The internal thoughts were classified into three categories: (1) ‘Instruction-related’ 

when the participants were thinking about what they had to do during the walk (e.g., wondering which way 

to take to go to the cafeteria after buying the newspaper), (2) ‘stimulus-dependent’ when the content of the 

thoughts was related to something that the participants directly perceived (e.g., thinking that the current 

weather was nice for an outside walk), and (3) ‘stimulus-independent’ when the content of the thought was 

focused on something that the participants were not directly perceiving (e.g., thinking about what to do after 

the experiment). Descriptions for 25 participants (data for two participants were missing) were classified 

by two independent raters (DS and OJ) and the interrater agreement was good for both conditions, with a 

Cohen’s κ = .98 for external elements and .74 for internal thoughts. Of the 125 external element trials, 55% 

referred to objects and 38% to people, and participant reported that they did not exactly remember what 

they retrieved in the scanner for the remaining 6% of trials. For the internal thoughts, 27% were instruction-

related, 46% were stimulus-dependent, and 18% were stimulus-independent; no responses were given for 

the remaining 8% of trials. These proportions of internal thoughts are consistent with previous studies on 

the occurrence of different types of thoughts during task performance (e.g., Stawarczyk et al. 2011). 
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ROI analyses of parameter estimates for each network of interest 

To further determine the pattern of brain activity in the three networks of interest across the four 

conditions, we extracted the parameter estimates for each condition in each of the three masks from Yeo et 

al. 2011 (see Methods). For each network, we then computed a 2 Memory (episodic versus semantic) × 2 

Representation (perceptual versus reflective) ANOVAs on the extracted parameter estimates (see Fig. S1). 

For the DAN, the ANOVA revealed significant main effects of memory type [F(1, 26) = 18.73; p < .001; 

η�
�  = .42] and representation type [F(1, 26) = 32.85; p < .001; η�

�  = .81], but no interaction [F(1, 26) = .30; 

p = .59; η�
�  = .01]. Similarly, the ANOVA for the FPCN revealed significant main effects of memory type 

[F(1, 26) = 17.24; p < .001; η�
�  = .40] and representation type [F(1, 26) = 25.76; p < .001; η�

�  = .50], but no 

interaction [F(1, 26) = .79; p = .38; η�
�  = .03]. The ANOVA for the DN showed a different pattern of results 

with a significant main effect of memory type [F(1, 26) = 93.86; p < .001; η�
�  = .76] and a significant 

interaction [F(1, 26) = 127.74; p < .001; η�
�  = .83], but no main effect of representation type [F(1, 26) = 

.86; p = .36; η�
�  = .03]. Bonferroni corrected post-hoc analyses revealed significant differences between 

each of the four conditions in DN activity (all p’s < .001, except p = .008 for the difference between the 

scene construction and external element conditions). As shown on Fig. S1, DN activity was highest when 

retrieving internal thoughts from episodic memory.  

Finally, we also extracted the parameter estimates for each condition in the medial prefrontal cortex, 

based on an anatomical mask built from the AAL atlas (Rolls et al. 2015; Tzourio-Mazoyer et al. 2002). An 

ANOVA on these parameters estimates (see panel D on Fig. S1) revealed a significant main effect of 

memory type [F(1, 26) = 25.27; p < .001; η�
�  = .49] and a significant interaction [F(1, 26) = 127.74; p < 

.001; η�
�  = .83], but no effect of memory type [F(1, 26) < .001 ; p = .98; η�

�  < .001]. Post-hoc analyses 

revealed significant differences between all of the four conditions (all p’s < .01, Bonferroni corrected). As 

can be seen from Fig. S1, medial prefrontal activity was highest when retrieving internal thoughts from 

episodic memory.  

 

Figure S1. Mean parameter estimates for each experimental condition in each network of interest and in 

the mPFC  

 

Note: DAN = Dorsal attention network; DN = Default network; FPCN = Fronto-parietal control network; 

mPFC = Medial prefrontal cortex. Error bars represent the standard error of the mean.  
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Table S1. Words used in the semantic memory conditions 

 Scene Construction Conceptual Reflection 

 French English translation French English translation 

1. Oreiller Pillow Dilemme Dilemma 

2. Imprimante Printer Permission Permission 

3. Chaussette Sock Hâte Haste 

4. Balançoire Swing Avenir Future 

5. Lampe Lamp Solution Solution 

6. Pinceau Paintbrush Volonté Will 

7. Cravate Necktie Catégorie Category 

8. Bateau Boat Exigence Demand 

9. Balle Ball Durée Duration 

10. Peigne Comb Concept Concept 

11. Ceinture Belt Opinion Opinion 

12. Ciseaux Scissors Ordinaire Ordinary 

13. Cartable Schoolbag Propos Remarks 

14. Frigidaire Fridge Progrès Progress 

15. Aspirateur Vacuum Introduction Introduction 

16. Étagère Shelf Compromis Compromise 

17. Miroir Mirror Simplicité Simplicity 

18. Cadenas Padlock Variation Variation 

19. Drapeau Flag Mystère Mystery 

20. Guitare Guitar Format Format 

21. Téléviseur Television Inverse Opposite 

22. Couvercle Lid Pouvoir Power 

23. Bague Ring (jewelry) Conséquence Consequence 

24. Ticket Ticket Sélection Selection 
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Table S2: Means and standard deviations (in brackets) for the indices of task performance and responses 

to the post-scan debriefing questionnaire. 

 

 

External Element Internal  

Thought 

Scene 

Construction 

Conceptual 

Reflection 

Key press (%) 97.84 (3.72) 96.91 (4.71) 97.99 (3.34) 97.99 (4.23) 

Trial duration (ms) 12,735 (1085) 13,199 (958) 12,888 (1149) 12,408 (1214) 

EE rating 3.68 (0.28) 1.55 (0.45) / / 

IT rating 1.42 (0.36) 3.74 (0.23) / / 

VI rating / / 3.82 (0.24) 1.27 (0.29) 

IS rating / / 1.26 (0.32) 3.84 (0.24) 

Subjective difficulty 3.33(1.36) 2.93 (1.36) 1.89 (2.05) 2.78 (1.45) 

Similar memories 1.74 (1.48) 1.72 (1.36) / / 

Note: EE = external element, IT = internal thought, VI = visual imagery, IS = inner speech. The scores of the EE, IT, VI, and IS rating made 

during the task ranged from 1 = ‘not at all’ to 4 ‘a lot.’ The scores for the post-scan subjective difficulty ratings ranged from 1 = ‘very easy’ to 

7 = ‘very difficult.’ Similar memories are the mean number of times that the participants reported in the post-scan debriefing having remembered 

identical external elements or internal thoughts across different trials.    
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Table S3. Brain regions showing increased activity for perceptual vs reflective representations 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

pIPL L -34 -80 36 86 10.34 

 R 48 -70 28 34 8.08 

Precuneus / PCC L/R -4 -40 48 30 8.20 

 L -10 -58 48 23 7.19 

 L -18 -60 22 72 6.08 

SMG/aIPL R 54 -44 32 62 6.59 

Rostral lPFC R 20 62 10 55 7.88 

Dorsal lPFC R 34 26 46 140 7.01 

2. DAN clusters       

FEF L -28 -6 52 393 11.42 

 R 32 0 52 436 12.08 

Precuneus / aIPL / pIPL / SPL / Middle 

OC / MT+ 

L/R -8 -64 58 2715 10.00 

 -38 -84 30  10.94 

  14 -68 48  10.22 

  38 -42 48  8.68 

  46 -78 28  7.89 

  58 -48 -10  7.77 

aIPL / SPL L -58 -32 42 401 8.17 

MT+ L -56 -66 4 124 8.58 

Prec. Sulcus R 42 6 26 259 10.18 

3. FPCN clusters       

Prec. Sulcus / Dorsal lPFC / Rostral 

lPFC 

R 24 14 58 1549 11.28 

 44 8 38  8.57 

  44 32 22  8.25 

  36 32 42  7.56 

  46 40 12  7.52 

  24 58 12  7.46 

Dorsal lPFC L -26 6 58 57 6.48 

Precuneus L/R -8 -62 50 50 8.63 

 L/R 2 -38 44 47 7.83 

SPL / Middle OC R 30 -72 48 62 6.84 

SMG / aIPL R 52 -34 44 513 11.14 

Dorsal ACC / mPFC R 8 34 32 32 6.13 

4. Other clusters      

PHC L -36 -26 -18 427 11.94 

 R 34 -28 -18 116 8.92 

Insula L -46 -10 0 47 7.91 

Cerebellum L -40 -50 38 25 7.49 

Note: ACC = anterior cingulate cortex; aIPL = anterior inferior parietal lobule; DAN = Dorsal attention network; DN = Default network; FEF 

= Frontal eye fields; FPCN = Frontoparietal control network; lPFC = Lateral prefrontal cortex; MT+ = Temporal motion complex; OC = 

Occipital cortex; PCC = Posterior Cingulate Cortex; PHC = Parahippocampal cortex; pIPL = Posterior inferior parietal lobule; Prec. Sulcus = 

Precentral sulcus; SMG = Supramarginal gyrus; SPL = Superior parietal lobule. p < .05 (FWE corrected for multiple comparisons over masks 
of the networks of interest or over the whole brain for the clusters falling outside these masks) with a minimum cluster size of 20 voxels. 
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Table S4. Brain regions showing increased activity for reflective vs perceptual representations 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

MTG / STG L -50 -38 4 327 10.51 

SMA L/R -4 12 68 115 8.94 

Ventral lPFC L -46 22 -10 321 8.78 

Temporal Pole L -54 8 -14 36 7.98 

2. DAN clusters       

 / / / / / / 

3. FPCN clusters       

 / / / / / / 

4. Other clusters      

OC L -32 80 -10 1108 10.56 

 R 38 -82 0 608 8.57 

Cuneus / Superior OC L -10 -94 30 33 7.24 

Prec. Sulcus / Dorsal lPFC L -44 4 48 37 6.87 

SMA L/R -4 4 62 353 8.54 

Cerebellum L -18 -62 -20 36 6.85 

 R 32 -58 26 460 8.78 

Note: DAN = Dorsal attention network; DN = Default network; FPCN = Frontoparietal control network; lPFC = Lateral prefrontal cortex; 

MTG = middle temporal gyrus; OC = Occipital Cortex; SMA = Supplementary motor area; STG = Superior temporal gyrus. p < .05 (FWE 

corrected for multiple comparisons over masks of the networks of interest or over the whole brain for the clusters falling outside these masks) 
with a minimum cluster size of 20 voxels. 
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Table S5. Brain regions showing increased activity for episodic vs semantic memory retrieval 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

pIPL / aIPL L -34 -80 36 581 8.60 

  -48 -58 26  7.58 

 R 44 -70 32 759 11.47 

  50 -52 40  7.12 

Rsp / PCC / Precuneus L/R 16 -54 18 2287 12.91 

  10 -46 36  12.19 

mPFC L/R 8 48 -6 220 7.12 

 L/R 8 48 18 32 5.71 

 L -12 50 10 63 5.83 

MTG L -62 -18 -10 57 6.21 

 R 60 -28 -8 62 6.60 

 R 54 -8 -18 21 5.75 

PHC L -28 -32 -16 23 7.30 

Dorsal lPFC L -24 -28 42 76 7.69 

 R 26 28 44 167 7.66 

Rostral lPFC R 24 64 10 24 5.66 

2. DAN clusters       

pIPL / Middle OC L -36 -84 32 71 8.42 

 R 40 -72 30 106 10.83 

Precuneus L/R 10 -74 50 564 8.74 

3. FPCN clusters       

pIPL / Middle OC R 40 -78 40 226 8.15 

Precuneus L/R 14 -62 30 253 10.95 

 L/R 8 -42 40 52 9.42 

Middle Cingulate Cortex L/R -4 26 30 69 9.01 

Dorsal lPFC R 40 22 36 67 8.00 

 R 26 20 48 151 6.43 

Rostral lPFC R 32 58 8 225 7.30 

4. Other clusters       

PHC / Hippocampus R 34 -38 -10 480 9.90 

PHC / Hippocampus L -30 -44 -8 423 11.65 

Note: aIPL = anterior inferior parietal lobule; DAN = Dorsal attention network; DN = Default network; FPCN = Frontoparietal control network; 

lPFC = Lateral prefrontal cortex; mPFC = Medial prefrontal cortex; MTG = Middle temporal gyrus; OC = Occipital cortex; PCC = Posterior 

Cingulate Cortex; PHC = Parahippocampal cortex; pIPL = Posterior inferior parietal lobule; Rsp = Retrosplenial cortex. p < .05 (FWE corrected 

for multiple comparisons over masks of the networks of interest or over the whole brain for the clusters falling outside these masks) with a 

minimum cluster size of 20 voxels. 
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Table S6. Brain regions showing increased activity for semantic vs episodic memory retrieval  

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

Ventral lPFC L -54 14 12 231 6.53 

2. DAN clusters       

aIPL L -46 -36 42 257 6.96 

SPL R 22 -52 70 47 5.93 

MT+ / ITG / Middle OC / inferior OC L -46 -50 -18 411 8.53 

 -40 -66 0  7.62 

Prec. Sulcus L -50 6 24 110 8.96 

 L -42 -4 50 21 6.20 

 R 58 10 32 40 6.85 

Postc. Sulcus R 60 -20 48 37 6.80 

3. FPCN clusters       

Prec. Sulcus / Ventral lPFC L -48 10 24 53 8.21 

Ventral lPFC L -50 36 12 195 7.67 

4. Other clusters       

OC L -40 -68 -2 468 8.87 

 L -34 -88 10 31 6.86 

 R 44 -70 -2 652 8.17 

SMG L -56 -40 24 131 8.37 

 R 42 -34 22 83 7.47 

Cerebellum L -8 -54 -12 105 7.99 

 R 28 -66 22 135 8.13 

SMA L/R 0 0 64 253 7.29 

Prec. Sulcus / Ventral lPFC L -52 8 24 570 9.63 

Postc. Sulcus R 32 -40 72 144 7.24 

Note: aIPL = anterior inferior parietal lobule; DAN = Dorsal attention network; DN = Default network; FPCN = Frontoparietal control network; 

ITG = Inferior temporal gyrus; lPFC = Lateral prefrontal cortex; OC = Occipital cortex; Postc. Sulcus = Postcentral sulcus; Prec. Sulcus = 

Precentral sulcus; SMA = Supplementary motor area; SMG = Supramarginal gyrus; SPL = Superior parietal lobule. p < .05 (FWE corrected 

for multiple comparisons over masks of the networks of interest or over the whole brain for the clusters falling outside these masks) with a 

minimum cluster size of 20 voxels.   
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 Table S7. Brain regions showing increased activity for reflective vs perceptual representations during 

episodic compared to semantic memory retrieval [(Internal Thought > External Element) > (Conceptual 

Reflection > Scene Construction)] 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

pIPL L -48 -72 30 454 12.85 

 R 50 -60 28 674 10.31 

Rsp / PCC / Precuneus L/R 14 -44 34 1609 10.81 

  -6 -52 14  9.71 

mPFC L/R -2 54 10 2762 9.93 

  -2 48 24  9.47 

  8 50 -12  9.42 

Dorsal mPFC R 14 48 40 27 5.95 

MTG L -62 -18 -14 159 7.41 

MTG / ITG R 58 -12 24 409 8.51 

PHC L -28 -32 -16 27 10.35 

Dorsal lPFC L -24 28 46 141 7.47 

Rostral lPFC L -18 62 10 29 6.33 

Orbitofrontal cortex R 40 32 -14 22 6.49 

2. DAN clusters       

pIPL / Middle OC L -46 -78 28 91 11.20 

 L -44 -70 20 46 8.15 

pIPL / Middle OC / MTG R 46 -62 20 230 7.43 

Fusiform Gyrus R 44 -44 -18 28 5.87 

3. FPCN clusters       

Precuneus R 4 -42 40 53 10.28 

4. Other clusters       

PHC / Hippocampus L -28 -34 -16 276 10.89 

 R 26 -28 -18 184 9.77 

SMG R 60 -30 -30 25 6.75 

Insula R 40 -10 -10 20 6.55 

Amygdala L -30 2 -18 99 10.07 

 R 34 2 16 39 7.47 

Orbitofrontal cortex L -26 34 -14 23 7.11 

Note: DAN = Dorsal attention network; DN = Default network; FPCN = Frontoparietal control network; ITG = Inferior temporal cortex; lPFC 

= Lateral prefrontal cortex; mPFC = Medial Prefrontal Cortex; MTG = Middle temporal gyrus; OC = Occipital cortex; PCC = Posterior 

Cingulate Cortex; PHC = Parahippocampal Cortex; pIPL = Posterior inferior parietal lobule; Rsp = Retrosplenial Cortex; SMG = Supramarginal 

gyrus. p < .05 (FWE corrected for multiple comparisons over masks of the networks of interest or over the whole brain for the clusters falling 
outside these masks) with a minimum cluster size of 20 voxels. 
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Table S8.  DN activity for reflective vs perceptual representations within each type of memory retrieval 

(episodic and semantic) 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. Internal Thoughts > External Elements 

Dorsal mPFC L/R -2  58 22 171 8.83 

mPFC L/R -4 40 -8 311 7.5 

  -4 54 -2  5.22 

MTG / STG L -50 -36 -2 205 7.99 

MTG R 54 -20 -12 22 5.87 

 R 56 -30 4 20 5.75 

Temporal Pole L -54 4 -16 299 7.83 

Ventral lPFC L -40 26 -6 42 5.65 

2. Conceptual Reflection > Scene Construction 

MTG / STG L -52 -40 6 303 10.50 

SMA L -6 16 68 123 9.28 

Ventral lPFC L -46 22 -2 431 9.26 

Dorsal lPFC L -40 6 46 23 6.58 

Note: lPFC = Lateral prefrontal cortex; mPFC = Medial prefrontal cortex; MTG = Middle Temporal Gyrus; SMA = Supplementary motor area; 

STG = Superior temporal gyrus. p < .05 (FWE corrected for multiple comparisons over the DN mask) with a minimum cluster size of 20 voxels. 

 

Table S9. Brain regions showing increased activity for perceptual vs reflective representations during 

episodic compared to semantic memory retrieval [(External Element > Internal thought) > (Scene 

Construction > Conceptual Reflection)] 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

MTG / STG L -52 -42 4 34 6.47 

Ventral lPFC L -54 14 12 136 7.43 

 L -46 24 -4 55 6.47 

2. DAN clusters       

  / / / / / 

3. FPCN clusters       

Prec. Sulcus / Ventral lPFC L -48 12 28 171 9.41 

4. Other clusters       

OC L -26 -96 -4 149 7.92 

 R 34 -92 -4 233 7.42 

Cerebellum R 30 -60 -30 206 8.22 

Note: DAN = Dorsal attention network; DN = Default network; FPCN = Frontoparietal control network; lPFC = Lateral prefrontal cortex; 

MTG = Middle temporal gyrus; OC = Occipital cortex; Prec. Sulcus = Precentral Sulcus; STG = Superior temporal gyrus. p < .05 (FWE 

corrected for multiple comparisons over masks of the networks of interest or over the whole brain for the clusters falling outside these masks) 
with a minimum cluster size of 20 voxels. 
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Table S10. Brain regions showing common activity when representing perceptual vs reflective information 

in episodic and semantic memory (External Element > Internal thought) ∩ (Scene Construction > 

Conceptual Reflection) 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

 / / / / / / 

2. DAN clusters       

FEF L -24 -6 52 228 6.59 

 R 22 -4 60 310 6.48 

Precuneus / SPL L -10 -66 54 281 7.68 

 R 14 -70 48 62 6.37 

 R 8 -64 60 18 5.22 

aIPL L -32 -42 44 99 6.12 

 R 36 -44 50 219 6.64 

pIPL/ Middle OC R 38 -76 30 62 6.84 

Middle OC L -40 -86 26 14 5.85 

Prec. Sulcus R 11 8 26 150 7.05 

MT+ L -64 -52 8 18 5.41 

 R 58 -48 -10 9 5.11 

3. FPCN clusters       

Dorsal lPFC R 26 14 56 119 6.56 

 R 46 32 22 46 6.08 

 R 36 32 42 9 5.19 

aIPL R 46 -46 50 87 5.73 

4. Other clusters       

 / / / / / / 

Note: aIPL = Anterior inferior parietal lobule; DAN = Dorsal attention network; DN = Default network; FEF = Frontal eye fields; FPCN = 

Frontoparietal control network; lPFC = Lateral prefrontal cortex; MT+ = Temporal motion complex; OC = Occipital cortex; pIPL = Posterior 

inferior parietal lobule; Prec. Sulcus = Precentral Sulcus; SPL = Superior parietal lobule. p < .05 (FWE corrected for multiple comparisons 

over masks of the networks of interest). 
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Table S11. Brain activity for external vs internal representations within episodic memory (External Element 

> Internal Thoughts) 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

 / / / / / / 

2. DAN clusters       

FEF L -24 -4 60 329 8.84 

 R 28 4 54 395 9.27 

aIPL / SPL L -34 -46 46 191 6.40 

 R 36 -44 46 340 7.83 

  38 -54 48  5.71 

MT+ L -56 -64 -6 31 5.99 

 R 56 -48 8 52 7.25 

Prec. Sulcus L -44 2 32 31 7.31 

 R 46 8 24 138 6.81 

Precuneus / SPL L -12 -62 54 422 6.68 

  -22 -64 48  6.56 

 R 14 -62 52 185 6.04 

pIPL / Middle OC L -40 -86 26 28 6.50 

 R 36 -76 34 59 6.39 

3. FPCN clusters       

Dorsal lPFC L -22 10 64 28 5.59 

 L -40 32 36 110 6.13 

 R 30 6 58 179 9.53 

 R 40 32 30 352 8.08 

aIPL / SMG R 44 -42 44 191 8.37 

4. Other clusters       

 / / / / / / 

Note: aIPL = Anterior inferior parietal lobule; DAN = Dorsal attention network; DN = Default network; FEF = Frontal eye fields; FPCN = 

Frontoparietal control network; lPFC = Lateral prefrontal cortex; MT+ = Temporal motion complex; OC = Occipital cortex; pIPL = Posterior 

inferior parietal lobule; Prec. Sulcus = Precentral Sulcus; SMG = Supramarginal gyrus; SPL = Superior parietal lobule. p < .05 (FWE corrected 

for multiple comparisons over masks of the networks of interest) with a minimum cluster size of 20 voxels. 
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Table S12. Brain activity for external vs internal representations within semantic memory (Scene 

Construction > Conceptual Reflection) 

  MNI coordinates   

Brain regions Side x y z Cluster Size t 

1. DN clusters       

pIPL L -36 -78 34 212 12.83 

pIPL / aIPL R 42 -70 38 679 7.78 

  52 -46 34  6.67 

Rsp / PCC / Precuneus L/R -6 -52 14 1423 10.53 

  4 -64 30  6.97 

  -10 -52 50  8.57 

MTG R 62 -14 -20 45 6.76 

PHC L -28 -32 -16 28 10.38 

mPFC L/R 6 38 -12 1569 6.73 

  -8 40 0  7.54 

  16 64 10  9.38 

  6 44 26  6.36 

Dorsal lPFC L -26 30 42 174 9.54 

 R 32 28 44 257 8.10 

Rostral lPFC L -20 62 8 20 6.48 

2. DAN clusters       

FEF L -26 -8 48 298 8.93 

 R 28 -4 50 403 7.88 

Precuneus / SPL L/R -8 -66 54 1042 11.34 

  -18 -64 60  6.48 

  30 -68 58  5.19 

aIPL L -42 -32 36 327 7.10 

 R 34 -38 42 361 6.88 

Middle OC / MTG L -44 -70 20 52 7.60 

  -48 -66 8  5.28 

Middle OC / MTG / MT + R 40 -74 30 476 9.99 

 54 -56 8  7.48 

MT+ L -56 -66 -4 65 6.51 

Prec. Sulcus R 42 6 26 236 8.24 

Postc. Sulcus R 54 -28 46 25 6.56 

ITG / Fusiform Gyrus R 46 -42 -14 51 6.01 

3. FPCN clusters       

Precuneus L/R -8 -62 50 91 11.04 

  4 -38 42 52 10.19 

Dorsal lPFC R 48 40 12 369 8.37 

  24 20 46 515 7.96 

  44 6 38  7.81 

Rostral lPFC R 24 58 12 91 7.41 

SMG / aIPL / pIPL R 56 -34 40 360 7.80 

  36 -72 42  7.65 

MTG / ITG R 62 -46 -10 25 7.12 

4. Other clusters       

PHC / Hippocampus L -32 -34 -12 604 16.18 

 R 34 -30 14 414 11.42 

Amygdala L -30 2 -18 49 8.03 

 R 34 0 16 128 7.83 

Insula L -42 -8 0 164 8.03 

Orbitofrontal cortex R -28 36 -14 39 8.67 

Note: aIPL = Anterior inferior parietal lobule; DAN = Dorsal attention network; DN = Default network; FEF = Frontal eye fields; FPCN = 

Frontoparietal control network; ITG = Inferior temporal gyrus; lPFC = Lateral prefrontal cortex; mPFC = Medial prefrontal cortex; MT+ = 

Temporal motion complex; MTG = Middle temporal gyrus; OC = Occipital cortex; PCC = Posterior cingulate cortex; PHC = Parahippocampal 

cortex; pIPL = Posterior inferior parietal lobule; Postc. Sulcus = Postcentral sulcus; Prec. Sulcus = Precentral Sulcus; Rsp = Retrosplenial 

cortex; SMG = Supramarginal gyrus; SPL = Superior parietal lobule. p < .05 (FWE corrected for multiple comparisons over masks of the 
networks of interest or over the whole brain for the clusters falling outside these masks) with a minimum cluster size of 20 voxels. 

 


