The LNQ25 and ELN PVT metrics exhibit a good sensitivity to sleep deprivation and are independent from the subject

Philippe LATOUR and Marc VAN DROOGENBROECK
philippe.latour@ulg.ac.be, m.vandroogenbroeck@ulg.ac.be

dpt. of Electricity, Electronics and Computer Science – University of Liège – Belgium

Introduction & Context

• Performance of people undergoing critical tasks (like driving) are impaired by the lowering of their vigilance level, due to sleep deprivation.
• Automatic systems compute an alertness level and detect drowsiness. Their assessment proceeds by comparison with validated indices.
• We consider the 10min standardized PVT (Psychomotor Vigilance Test) as a validated index

PVT metrics computed on short time intervals

• Some metrics computed with all the reaction times (RT) of a 10min PVT are good indicators of sleep deprived states.
• But, the assessment of "real-time" performances requires indices to be computed on much shorter time intervals (from 20sec to 2min).

Classification of PVT metrics into SDP or Non-SDP

• PVT metrics measure the performance of a person and we assume it to be related in some ways to the alertness level of this person.
• We separate the range of possible metrics values into two classes: Sleep Deprived state (SDP) and not in a Sleep Deprived state (Non-SDP).

Materials and Methods

• 22 volunteers (11 males, 11 females, mean 22.2 y., range 19-34 years)
• 28h sleep deprivation standard PVT protocol with six PVT sessions. [1]
• The first two PVT are in Non-SDP condition (9h30, 10h30 Day 1) while the other PVT are in SDP condition (2h30, 3h30, 10h30, 11h30 Day 2).
• The subjects had a normal sleep-wake cycle during the week prior the experiment (no sleep deprivation, jet lag or shift work and no medication).

PVT metrics

We compute the usual PVT metrics; meanRT, meanRS (Reaction Speed) and LN500 (500ms lapses number). We also compute the LNQ25 (adaptive lapses number computed with a subject dependent threshold) and the ELN (Expected Lapse Number, computed from a subject dependent estimation of the lapse probability). [2]

Results

Effect Size

For a given subject, the effect of sleep deprivation is measured by the difference of PVT metrics in the SDP and Non-SDP states. The ratio of the mean by the standard deviation (for all subjects) of these differences is the "Effect Size" (ES) of sleep deprivation for the PVT metrics. [3]

Subject-independent SDP/Non-SDP classification

We consider the two distributions of the values of one PVT metric; when people are in a SDP state or not. These distributions, when computed for one subject, are often well separated by a subject-dependent threshold. The extend to which they are also clearly separated by a subject-independent threshold when computed for all subjects is one way to assess a form of independence from the subject for the PVT metrics.

Evaluation of the SDP/Non-SDP classification

We use a subject-independent threshold to class the PVT metric values (SDP/Non-SDP):
• PVT metrics values in SDP states upper (resp. lower) than the threshold are True Positive (TP) (resp. False Negative (FN)).
• PVT metrics values in Non-SDP states lower (resp. upper) than the threshold are True Negative (TN) (resp. False Positive (FP)).

Conclusions

We observed that the LNQ25 and ELN metrics enable a good classification of the SDP condition for time intervals greater than or equal to 3min, independently of the subject. And, these metrics provide also a good sensitivity to sleep deprivation. They outperform the usual metrics for both criteria. For time intervals below 3min, the performances first degrade progressively and then more rapidly below 1min.

References


Acknowledgements

This study was supported by the University of Liège, Belgium. The dataset has been collected with the help of the Phasya Company.