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Abstract 
In this paper, we study the influence of the upper gas layer on the drying and gelation of a 
polymer solution. The gel is formed due to the evaporation of the binary solution into (inert) 
air. A one-dimensional model is proposed, where the evaporation flux is more realistically 
described than in previous studies. The approach is based on general thermodynamic 
principles. A composition-dependent diffusion coefficient is used in the liquid phase and the 
local equilibrium hypothesis is introduced at the interface to describe the evaporation 
process. The results show that high thickness of the gas layer reduces evaporation, thus 
leading to longer drying times. Our model is also compared with more phenomenological 
descriptions of evaporation, for which the mass flux through the interface is described by 
the introduction of a Peclet number. A global agreement is found for appropriate values of 
the Peclet numbers and our model can thus be considered as a tool allowing to link the value 
of the empirical Peclet number to the physics of the gas phase. Finally, in contrast with other 
models, our approach emphasizes the possibility of very fast gelation at the interface, which 
could prevent all Marangoni convection during the drying process.  
 
Keywords: Drying of polymer solution, Gel formation, Gas layer, Thermodynamic 
evaporation flux 

 
1. Introduction 

 
The drying of liquid films of polymer solutions by evaporation of the solvent is an important 
process which is considered in numerous industrial applications including painting [1-3], 
coating [4-6], ink-jet printing [7-9], production of electronic-devices [10] and so on. The 
building of a basis for these technologies necessitates understanding the underlying physics 
of drying phenomena, and especially requires quantitative analysis of solvent evaporation in 
thin films. Therefore, a number of theoretical studies have been performed to develop 
models of these processes [11]. In the case of film drying, Bornside et al. [12] have taken 
into account the diffusion process in their model of spin coating and predicted numerically 
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the formation of a solid “skin” at the free surface. De Gennes [13] analyzed the concentration 
profiles and the skin (crust) formation, and estimated theoretically the lifetime of the skin. 
Although his qualitative argument gives some important features of the skin, it is not 
possible to obtain a detailed information about the whole process of the skin formation. 
Tsige and Grest [14] undertook the molecular dynamics simulations of the evaporation 
process in polymer films. They reported the formation of a polymer density gradient at the 
film/vapor interface and also expressed that the rate of solvent evaporation from the film 
depends on the magnitude of this density gradient. However, they didn’t discuss the 
restriction for the skin formation related to practical experiments. Reyes and Duda [15] 
proposed a Monte Carlo simulation for predicting the evolution of particle volume fraction 
during the drying process. The results indicated that under a slow evaporation rate the 
particles are able to crystallize, while for a faster evaporation a random packing is predicted. 
Routh and Zimmerman [16] studied the drying steps by considering a diffusion equation for 
the particles. The results demonstrated that strong diffusion causes a uniform film profile, 
while weak diffusion leads to skinning.  Konig et al. [17] analyzed the effect of additional 
salt and displayed that the higher salt concentrations result in high likelihood of the skin 
formation. A possible explanation was provided by Sarkar and Tirumkudulu [18] who 
demonstrated how the charge on colloidal particles increases the particle diffusivity and thus 
changes the volume fraction profile during drying. Another way to change the diffusion 
coefficient of colloidal particles is with free polymer (soluble polymer) [19]. It was shown 
how adding polymer to a silica water solution lowers the diffusion coefficient and effectively 
increases the Peclet number, enhancing non-uniform drying. Ozawa et al. [20] modeled a 
diffusion-type equation with regard to the gelation effect of the solution in polymer solution 
undergoing evaporation of the solvent at the free surface. The results implied that the drying 
dynamics of polymer solutions is strongly related to the gelation, which leads to a great 
enhancement in the diffusion coefficient of polymers. Hennessy et al. [21] presented a two-
phase model for volatile solvent and a nonvolatile polymer in a thin-film. Accordingly, they 
formulated a two-phase model to describe an evaporating solvent-polymer mixture and then 
employed it to investigate the interplay between gravity, evaporation, and skin formation. 
They found that the shortest drying time occurs in the limit of strong gravitational effects 
due to the rapid formation of a bilayer with a polymer-rich lower layer and a solvent-rich 
upper layer, while drag leads to the formation of a polymer-rich skin below the free surface 
and causes the drying time to increase significantly. In another study, Hennessy et al. [22] 
considered a model of solvent evaporation in a thin film comprised of volatile solvent and a 
nonvolatile solute which can be used to predict the dynamics of drying and film formation.  
 
Undeniably, the numerous models proposed in previous studies to study the drying process 
have provided the opportunity to achieve a wealthy insight in this problem. However, the 
validity of some simplifying assumptions can still be questioned. For instance, many studies 
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use a phenomenological law to describe the evaporation process, which amounts to 
introducing a Peclet number to quantify the importance of evaporation. However, the value 
of that number that can truly capture the drying process number for a given practical 
situation is not easy to determine. Another important question that has not been examined 
in the previous studies mentioned above is the possibility of a very fast gelation at the liquid-
gas interface, which would prevent all Marangoni convection during the drying of the film. 
 
To address these questions, the present study proposes a more realistic model of the 
evaporation flux, which is based on thermodynamic principles, as well as on the physics of 
the interaction between the gas phase and the liquid phase. A similar approach was already 
proposed in [23] for a binary liquid but here we consider the case of a polymer solution in 
order to include gelation phenomena. A composition dependent diffusion coefficient is 
introduced, which allows to describe gelation and the formation of a skin phase. In order to 
assess the importance of using a more realistic description of the evaporation flux, the 
present model is compared with other ones including linear and nonlinear models. In 
addition, the effect of various thickness of gas layer has been examined on the evaporation 
process. 
 
2. Formulation of the problem 
The studied system, shown in Fig. 1, is comprised of a mixture of a volatile solvent and a 
non-volatile polymer placed on a flat solid and non-permeable substrate, under a layer of 
inert air. Our model of the evaporation process introduces a thermodynamics-based 
expression for the evaporation flux and this approach will be compared with two models 
from the literature that express the evaporation flux, respectively, as a linear [20] and a non-
linear [22] function of the mass fraction at the interface. In Fig. 1 and in the equations 
presented below, z is the vertical coordinate, whereas h is the total height of the solution and 
the possible skin, hg is the thickness of the liquid part, while H is the total height of the 
liquid-skin-gas system. The gel thickness is thus given by h- hg. The surface tension at the 
liquid-gas interface is assumed to be sufficiently strong for deformations of the film surface 
to be negligible. The time dependent thickness of the film can be depicted by a function of 
time h(t). Diffusion is assumed to be the only mechanism of mass transport within the bulk 
and a Fick law is used, with a composition dependent diffusion coefficient. Any temperature 
variations, such as those resulting from evaporative cooling, are presumed to be sufficiently 
small so that the system can be treated as isothermal [22,24]. We will also consider that the 
solvent and polymer densities are not too different, which allows to consider that during the 
drying process, the mixture keeps a constant density, equal to the initial density of the liquid 
mixture. Similarly, the density in the gas phase will also be assumed to be independent of 
the solvent concentration. We will also neglect the Stefan flow in the gas, but not at the 
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liquid-gas interface. This is a reasonable assumption in case the solvent vapor content is low 
[25], which can safely be assumed when the solvent considered is water, whose saturation 
pressure is low with respect to the gas pressure. In situations for which the concentration of 
the vapor in the gas is high due to a high vapor pressure (e.g. HFE -7100 [25]), the Stefan 
flow should of course be added in the description Finally, we will not describe 
hydrodynamic instabilities and convection is thus not taken into account. In this context, and 
because the system is horizontally uniform, a one-dimensional description is proposed.  
 

 
Fig. 1. Schematic of studied system  

 

2.1. Thermodynamic model 

A thermodynamic model of the evaporation process is built by considering the exchange of 
solvent with the gas phase. The evaporation process is described by a mass flux J that must 
balance the diffusive fluxes at the film surface. The total system with size H consists of two 
phases. The first phase is the gas layer, h ≤ z ≤ H, where the diffusion of solvent vapor takes 
place through the air and the gas mass fraction (of the solvent) Cg follows the diffusion 
equation  

2

2  
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where Dg is the assumed constant diffusion coefficient in gas phase. The second part of the 
system is the liquid and gel layer, 0 ≤ z ≤ h, where the conservation equation describing the 
solvent mass concentration (Cl) with variable diffusion coefficient in the drying process 
obeys 

   ∂ ∂∂  =  ∂ ∂ ∂ 
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where the composition dependent diffusion coefficient lD  for the polymer solution is given 
by [20]:  
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where Do is the diffusion coefficient of pure solvent, while gelC is the solvent mass fraction 

below which gelation takes place (here we will choose gelC  =0.5). As in [20], we take 

b=p=3 and we also take 𝑑𝑑 = 1000 in order to have a clear gelation transition.  It is important 
to stress here that a clear definition of a gel, and the corresponding modelling of this material, 
is a delicate subject, which remains somewhat controversial [26]. However, such interesting 
questions fall outside the scope of our work and together with [20], we will simply admit 
here that what we call a gel is described by Eq. 3. Note also that in Eqs. (1) and (2), we have 
used Fick’s law. For the liquid phase, which is a polymer-solvent mixture, this law is not 
quantitatively precise for high polymer concentrations, and more complex descriptions of 
the thermodynamics of the non-ideal mixtures should be considered [27]. However, for the 
purpose of this paper, the qualitative description based on Fick’s law is largely sufficient.  

The boundary conditions for solving Eqs. (1) and (2) are the following. A no-flux boundary 
condition is applied at the non-permeable substrate (z=0): 

0lC
z

∂
=

∂
 (4) 

 
A fixed constant value of the solvent mass fraction is imposed at the top boundary of the gas 
layer and, except otherwise stated, we will consider a zero humidity for the air far from the 
interface (i.e. z=H). One thus has: 
 

0 gC =  (5) 
The boundary conditions at the liquid-gas interface can be deduced from the principle of 
mass conservation. First, we assume that the polymer does not evaporate. Its flux across the 
moving boundary is thus zero and one has: 

(1 ) (1 ) 0 
z hl l

l
l l

C dhD C
z dt

ρ ρ
=

∂ −
− − − =

∂
 (6) 

where 𝜌𝜌𝑙𝑙 is the (assumed constant) liquid density. The conservation of solvent then imposes 

 
z hl l
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∂
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Combining the previous two equations directly provides the following alternative 
expressions of the above boundary conditions at z=h(t): 

l

dh J
dt ρ
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 (8) 
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Considering that air cannot be absorbed in the liquid and using a procedure similar to that 
used in the liquid, one can obtain the following additional boundary condition at z=h(t): 

 ( )1  ρ
= =

∂
− = −

∂ z hg
g

g g z h

C
D J C

z
  (10) 

where 𝜌𝜌𝑔𝑔 is the gas density.  

To describe local equilibrium at the liquid-gas interface, we will use Raoult’s law [28]. This 
law is normally valid for ideal solutions and it is not sure that it is strictly correct in our case, 
especially when the concentration of the polymer becomes high. However, in our approach 
which is mainly qualitative and interested in general physical mechanisms, we will consider 
this law as a sufficient approximation. Since only the solvent can cross the interface, 
Raoult’s law takes the form: 

 g g l saty p y p=  (11) 
where yg and yl are the molar fractions of the solvent in the gas and liquid phases, 
respectively, pg is the total pressure of gas at the interface, and satp is the saturation pressure 
of the pure solvent (at the temperature of the experiment). In terms of mass fraction, Raoult’s 
law can be rewritten as follows: 

1 ( 1) 1 ( 1)
δ δ
δ δ

=
+ − + −

g as l pa sat

g as l pa g

C C p
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 (12) 

where p
pa

s

M
M

δ =  is the polymer to solvent molecular mass ratio, while  a
as

s

M
M

δ =  is the air 

to solvent molecular mass ratio.  

 

2.2. Non-dimensionalization of the equations 

It is convenient to rewrite the equations in a non-dimensional form. The initial film thickness 
of the liquid, 



h , is taken as the characteristic length and while the diffusion time scale in 
pure solvent, 2 /l h Dτ =

 

, is chosen as time scale. In these new units, the equations take the 
form 
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where z and H are now non-dimensional, with D=Dg/D0. Note that the non-dimensional 
thickness h is now such that h(0)=1. The boundary conditions take the form: 
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where l

g

ρρ
ρ

= , while the dimensionless mass flux ζ  is given by 
l

Jh
D

ζ
ρ

= 



. Raoult’s law 

is already given by (12): 
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2.3. Linear and nonlinear models 

Let us now briefly describe two other phenomenological models of evaporation to which 
ours will be compared [20, 22]. For these models, the behavior of the gas layer is no longer 
described and a simple phenomenological law is proposed to describe the evaporation flux. 
In both cases, the flux depends on the concentration of the evaporating component in the 
liquid along the interface. For solvent-polymer mixtures, linear and non-linear expressions 
were proposed by Ozawa et al. [20] and Hennessy et al. [22] respectively. The corresponding 
non-dimensional evaporation fluxes are denoted Lζ and nLζ  and take the form: 
 

 L z hlPeCζ ==  (21) 
21 (1 )l l

nL
C C

l
z h

Pe C e χζ − + −
=

 =     (22) 

where Pe is the so-called Peclet number and χ is the interaction parameter. This non-
dimensional number is the ratio of the diffusive time scale 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ℎ02

𝐷𝐷0
  to the mass transfer 

time scale 𝜏𝜏𝑚𝑚𝑚𝑚 = 𝜌𝜌𝑙𝑙 ℎ0
𝐽𝐽𝑒𝑒𝑒𝑒

  where 𝐽𝐽𝑒𝑒𝑒𝑒 is a phenomenological constant. One thus has𝑃𝑃𝑒𝑒 = 𝐽𝐽𝑒𝑒𝑒𝑒ℎ0
𝜌𝜌𝑙𝑙 𝐷𝐷0

  . 
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3. Results and discussion 

The models presented above were solved using an explicit numerical method and applied to 
a binary mixture of PVA (polyvinyl-alcohol)–water system. The density of PVA (1270 

3kg m ) is a bit different from that of water but the effect of this difference will not be taken 
into account, as explained in Section 2. In the gas phase, the binary diffusion coefficient is 
fixed to 2.54×10-5 2m s  [29]. Moreover, the total pressure of the gas is equal to the 
atmospheric pressure and the saturation pressure of water at a constant temperature of 300°K 
is 23 52 10satp . −= × atm [29].     

Before evaporation starts, it is assumed that the liquid film is well mixed, corresponding to 
spatially uniform distribution of solvent and solute in the liquid and the corresponding 
solvent concentration is liC . Similarly, in the gas phase the solvent concentration is also 
assumed uniformed and equal to giC . Then suddenly at 𝑡𝑡 = 0, the two phases are brought 
into contact and evaporation starts with the following initial conditions: 

( ,0) 0
( ,0)

(0) 1

= ≤ ≤

= ≤ ≤

=

l li

g gi

C z C    ,      z  h
C z C   ,     h z  H

h

 (23) 

 
Table 1. Physical properties and parameters values of the problems 

Physical property Value parameter Value 
waterρ  1000 3kg m  liC  0.7,0.51 

PVAρ  1270 3kg m  giC  0 

gD  2.54×10-5 2m s  gelC  0.5 

satp  23 52 10 tm. a−×   Pe 1<Pe<20 

gp  1 atm H  2,5,9,21,101 

 
In the following, we present the general results of our study for which the physical properties 
of the fluids and the parameters corresponding to the simulations are summarized in Table 
1. First, the time evolution of the system as predicted by our model is presented. Then these 
results are compared with those corresponding to the linear and nonlinear models.  
 
3.1. General results  
A typical numerical solution of Eqs. (13) and (14) is represented in Fig. 2. The uniform 
initial mass fractions of liquid and gas layers were set to liC =0.7 and giC =0, respectively. 
The total thickness of the two-layer system was considered to be H =2. Fig. 2 a and b show 
the time evolution of the profile lC  and the contour plot of the binary liquid layer thickness 
in the drying process and gel formation, respectively. At the very beginning (small t), a 
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polymer-rich region is formed near the free surface. Soon after, due to the high evaporation 
rate, ( , )lC z t  reaches gelC  and a gel layer in which ( , )l gelC z t C≤ is formed. As drying 
proceeds, the gel layer develops and get thicker, before the entire lower layer finally tends 
towards gelation. At this moment, the evaporation rate considerably reduces, until only the 
polymer is present and evaporation ceases.  
 

 
 

Fig.2 (a) Time evolution of the solvent mass fraction profile ( , )lC z t  and (b) contour plot of the 
solvent mass fraction ( , )lC z t   

 

Fig. 3 shows the time evolution of the binary liquid layer thickness ℎ for different values of 
𝐻𝐻, which allows to emphasize the effect of the gas thickness on the evaporation process. As 
expected, thick gas layer corresponds to reduced evaporation rates, which leads to a longer 
drying time.  

 
Fig. 3. Effect of the gas layer thickness on the time evolution of the mixture height ℎ. 
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3.2. Immediate gelation 

When the binary liquid and gas phase, which are not in equilibrium with respect to one 
another, are suddenly brought into contact at t=0, a very strong evaporation is expected in 
the very beginning. The resulting important decrease of the liquid solvent concentration at 
the interface could thus result in an immediate gelation. Of course, the detailed physics of 
the first instants after the discontinuity is difficult to describe precisely and a simplifying 
assumption must be introduced to study the system [29]. In order to examine the possibility 
of a direct gelation of the interface, we will assume that right after the two systems are 
brought into contact, an equilibrium between the liquid and gas phases is reached at 𝑡𝑡 = 0+, 
which means that a jump of the two interfacial concentrations occurs in order to satisfy the 
boundary conditions. This initial jump can be considered as a disturbance for the two phases, 
and the corresponding perturbations in the two phases will then propagate away from the 
interface and create two boundary layers. In the very beginning, the perturbations remain 
close to the interface, and the two phases can thus be considered as infinitely deep. We will 
now show that a self-similar model of the system can be developed, which will allow 
determining the values of the interfacial concentrations after the jump. As a first step to build 
the self-similar model, we consider a vertical axis that follows the moving interface. This 
amounts to considering the following change of variables: 𝜏𝜏 = 𝑡𝑡 and ξ  = 𝑧𝑧 − ℎ(𝑡𝑡), where 
ℎ(𝑡𝑡) is the position (in the original 𝑧𝑧-coordinate) of the moving interface. Eqs. (13) and (14) 
then take the form: 
 

l l l
l

C C Cdh D
dτ ξ τ ξ ξ

 ∂ ∂ ∂∂
− =  ∂ ∂ ∂ ∂ 
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Then a similarity parameter 𝜂𝜂 ∈ [0, +∞] can be introduced, with 𝜂𝜂 = −ξ /√𝜏𝜏  in the liquid 
and with 𝜂𝜂 = ξ /√𝜏𝜏 in the gas. In terms of this parameter, one can easily check that the 
equations and boundary conditions become: 
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l liC C
η=∞
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g giC C
η=∞
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This system of equations is a boundary value problem, but it is worth emphasizing that the 
values of the unknown fields and of their derivatives at the interface also appear in the 
differential equations. Defining unknown parameters equal to these quantities, the problem 
can be directly solved using the MATLAB bvp4c function. For evident numerical reasons, 
the boundary condition at infinity were expressed far from the interface, but at a finite 
distance which was chosen as 𝜂𝜂 = 10.  
The results of our analysis are summarized in Fig. 4, for which ambient pressure and 
temperature were assumed (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎= 300o K, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = 1 atm). The initial concentration in the 
liquid is fixed to Cli =0.51. We have then considered several initial concentrations in the gas 
phase, which were equivalently expressed in terms of a relative humidity. To define 
precisely this quantity, we need to introduce first the saturated gas concentration ( gsC ) at 
ambient conditions. 

1 ( 1) 1 ( 1)
gs as li pa sat

gs as li pa g

C C p
C C p

δ δ
δ δ

=
+ − + −

   (32) 

Then the initial relative humidity RH% of the gas is defined in terms of the initial 
concentration giC by RH%= 100% × 𝐶𝐶𝑔𝑔𝑔𝑔  / 𝐶𝐶𝑔𝑔𝑔𝑔. In Fig. 4, we have plotted the liquid interfacial 
solvent concentration Cl∑  at 𝑡𝑡 = 𝑂𝑂+, i.e. the liquid interfacial concentration after the jump, 
for several initial relative humidities in the gas phase. The results show that for low initial 
humidity in the gas, immediate gelation can take place at the interface, as soon as the two 
liquid and gas layers are brought into contact. This immediate gelation is of course a 
consequence of the very strong evaporation that takes place in the system when the initial 
solvent concentration in the gas is very low. In these circumstances, the initial jump thus 
prevents all Marangoni instabilities and convection. Finally let us mention that we have also 
checked that neglecting the motion of the liquid-gas interface, i.e. setting the term 𝑑𝑑ℎ / 𝑑𝑑𝑑𝑑 ≡
0 in Eqs. (24) and (25), changes the results of Fig. 4 by less than 0.1 % (in fact, the results 
with 𝑑𝑑ℎ / 𝑑𝑑𝑑𝑑 = 0 were used as initial guess for the numerical procedure in bvp4c when 
𝑑𝑑ℎ / 𝑑𝑑𝑑𝑑 ≠ 0). 
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Fig. 4. Interfacial liquid mass fraction (Cl∑) after the jump for various initial humilities (RH%) in the gas 
phase (ambient pressure and temperature in the gas). The first bar (dark green) gives the value of the mass 

fraction in the liquid before the contact 

 

3.3. Comparison with other models 

To compare our model with the phenomenological models described before, we have 
analyzed the time evolution of the thickness ℎ(𝑡𝑡) as predicted in the different approaches. 
In Figs. 5 (a) and (b), we have plotted ℎ(𝑡𝑡) respectively for the linear and nonlinear models 
and we have also considered several values of 𝑃𝑃𝑃𝑃 and two values of 𝐻𝐻. In all figures, the 
results of our model are plotted using black full lines. Of course, we note that the final value 
of ℎ, corresponding to 𝑡𝑡 → ∞, is independent of the model and also of 𝐻𝐻 and of 𝑃𝑃𝑃𝑃. We also 
observe that increasing the Peclet number gives rise to a faster decrease of the thickness and 
that for a given 𝑃𝑃𝑃𝑃, evaporation is faster for the linear model that for the nonlinear one. 
Eventually, it is important to mention that is always possible to determine a value of the 
Peclet number such that the evolutions predicted by our model and that coming from the 
linear or nonlinear model are quite similar (for the linear and nonlinear models, these values 
are respectively Pe=4 and Pe=11 for H=2 and at Pe=1.2 and Pe=3 for H=5). This is an 
important fact since it allows to relate the value of the purely empirical Peclet number to the 
true physical quantities that are considered in our approach (diffusion in the gas, condition 
at the top of the gas, etc.). However even if the general trends predicted by our model and 
by the phenomenological ones are the same for appropriate 𝑃𝑃𝑃𝑃, it is worth emphasizing 
important differences, especially in the very beginning of the drying process. Indeed, the 
phenomenological models do not allow jump to occur at the very beginning, because the 



13 
 

evaporation flux, which is determined by the interfacial solvent concentration, remains 
always finite in these models, while it is theoretically infinite at 𝑡𝑡 = 0 in our approach. As 
an illustration of this difference, Fig. 6 is a plot of the time evolution of the interfacial solvent 
concentration in the liquid for our model and also for the linear model with Pe=14. We have 
considered a zero initial humidity in the gas and an initial concentration in the liquid equal 
to Cli =0.51. After the jump, the interfacial concentration becomes 0.4944 in our model (see 
Fig. 4). Fig. 6 then clearly emphasizes that even if the long-time behavior predicted by the 
two models are quite similar, the evolutions for small times are clearly different. In 
particular, immediate gelation takes places for our model, while this phenomenon is always 
impossible for the phenomenological models. Note also that the sudden slope change around 
t=0.29 is due to the fact that the bottom of the gel layer reaches the substrate (z=0) at that 
time. 

 

 
Fig. 5. Time evolution of the thickness: comparison between our model and the linear and 
nonlinear models (left and right panels respectively) for different Peclet numbers; (a) H=2 

and (b) H=5. 
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Fig. 6. Liquid mass fraction (Cl∑) at interface as a function of time for the linear (with 𝑃𝑃𝑃𝑃 = 14) and 

present models (RH%=0 and Cli =0.51).  
 

4. Other initial conditions 

From an experimental point of view, bringing suddenly the 2 phases into contact at 𝑡𝑡 = 0 is 
not quite realistic, rendering comparisons with experiments virtually impossible. For this 
reason, we have also examined the possibility of different initial conditions and a different 
start of the drying process, which could more easily be considered in experiments. For         
𝑡𝑡 < 0, we now consider an equilibrium situation for which the gas and liquid are in contact 
and for which the humidity of the gas is such that no evaporation takes place. The system is 
supposed at ambient pressure and temperature (300°𝐾𝐾, 1 atm), which corresponds for a water-
PVA mixture to a saturation pressure 23 52 10satp . −= × atm. For a given water concentration 
in the liquid, Raoult’s law allows then to determine the corresponding concentration in the 
gas. Then a sudden Joule expansion of the gas is allowed to take place at 𝑡𝑡 = 0, which keeps 
the temperature constant and decreases the (total) pressure 𝑃𝑃𝑡𝑡. Since the propagation of 
pressure perturbations is very fast, one can consider an immediate pressure decrease in the 
gas, which initiates evaporation, with a jump at the interface, similar to that described earlier. 
Fig. 7 is a plot of the concentration at the interface after the jump as a function of the post-
expansion pressure Ptafter and for different initial concentrations in the liquid phase. As 
expected, the jump in the interfacial concentration increases with the imposed pressure drop 
and for sufficiently low post-expansion pressures and sufficiently low initial water 
concentrations in the mixture, immediate gelation can take place, preventing Marangoni 
convection.  
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Fig. 7. Interfacial liquid mass fraction (Cl∑) after the jump as a function of the post-expansion pressure 

Ptafter (in atm).  
 

4. Conclusion 

In this paper, we have built a model for the drying process of a polymer solution taking into 
account the physics of the upper gas layer and its interactions with the liquid. During the 
drying process, the solvent evaporates, which results in a decrease of lC  and of the thickness 
of the binary mixture. When the mass fraction of liquid reaches the so-called gelation mass 
fraction, a phase-change takes place near the free surface and the upper part of the mixture 
is not a liquid anymore. Then, as drying proceeds, the whole binary liquid layer tends 
towards gelation and a dryer and dryer gel layer progressively invades the whole system, 
until evaporation finally ceases. A large thickness of the gas layer leads to a slower drying 
process, because the evaporation rates is smaller in that situation. Our model has also been 
compared with previous approaches [20,22] for which a phenomenological law was 
introduced to describe the evaporation flux. In those works, the importance of the 
evaporation flux is described by a Peclet number and we proved that for appropriate values 
of this number, a good global agreement between our model and the other ones can be found. 
Otherwise stated, our model allows to relate the value of the purely empirical Peclet number 
to true physical quantities such as diffusion in the gas, condition at the top of the gas, etc., 
and thus to determine theoretically the value of the Peclet number corresponding to a given 
practical situation. Another important result of our work is the description of possible 
immediate gelation at the liquid-gas interface when evaporation is induced in a rather sudden 
way. This immediate gelation is related to the very high (theoretically infinite) evaporation 
flux predicted by our approach and impossible with the other models. This immediate 
gelation could thus prevent Marangoni convection in the system, which could clearly be of 
interested in some practical situations.  
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