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Abstract—Despite the massive adoption of HTTP adaptive
streaming technology, buffering is still the most harmful event for
QoE in video streaming. Previous studies have shown that buffer-
ing is not only detrimental for the overall user experience, but is
also highly correlated to viewer engagement. The occurrence of
buffering is particularly critical in cellular networks and mobile
video deployments, as network conditions are less stable and
network resources more limited. In this context, monitoring and
properly predicting the QoE of video streaming services becomes
paramount to cellular network operators, who need to offer high
quality levels to reduce the risks of customers churning for quality
dissatisfaction. In this paper, we present a novel approach to
multi-dimensional QoE prediction in mobile video using machine
learning models. Contrary to previous models for QoE prediction
in video streaming, which are generally uni- or low-dimensional
and model the impact of single video descriptors independently,
we use a high-dimensional input space to model the impact of
buffering and initial delay on QoE. We train and test the proposed
models on a publicly available mobile video dataset, generated
from subjective QoE tests with real viewers. Besides improving

prediction performance, the proposed models show that there is
a clear influence of other buffering pattern descriptors generally
neglected in previous models - in particular those linked to the
occurrence of the last stalling event, shedding light on new KPIs
to monitor for better QoE assessment in video streaming.

Keywords—QoE; Mobile Video Streaming; Predictive Models;
Machine Learning.

I. INTRODUCTION

Quality of Experience (QoE) is becoming one of the
leading concepts for network management and performance
evaluation in operational networks. The intensifying competi-
tion among network operators – and in particular in the cellular
networks domain, is forcing Internet Service Providers (ISPs)
to integrate QoE into the core of their network monitoring and
management systems. Among the most relevant QoE-sensitive
services consumed by end customers in mobile networks,
mobile video takes the pole position. Indeed, mobile video
traffic accounts today for more than 60% of the total mobile
data traffic [1]. As such, there is an ever-growing interest from
cellular network operators to better understand and assess the
performance of their networks as perceived by the end users
watching video streaming on their devices.

The massive adoption of end-to-end encryption for content
distribution - HTTPS, and in particular for video content,
motivates the usage of monitoring tools embedded directly
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at the end points of the service [4]; this allows to directly
measure application-layer metrics which are relevant to the
performance of the service as perceived by the end user.
There are different tools [5], [6], [19] which are capable of
monitoring application-layer metrics which are highly corre-
lated to QoE in video streaming services. Buffering events or
stallings, video quality/resolution switches and initial playback
delay are accepted today as the key application-layer metrics
which can be used to predict the QoE undergone by the video
watcher, using different models proposed and investigated in
the literature [7], [10], [12], [13], [15], [21], [23]–[25]. Out
of these metrics, stalling is the paramount one, specially when
it comes to mobile video watched in small end-devices such
as smartphones; in fact, in [11] we show that QoE for video
streaming in modern smartphones is actually slightly impaired
by video resolution changes.

While adaptive streaming technology is capable of reducing
stalling by reducing video quality and bandwidth requirements,
stalling is still the most harmful event for QoE in video
streaming. Recent studies show that the occurrence of stalling
is far from negligible in operational networks [8], [16], [18],
and especially in cellular networks [18], impacting not only
the overall user experience, but also user engagement [6],
[9]. For these reasons, having a highly accurate model for
QoE prediction in mobile video scenarios becomes of capital
interest for operators.

In this paper, we explore the possibility of improving
previous models for QoE prediction in mobile video by using
machine learning. State of the art models are generally uni-
or low-dimensional, mapping the number of stallings and the
stallings duration to QoE; in general, these models consider
only the impact of single video descriptors independently,
reducing their accuracy for the sake of simplicity. We present a
novel approach to multi-dimensional QoE prediction in mobile
video using machine learning models. Contrary to previous
models, we use a high-dimensional input space to capture
the impact of buffering and initial delay on QoE. We train
and test the proposed models on a publicly available mobile
video dataset [22], generated from subjective QoE tests with
real viewers and multiple stalling patterns. Besides improving
prediction performance, the proposed models show that there
is a clear influence of other buffering pattern descriptors
generally neglected in the past; for example, we show that,
in the case of stalling, the location of the final stalling event
has a non-negligible impact on QoE, as well as its duration. We
benchmark different machine learning based models, compare
the best of them to state of the art models, and apply feature



analysis and selection techniques to understand the combined
impact of different input features describing stalling patterns.
Using a decision tree-based regression model, we reduce
mean prediction errors by almost 50% as compared to the
most accurate state of the art model, i.e., the bi-dimensional,
exponential model proposed in [23].

The remainder of the paper is organized as follows: Sec. II
presents a brief overview of the related work. Sec. III presents
the different ML-based models used for QoE prediction bench-
marking, and describes the input features which are extracted
directly from the application-layer measurements. Evaluations
are reported in Sec. IV, including a characterization of the
publicly available subjective QoE measurements used in the
modeling exercise, the performance achieved by the proposed
models, and a comparison to state-of-the-art models. Features’
relevance for QoE prediction is also investigated in this section.
Finally, Sec. V concludes this work.

II. RELATED WORK

The problem of QoE assessment in HTTP video streaming
is already well-known and well studied, and different QoE
models for video streaming have been proposed in the past
[7], [10], [12], [13], [15], [21], [23]–[25]. Today it is well
accepted that stalling (i.e., stops of the video playback) and
initial delay on the video playback are the most relevant KPIs
for video streaming QoE [12]–[14], [23]. Quality switches
have also a relevant impact on QoE when considering adaptive
video streaming technology [15]; however, in [11] we recently
found that QoE for video streaming in modern smartphones is
actually slightly impaired by resolution switches, mainly due
to the screen size of such devices. Recent studies [21] show
that the position of stallings and their length have a relevant
impact on QoE, but do not attempt to use such metrics to
improve QoE predictions. A comprehensive survey of the QoE
of adaptive streaming can be found in [3].

Besides pure video quality modeling, other papers [6], [9],
[10] have addressed the problem of user engagement prediction
for HTTP video streaming.

When it comes to the problem of video streaming QoE
measurement in mobile networks, in [17] we introduced the
first on-line, large-scale monitoring system for assessing the
QoE of YouTube in cellular networks using passive, in-network
measurements only. The specific monitoring and assessment of
video streaming QoE in smartphones has been also extensively
studied in the past [4], [8], [11], [19], [26], [27]; in particular,
authors in [26] and [27] tackle the problem of QoE estima-
tion for mobile video streaming apps using machine learning
models to map network QoS to QoE.

This paper is complementary to previous work, as it
targets the enhancement of previously proposed models for
QoE prediction in mobile video streaming, using machine
learning to map application-layer metrics to QoE. Different
from [26], [27], our study focuses exclusively on the mapping
of application-layer metrics to QoE.

III. MACHINE LEARNING FOR MOBILE VIDEO QOE

In this paper we propose different Machine Learning (ML)
models for QoE prediction, using a high-dimensional feature

space as input for the QoE prediction exercise. The proposed
model targets the prediction of QoE in HTTP video streaming
for mobile scenarios, where smartphones are the default end-
device. As we said before and as shown in previous work
[11], video quality switches have a limited impact on video
streaming QoE in smartphones, given the small screen sizes
of such devices. Therefore, the proposed model does not take
into account quality switches as input information, and takes
as input the stalling pattern and playback delay of a video
streaming session. Nevertheless, the modeling approach is
generic and can be very easily extended to any other input
metrics, including information about quality switches, contex-
tual viewer information, network level QoS measurements, etc.

We assume that a measurement tool such as YoMoApp
[19] or similar measures the activity of the video player and
reports the occurrence of every single stalling/re-buffering
event during a video session, including their duration and
exact starting time. We assume that the tool also reports the
initial playback delay, which is the time elapsed between the
user video request and the actual playback start. Without loss
of generality, assuming a video session vi with ni stalling
events and an initial playback delay di, these measurements
are reported as two vectors sti = {0, sti(1), . . . , sti(ni)} and
sdi = {di, sdi(1), . . . , sdi(ni)}, where sti reports the starting
times of the ni stalling events and sdi their corresponding
duration. Together, sti and sdi fully describe the stalling
pattern undergone by video vi.

In addition, we assume that other video-related metrics
such as video duration, frames-per-second, and content class
(e.g., highly dynamic or mainly static content) are reported in
vector vmi. We note that the metric content class is not easy
to compute, but include it for the sake of completeness; in
any case, we show that the video content class has very weak
correlation to QoE, and that its impact as part of the model is
negligible.

The targeted model should be capable to predict the overall
quality as experienced by the end user watching the corre-
sponding video vi, using as input vector sti, sdi and vmi.
In this work we take a standard Mean Opinion Score (MOS)
metric to gauge end-user QoE, using an ACR rating scale [2],
ranging from “bad” QoE (i.e., MOS = 1) to “excellent” (i.e.,
MOS = 5) QoE. The corresponding model can be therefore
depicted as:

MOSi = MOS (vi) = Φ (sti, sdi, vmi)

We use the corresponding input vectors sti, sdi, and vmi to
embed video session vi into a high-dimensional feature space
XRm where model Φ shall perform the prediction. Tab. I
summarizes the set of m input features used for mobile video
QoE prediction, which are derived from input vectors sti, sdi,
and vmi. The full set includes m = 19 different features
characterizing the stallings pattern undergone by the video
vi, as well as the particular video contents. Features focus
on number and frequency of stalling events, initial playback
delay, duration of stallings, as well as their particular location
within the video stream.

Model y = Φ(X) is constructed by learning a specific
mapping between input features X and prediction target y,



using a training dataset for which real QoE MOS scores are
provided. In this work, we use a publicly available mobile
video dataset [22] for model training and validation, generated
from subjective QoE tests with real viewers/smartphone users
and multiple stalling patterns. Note that model Φ is a regres-
sion model, as we assume the most general scenario where the
target MOS scores are continuous values in the range [1, 5].

For the sake of benchmarking, we evaluate 11 different
machine learning models or regressors, all of them well known
in the machine learning literature [28]. These include: support
vector machines (SVM), decision trees - random tree, bagging-
based tree, continuous-prediction tree (M5P) [20], decision
stump (DS), discrete regression tree, 3-layers feed-forward
neural networks (MLP), random forest (RF), linear and pace
regression, and locally-weighted learning (LWL). We use the
well-known Weka Machine-Learning software tool1 to cali-
brate these models and to perform the evaluations. Parameters
are set manually for all the models, performing an extensive
trial-and-error testing phase to obtain the best results. We
address the interested reader to [28] and to the Weka documen-
tation for additional information on the different configuration
parameters of each model.

The finally selected model (M5P) which achieves the
best prediction performance is based on decision trees; while
decision trees are normally applied in classification problems,
it is also possible to use them in regression problems, using
different techniques to deal with discretized and missing values
[20]. In particular, we adopt the techniques presented in
[20], where conventional decision trees are extended with
the possibility of performing linear regression at the leaves.
Decision trees are a very appealing option; they are simple yet
very fast and effective. They are also very easy to interpret,
and directly provide filtering rules. In addition, decision trees
explicitly show the importance of different features, as the
learning algorithm automatically performs feature selection by
choosing the most discriminating features. This is a paramount
advantage as compared to other ML approaches, as decision
trees are more robust to noisy or loosely correlated-to-target
input features. Evaluation results are presented next.

IV. EVALUATION RESULTS

In this section we compare the performance of the afore-
mentioned regressors using a publicly available subjective
QoE measurements dataset. We first describe this dataset and
provide a brief overview on the characteristics of the most
relevant features. Then we jump into the benchmarking results
achieved with the 11 proposed regressors. The best resulting
model (M5P) is then compared to 3 different state-of-the-
art models proposed in [23]–[25]. Finally, we analyze the
relevance of the different input features used in the result-
ing model for QoE prediction, using group-correlation-based
feature selection techniques and intra-features correlation anal-
ysis. It is important to note that all ML models are trained
and validated by 10-fold cross-validation, reducing overfitting
and thus biased results. In a generic k-fold cross-validation
approach, the dataset is randomly partitioned into k equal sized
sub-sets. Of the k sub-datasets, a single one is used as the
validation data for testing the model, and the remaining k-1

1Weka Data Mining, at http://www.cs.waikato.ac.nz/ml/weka/.

Table I. INPUT FEATURES FOR MOBILE VIDEO QOE PREDICTION.

feature description

f1 num stalls total number of stallings

f2 freq stalls frequency of stallings

f3 tst total stalling time

f4 rel tst tst, relative to video duration

f5 ini delay initial playback delay

f6 rel ini delay ini delay, relative to video duration

f7 asd average stalling duration

f8 rel asd asd, relative to video duration

f9 t last stall end
elapsed time between end of last

stalling and end of the video

f10 sd last duration of last stalling

f11 rel sd last sd last, relative to video duration

f12 loc last stall
elapsed time between start of the

video and start of last stalling

f13 rel loc last stall loc last stall, relative to video duration

f14 min sd minimum stalling duration

f15 median sd 50%-percentile of stalling duration

f16 max sd maximum stalling duration

f17 fps video frames per second

f18 content type video category (e.g., sports, news, etc.)

f19 video duration total length of the video

MOS average video MOS score

sub-sets are used as training data. The cross-validation process
is then repeated k times, with each of the k sub-sets used once
as validation data. The obtained k results are then averaged to
produce a single estimation.

A. Data Description & Characterization

Training and testing of the proposed models is performed
on top a publicly available subjective QoE measurements
dataset. The LIVE-Avvasi Mobile Video database [22] consists
of 174 distorted videos generated from 24 reference videos
with 26 unique stalling events and 4830 ratings obtained
from 54 subjects who viewed the videos on mobile devices.
Reference videos correspond to HD content from YouTube and
Vimeo, with a duration range between 29 and 134 seconds
(after adding stalling events). Video content spans different
categories, including more dynamic contents such as sports
to more stable contents such as documentaries, as well as
advertisement and music clips. Quality ratings are provided
on a standard single stimulus, continuous scale basis, but
reported as a Degradation MOS score (DMOS), using a hidden
reference removal approach [21]. The dataset includes only
the average, per video and per condition DMOS scores. To
make results comparable to previous work on video QoE
modeling, we re-scale DMOS scores to standard MOS scores,
using subjective testing for reference quality assessment. The
resulting overall quality is therefore rated from bad (i.e., MOS
= 1) to excellent (i.e., MOS = 5).

Fig. 1 presents a brief characterization of the studied
dataset. MOS scores range from 1.9 to 4.8, with about 20% of
the videos rated as poor quality (i.e., MOS < 3), 25% rated
as good quality (i.e., 3.5 < MOS < 4), and 20% rated as
excellent quality (i.e., MOS > 4.5). More than 50% of the
tested conditions have 3 or more stalling events, and about
20% of the video conditions consider perfect quality, without
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Figure 1. LIVE-Avvasi Mobile Video database description. More than 50% of the tested video conditions have 3 or more stalling events, and about 20% of
the video conditions consider perfect quality conditions, without stalling. Average stalling duration ranges mainly from 5 to 15 seconds.
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Figure 2. Linear correlation (PLCC), rank correlation (SRCC) and informa-
tion gain (IG) for input features to MOS scores.

stalling. Stalling events are clearly visible, with ∼55% of the
videos having an average stalling duration between 5s and 15s.

To have a first impression on the relevance of each of the
19 input features on QoE, Fig. 2 reports the Pearson linear
correlation coefficients (PLCC), the Spearman rank correlation
coefficients (SRCC), and the information gain (IG) for each of
the 19 input features with respect to the reported QoE MOS
scores. As expected, there is a very strong, negative correlation
between QoE and number of stallings, frequency of stallings,

and total stalling time. The average stalling duration and the
initial delay also show strong negative correlation to MOS
scores. A very interesting observation is that the location of the
last stalling event as well as the duration of the longest stalling
event are both highly correlated to MOS scores, suggesting that
these metrics could potentially be used to enhance prediction
results.

B. Machine Learning Models Performance

We move on now to the evaluation and benchmarking of
the proposed models. As we said before, testing and validation
are performed following a standard 10-fold cross-validation
approach, reducing as such the impact of potential over-
fitting and biased conclusions. All the 19 input features are
considered in these evaluations; feature selection is conducted
in Sec. IV-D. Performance is evaluated on the basis of three
standard metrics used in regression problems: PLCC coeffi-

cients, root mean squared error RMSE =

√

mean((X̂ −X)2),

and mean absolute error MAE =mean(|X̂−X |), whereX and

X̂ are real and predicted values respectively. The MAE metric
penalizes all the errors equally, whereas the RMSE metric puts
a relatively high weight on larger errors.

Tab. II reports the obtained comparative results for the 11
ML models. Surprisingly, the worst performing model is the
MLP, based on neural networks; still, all models achieve a
linear correlation above 0.84 and small errors, below 0.31
points in the MOS ACR scale on average. SVM and RF
perform particularly well, achieving basically the same results
and outperforming almost all the other models. The bagging-
based tree model and the pace regression model also achieve
an outstanding performance, with similar results. However,
the M5P continuous-prediction tree model is the one that
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Figure 3. Performance of top-5 ML models.

Table II. BENCHMARKING RESULTS FOR ML MODELS.

ID model PLCC RMSE MAE

m0 SVM 0.950 0.236 0.169

m1 RF 0.949 0.240 0.169

m2 random tree 0.898 0.344 0.243

m3 MLP 0.841 0.469 0.255

m4 bagging tree 0.946 0.246 0.176

m5 LWL 0.852 0.397 0.297

m6 M5P 0.957 0.220 0.167

m7 linear regression 0.878 0.362 0.310

m8 additive regression DS 0.921 0.301 0.231

m9 pace regression 0.948 0.242 0.179

m10 discrete regression tree 0.911 0.315 0.224

achieves the best results, with a linear correlation of almost
0.96, average absolute error below 0.17 and a RMSE = 0.22.

Fig. 3 provides more details on the results achieved by
the top-5 models, depicting in (a) the predicted MOS scores
vs. the real ones and (b) the distribution of the absolute

errors, MOS - M̂OS. The 5 models perform similarly, without
incurring in higher errors in particular regions of the MOS
scale. Indeed, errors look equally distributed and equally sized
along the complete scale; in addition, as observed in the
distribution of errors in (b), all the models tend to very
slightly underestimate the MOS scores, and more than 80% of
the video sessions QoE are estimated with an absolute error
below 0.25. A negligible fraction of the sessions’ QoE values
are estimated with absolute errors above 0.5. Based on the
aforementioned nice properties offered by decision trees, we
select the M5P decision tree model as the underlying model
for QoE prediction.

Fig. 4 depicts an approximated version of the correspond-
ing M5P model, using binning on the prediction target MOS
scores. Note that in this case the tree leaves seem to overlap,
which shall be interpreted as only for visualization purposes.
The binning process actually provides non-overlapping leaves.
The first node of the tree corresponds to the location of the
last stalling event, relative to the video duration, showing its
relevance. Indeed, when stallings happen at the very beginning
of the video session - i.e., in the first 15% of the total video
playback time, QoE is mainly defined by the initial playback
delay and the total stalling time, relative to the video duration.
This is coherent with the observations done in [24], [25], in
which memory and recency effects have a key role in the

Table III. BENCHMARKING RESULTS FOR M5P AND STATE OF THE ART

MODELS.

model PLCC RMSE MAE

M5P 0.957 0.220 0.167

exp. (original) [23] 0.844 1.516 1.361

exp. (fit) 0.907 0.437 0.323

HW [24] 0.891 – –

DQS [25] 0.864 0.300 –

overall quality perception of the viewer. On the contrary, when
the last stalling event occurs in the complement, the QoE
is mainly defined by the number of stallings and their total,
relative duration.

The finally obtained M5P model can be transformed into
a linearized stump-like tree with 2 leaves, in which each leave
represents a linear mapping between the most relevant inputs
and MOS scores, and the split is done on the basis of number
of stallings (f1). The model can be expressed as:

MOS =















6
∑

i=1

αi × F (i) + α0, if f1 ≤ 1.5

6
∑

i=1

βi × F (i) + β0, if f1 > 1.5

where F = {f4, f1, f8, f6, f9, f17} correspond to the most
relevant features selected by the M5P model, which include
relative total stalling time, number of stallings, relative initial
delay and average stalling duration, elapsed time since the end
of the last stalling event till end of the video, and video frames
per second, the latter with an almost negligible weight α6, β6.

C. Benchmarking to SotA Prediction Models

We compare now the performance achieved by the selected
M5P model, with that achieved by 3 different state-of-the-
art models proposed in [23]–[25]. The model presented in
[23] is one of the most cited models in the video streaming
QoE literature, and corresponds to an exponential-based, bi-
dimensional model, which maps the number of stallings and
their average duration into a MOS score. We compare two
different variants of this model: exp. (original) corresponds to
the exponential model using as parameters the default values
presented in [23]; to be fair to this model, we additionally test
a re-calibrated version referred to as exp. (fit), where model
parameters are fit to the used dataset. The model presented
in [24] is a more complex model, which accounts for non-
linearities and recency effects, taking as input not only the
number and duration of stallings, but also their position in the
video stream. The model uses a standard Hammerstein-Wiener
non-linear filter model with memory to capture recency and
hysteresis effects of human perception, and is calibrated in the
same dataset used in this paper. We refer to this model as
HW model. Finally, the model presented in [25] uses a state-
machine-based model to account for the cumulative impact of
stallings and increased satisfaction during normal playback.
We refer to this model as DQS (Delivery Quality Score).

Tab. III reports the obtained results. The table only reports
partial results for the HW and DQS models, which come
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Figure 5. Performance of M5P and exponential, state of the art models.

directly from the obtained results in [24], [25]. The M5P
model clearly outperforms state-of-the-art models, providing a
much higher linear correlation to the actual MOS scores. The
exponential model comes in the second place, after a careful re-
calibration of its underlying parameters. Still, prediction errors
for the exp. (fit) model are as large as twice the errors achieved
by the proposed M5P model. Fig. 5 depicts (a) the predicted
MOS scores vs. the real ones and (b) the distribution of the
absolute errors incurred by the M5P model and the exp. model,
using both original and fit parameters. Results achieved with
the original exponential model are very poor, as this model
systematically underestimates QoE; the re-calibrated version
of the model achieves much better results, but still suffers
from underestimation bias. We can therefore conclude that the
proposed M5P model predicts QoE better than state-of-the-art
models.

D. Feature Space Analysis

To conclude the study, we present a very brief analysis
on the impact of the different input features on QoE. Fig. 6
plots the inter-features PLCC coefficients and linear correlation

to MOS scores considering (a) the top-4 strongest correlated
to MOS features, (b) the remaining 13 features describing
a stalling-pattern, and (c) the top-6 features automatically
selected by group-correlated-based feature selection. Colors
are only used to distinguish features, but the thicker the edge
connecting two nodes, the higher the PLCC coefficient value.

Besides reflecting both a strong correlation to MOS scores
and among input features, it is very interesting to verify that
automatic feature selection is capable to select those features
which basically describe the M5P model. In particular, we
see that, even if some of the selected features have an almost
negligible one-to-one correlation to MOS scores - e.g., such
as video frames per second (fps), they play a role within the
model achieving the best prediction performance, i.e., the M5P
one.

V. CONCLUDING REMARKS

In this paper we have introduced a novel machine learning
based model for multi-dimensional QoE prediction in mobile
video streaming. Based on decision trees, the proposed model
outperforms previously proposed state-of-the-art models by
reducing prediction errors between 25% and almost 50%. Be-
sides improving prediction performance, the proposed model
shows that there is a clear influence of other stalling pattern
descriptors generally neglected in previous models - in par-
ticular those linked to memory effects and the occurrence of
the last stalling event. As such, this model permits to enhance
current measurement tools and systems for video streaming
QoE prediction, suggesting novel metrics to measure in the
future.
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Figure 6. Circular plots reflecting inter-features PLCC coefficients and linear correlation to MOS scores. In (c), group-correlated-based feature selection results
in 7 features which include the F features describing the M5P model.
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