C. Troupin*, A. Barth*
C. Muñoz*, S. Watelet*, & J.-M. Beckers*

*GHER-University of Liège
*Balearic Islands Coastal Ocean Observing and Forecasting System

Notebooks for documenting work-flows
Motivation

Reproducibility
Notebooks: interactive computational environments

Notebooks combine:

1. code fragments that can be executed,
2. text for the description of the application and
3. figures illustrating the data or the results.

```python
In [2]:
import numpy as np
import matplotlib.pyplot as plt

In [6]:
x = np.arange(0, 6, 0.1)
y = np.cos(x) + 1.5 * np.sin(2 * x)

In [7]:
plt.plot(x, y)
plt.show()
```

Data

Let's create a simple function.

Make a simple plot
Notebooks: interactive computational environments

Notebooks combine:

1. code fragments that can be executed,
2. text for the description of the application and
3. figures illustrating the data or the results.

"Digital Playground"

"Data Story Telling"

"Computational Narratives"
Notebooks: interactive computational environments

Notebooks combine:

1. code fragments that can be executed,
2. text for the description of the application and
3. figures illustrating the data or the results.

"Interactive notebooks: Sharing the code", Nature (2014)
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261
Interactive environments: what exists today?
http://rmarkdown.rstudio.com/

Your data tells a story. Tell it with R Markdown.
Turn your analyses into high quality documents, reports, presentations and dashboards.
http://rmarkdown.rstudio.com/

Creation of dynamic, self-contained documents with embedded chunks of code.

Features of interest:

- Possible to export in journal
 (https://github.com/rstudio/rticles) or presentation formats
- \LaTeX templates to ensure journal standards
Apache Zeppelin

https://zeppelin.apache.org/

Apache Zeppelin

Web-based notebook that enables data-driven, interactive data analytics and collaborative documents with SQL, Scala and more.

TECHNOLOGIES

- Apache Spark
- SQL
- Python
Apache Zeppelin

https://zeppelin.apache.org/

Web-based notebook for
data-driven, interactive and collaborative documents.
Intended for *big data* and large scale projects.

Features of interest:

- Languages can be mixed in the same notebook
- Users can write their own interpreter (*language backend*)
http://jupyter.org/ (stands for Julia - Python - R)

The Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more.

Language of choice Share notebooks Interactive widgets Big data integration
http://jupyter.org/ (stands for Julia - Python - R)

Web application for the creation and sharing of notebook-type documents. Evolved from IPython, a command shell for interactive computing (2001).

Features of interest:

- More than 40 language *kernels* available
- Can be used as a multi-user server (*jupyterhub*)
 - avoid installation steps on several users’ machine
http://beakernotebook.com/

The Perfect Tool for Iterative Exploration
http://beakernotebook.com/

Notebook-style development environment for working interactively with large and complex datasets.

Features of interest:

- Usage of different languages in different cells, within the same notebook
- Language manager
https://cocalc.com/

"Collaborative Calculation in the Cloud"
https://cocalc.com/

"Collaborative Calculation in the Cloud"

Web-based cloud computing platform, formerly called formerly called SageMathCloud.

Features of interest:

▶ Support of many languages
▶ Users to upload their file on the platform to be later read or processed
<table>
<thead>
<tr>
<th>Tool name</th>
<th>R-Markdown</th>
<th>jupyter</th>
<th>beaker</th>
<th>Cocalc</th>
<th>Zeppelin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool name</td>
<td>R-Markdown</td>
<td>jupyter</td>
<td>beaker</td>
<td>Cocalc</td>
<td>Zeppelin</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>GitHub</td>
<td>rmarkdown</td>
<td>notebook</td>
<td>beakerx</td>
<td>cocalc</td>
<td>zeppelin</td>
</tr>
<tr>
<td>Tool name</td>
<td>R-Markdown</td>
<td>jupyter</td>
<td>beaker</td>
<td>Cocalc</td>
<td>Zeppelin</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>GitHub</td>
<td>rmarkdown</td>
<td>notebook</td>
<td>beakerx</td>
<td>cocalc</td>
<td>zeppelin</td>
</tr>
</tbody>
</table>

Languages

- GitHub: R, Python, SQL, Bash, Rcpp, Stan, JavaScript
- R, Python, R, Scala, Bash, Octave, Rubi, Fortran, PHP, ...
- Julia, Python, R, Javascript, C++, Torch, Scala, Bash, Octave, Rubi, Fortran, ...
- R, Python, Octave, Cython, Julia, Java, C/C++, Perl, Ruby
- Scala, Python, SparkSQL, Hive, Markdown
Comparison

<table>
<thead>
<tr>
<th>Tool name</th>
<th>R-Markdown</th>
<th>jupyter</th>
<th>beaker</th>
<th>Cocalc</th>
<th>Zeppelin</th>
</tr>
</thead>
<tbody>
<tr>
<td>GitHub</td>
<td>rmarkdown</td>
<td>notebook</td>
<td>beakerx</td>
<td>cocalc</td>
<td>zeppelin</td>
</tr>
<tr>
<td>Languages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export formats</td>
<td>HTML, PDF, MS Word, Beamer, HTML5 slides, …</td>
<td>PDF, LaTeX, HTML, Markdown, reST</td>
<td>Beaker format</td>
<td>JSON</td>
<td></td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th>Tool name</th>
<th>R-Markdown</th>
<th>jupyter</th>
<th>beaker</th>
<th>Cocalc</th>
<th>Zeppelin</th>
</tr>
</thead>
<tbody>
<tr>
<td>GitHub</td>
<td>rmarkdown</td>
<td>notebook</td>
<td>beakerx</td>
<td>cocalc</td>
<td>zeppelin</td>
</tr>
</tbody>
</table>

Languages

<table>
<thead>
<tr>
<th>Tool name</th>
<th>R-Markdown</th>
<th>jupyter</th>
<th>beaker</th>
<th>Cocalc</th>
<th>Zeppelin</th>
</tr>
</thead>
<tbody>
<tr>
<td>GitHub</td>
<td>rmarkdown</td>
<td>notebook</td>
<td>beakerx</td>
<td>cocalc</td>
<td>zeppelin</td>
</tr>
</tbody>
</table>

Export formats

<table>
<thead>
<tr>
<th>Tool name</th>
<th>R-Markdown</th>
<th>jupyter</th>
<th>beaker</th>
<th>Cocalc</th>
<th>Zeppelin</th>
</tr>
</thead>
<tbody>
<tr>
<td>GitHub</td>
<td>rmarkdown</td>
<td>notebook</td>
<td>beakerx</td>
<td>cocalc</td>
<td>zeppelin</td>
</tr>
</tbody>
</table>

Cloud deployment

<table>
<thead>
<tr>
<th>Tool name</th>
<th>R-Markdown</th>
<th>jupyter</th>
<th>beaker</th>
<th>Cocalc</th>
<th>Zeppelin</th>
</tr>
</thead>
<tbody>
<tr>
<td>GitHub</td>
<td>rmarkdown</td>
<td>notebook</td>
<td>beakerx</td>
<td>cocalc</td>
<td>zeppelin</td>
</tr>
</tbody>
</table>

- **R-, Python, SQL, Bash, Rcpp, Stan, JavaScript**
- **Julia, Python, R, Scala, Bash, Octave, Rubi, Fortran, PHP, ...**
- **R, Python, Octave, Cython, Scala, Bash, Octave, Rubi, Fortran, ...**
- **Scala, Python, SparkSQL, Hive, Markdown**

- **HTML, PDF, MS Word, Beamer, HTML5 slides, ...**
- **PDF, LaTeX, HTML5, Markdown, reST**
- **Beaker format**
- **JSON**

- **JupyterHub**
- **Beaker Lab (discontinued)**
- **Yes**
Summary

1. Most of the environments provide support for many languages.
2. Beaker is the only option allowing the mix of different languages, but its installation/utilisation are not trivial.
3. JupyterHub is an option for the deployment on a server so that multiple users can work at the same time using the same infrastructure.
Notebook example:
divaND interpolation
A quick example of how to document workflow

Click here
Notebooks are interactive computational environments combining code, text, results, figures...
Conclusions

1. Notebooks are interactive computational environments combining code, text, results, figures...

2. Notebooks are not Virtual Research Environment, but can be one of their components
Conclusions

1. Notebooks are interactive computational environments combining code, text, results, figures...

2. Notebooks are not Virtual Research Environment, but can be one of their components

3. Notebooks are not new (15 years) but their use has evolved
Conclusions

1. Notebooks are interactive computational environments combining code, text, results, figures...

2. Notebooks are not Virtual Research Environment, but can be one of their components

3. Notebooks are not new (15 years) but their use has evolved

4. Such a tool is great to document a workflow
 Example: climatology production
Future work

1 Examples using SeaDataCloud data
Future work

1. Examples using SeaDataCloud data
2. Application with data API (SOCIB, NOAA OneStop)
Future work

1. Examples using SeaDataCloud data
2. Application with data API (SOCIB, NOAA OneStop)
3. Notebook citation

See on Wednesday