Naturalist historical databases help us to better understand plant-bee interactions and their dynamics across space and time

Floriane JACQUEMIN1, M. Folschweiller2, M. Drossart3, Pierre RASMONT3, Cyrille VIOLLE3 & MARC DUFRENE1

floriane.jacquemin@ulg.ac.be

- Introduction -

In recent decades, the intensification of agriculture and urbanization has been accompanied by an overall loss of biodiversity in the Belgian countryside [1]. Such landscape disturbances led to an overall reduction of floral resources availability at a country-wide scale.

The wild bee decline was highlighted in the 1980s in the country [2]. Because flowers are key resources for bees, the wild bee decline is likely to be caused by plant diversity loss.

- A unique comprehensive country-wide dataset -

Thanks to collaboration programs like BELBEES (BELSPO) and SAPOLL (Interreg V Fwvl) projects, we have at our disposal historical databases at country-wide scale.

This dataset currently contains:

• observations of ca. 300,000 captured specimens in Belgium since 1900;
• information about the plant species visited at sampling time for almost 50,000 identified specimens (ie. plant-bee interaction database).

- Data analysis -

We split a priori the historical plant-bee interaction database into three time periods [3,8] and applied network-based approach to each period.

• < 1950: before agricultural mechanization - 257 links (113 bees*223 plants)
• 1950-1990: agricultural intensification - 1182 links (176 bees*384 plants)
• > 1990: first environmental policy decisions - 967 links (149 bees*248 plants)

- Conclusion and perspectives -

This shift towards more specialist species could have led to more stability and resilience in response to land-use intensification.

By crossing network analysis and occurrence data of bee and plant species, it will be possible to point out the community-level changes in pollination services outside crops at a biogeographical scale.

The economic argument of the crop pollination service seems insufficient to ensure their protection in highly agricultural landscapes. To implement an effective action plan for wild bees, it is thus essential to understand their relationships with foraged wild plant species.

Network analysis

This approach, stemmed from the graph theory [5], is relevant to analyze the structural properties and dynamics of plant-pollinator interaction networks (e.g. [6]). It allows to

• investigate species composition, their interactions and dynamics over time;
• relate network patterns to ecological processes: species behaviour, species roles, groups of interacting species and their dynamics.

We calculated different indices to characterize the topology of the three networks and the ecological roles of bees within these networks.

It appeared notably that networks have suffered a loss of bee species specialization due to a loss of very specialist bee species across time but also an increase in the number of interactions involving the remaining bee species.

- TAKE HOME MESSAGE -

This work highlights the interest of:

• compiling opportunistic naturalist databases
• and to systematically inform the host plants on which species are observed during sampling time

To assess the impact of land-use changes on plant-bee interactions, thanks to unique historical time series.

Such initiative is a step forward in the perspective of pollination service mapping and tracking of changes at a biogeographical scale.

References

This study was supported by the BELBEES Project “Multidisciplinary assessment of Belgian wild bees decline to adapt pest management” (BELSPO - B1535/A1/BELBEES), the SAPOLL Project “Savoirs non pollinisateur/Geenenmakers van pollinatie” (Interreg V Fwvl), the program SCOPES financed by the European Regional Development Fund, and the European Research Council (ERC) Starting Grant Project “Eco-F unfairly and biophysical constraints on domestication in crop plants” (Grant ERC StG-2012, 253546-CONSTRAINTS).