Some notions of compactness in Functional Analysis and one related question about diametral dimensions

Loïc Demeulenaere (FRIA-FNRS Grantee)

Comprehensible Seminars - ULiège

October 5, 2017
Introduction

Some notions of compactness

Diametral dimensions
Introduction

Some notions of compactness

Diametral dimensions
Mathematical Analysis
Mathematical Analysis

- **Main topics**: functions and related notions, e.g. limits, distributions, measures, etc.
Mathematical Analysis

- **Main topics**: functions and related notions, e.g. limits, distributions, measures, etc.
- After “algebraic” equations, *functional* equations: differentiable equations, integral equations, optimization problems...
Mathematical Analysis

- **Main topics**: functions and related notions, e.g. limits, distributions, measures, etc.
- After “algebraic” equations, *functional* equations: differentiable equations, integral equations, optimization problems...

Study of sets of functions
Mathematical Analysis

- **Main topics**: *functions* and related notions, e.g. limits, distributions, measures, etc.
- After “algebraic” equations, *functional* equations: differentiable equations, integral equations, optimization problems...

Study of sets of functions
Notions of convergence
Mathematical Analysis

- **Main topics**: functions and related notions, e.g. limits, distributions, measures, etc.
- After “algebraic” equations, *functional* equations: differentiable equations, integral equations, optimization problems...

\[\text{Study of sets of functions} \quad \left\{ \begin{array}{c} \text{Notions of convergence} \\ \sim \text{Topological study of functional spaces} \end{array} \right. \]
Examples

- If K is a compact subset of \mathbb{R}^n, if f is a function defined on K and if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $C_0(K)$ s.t.

 $$\sup_{x \in K} |f_m(x) - f(x)| \to 0 \text{ if } m \to \infty,$$

then $f \in C_0(K)$.
Examples

- If K is a compact subset of \mathbb{R}^n, if f is a function defined on K and if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $C_0(K)$ s.t.

 $$\sup_{x \in K} |f_m(x) - f(x)| \to 0 \text{ if } m \to \infty,$$

 then $f \in C_0(K)$.

 Convergence in $C_0(K)$ endowed with the metric defined by $\sup_K |.|$.

Examples

- **Lebesgue’s dominated convergence theorem:** if \((f_m)_{m \in \mathbb{N}_0}\) is a sequence of \(L^1(\mathbb{R})\) which converges pointwise to \(f\) and if there exists \(F \in L^1(\mathbb{R})\) with \(|f_m| \leq F\) a.e. on \(\mathbb{R}\) \(\forall m\), then \(f \in L^1(\mathbb{R})\) and

\[
\int_{\mathbb{R}} |f_m(x) - f(x)| \, dx \to 0 \text{ if } m \to \infty.
\]
Examples

- **Lebesgue’s dominated convergence theorem**: if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $L^1(\mathbb{R})$ which converges pointwise to f and if there exists $F \in L^1(\mathbb{R})$ with $|f_m| \leq F$ a.e. on \mathbb{R} for all m, then $f \in L^1(\mathbb{R})$ and
 \[
 \int_{\mathbb{R}} |f_m(x) - f(x)| \, dx \to 0 \text{ if } m \to \infty.
 \]

\[\leadsto\] Convergence in $L^1(\mathbb{R})$ for the metric defined by $\int_{\mathbb{R}} |.| \, dx$.

Examples

- **Lebesgue’s dominated convergence theorem**: if \((f_m)_{m \in \mathbb{N}_0}\) is a sequence of \(L^1(\mathbb{R})\) which converges pointwise to \(f\) and if there exists \(F \in L^1(\mathbb{R})\) with \(|f_m| \leq F\) a.e. on \(\mathbb{R} \forall m\), then \(f \in L^1(\mathbb{R})\) and

\[
\int_{\mathbb{R}} |f_m(x) - f(x)| \, dx \to 0 \text{ if } m \to \infty.
\]

\[\leadsto\] Convergence in \(L^1(\mathbb{R})\) for the metric defined by \(\int_{\mathbb{R}} |.| \, dx\).

- **Fourier series**: convergence in \(L^2([a, b])\) for the metric defined by \(\sqrt{\int_a^b |.|^2 \, dx}\).

- ...
Examples

- **Lebesgue’s dominated convergence theorem:** if \((f_m)_{m \in \mathbb{N}_0}\) is a sequence of \(L^1(\mathbb{R})\) which converges pointwise to \(f\) and if there exists \(F \in L^1(\mathbb{R})\) with \(|f_m| \leq F\) a.e. on \(\mathbb{R}\) \(\forall m\), then \(f \in L^1(\mathbb{R})\) and

\[
\int_{\mathbb{R}} |f_m(x) - f(x)| \, dx \to 0 \text{ if } m \to \infty.
\]

- Convergence in \(L^1(\mathbb{R})\) for the metric defined by \(\int_{\mathbb{R}} |.| \, dx\).
- **Fourier series:** convergence in \(L^2([a, b])\) for the metric defined by \(\sqrt{\int_a^b |.|^2 \, dx}\).
- ...
- Common feature of these metrics: they are defined by norms.
(Semi)norms

Definition
If E is a vector space on \mathbb{C}, a map $p : E \to [0, \infty)$ is a seminorm if

1. $p(x + y) \leq p(x) + p(y) \ \forall x, y \in E$;
2. $p(\lambda x) = |\lambda|p(x) \ \forall x \in E, \forall \lambda \in \mathbb{C}$.

Examples
$C_0(K)$, $L_1(\mathbb{R})$, $L_2([a, b])$ are (complete) normed spaces (i.e. Banach spaces).
(Semi)norms

Definition
If E is a vector space on \mathbb{C}, a map $p : E \to [0, \infty)$ is a seminorm if

1. $p(x + y) \leq p(x) + p(y) \ \forall x, y \in E;$
2. $p(\lambda x) = |\lambda|p(x) \ \forall x \in E, \forall \lambda \in \mathbb{C}.$

If $p(x) = 0 \iff x = 0$, then p is a norm.
Introduction Some notions of compactness Diametral dimensions

(Semi)nons

Definition
If E is a vector space on \mathbb{C}, a map $p : E \to [0, \infty)$ is a seminorm if

1. $p(x + y) \leq p(x) + p(y)$ $\forall x, y \in E$;
2. $p(\lambda x) = |\lambda|p(x)$ $\forall x \in E$, $\forall \lambda \in \mathbb{C}$.

If $p(x) = 0 \iff x = 0$, then p is a norm.

Property
The (semi)norn p defines a vector (pseudo)metric on E:

$$d(x, y) = p(x - y).$$

~ Notions of convergent sequences, Cauchy sequences, etc.
Definition

If E is a vector space on \mathbb{C}, a map $p : E \to [0, \infty)$ is a *seminorm* if

1. $p(x + y) \leq p(x) + p(y)$ $\forall x, y \in E$;
2. $p(\lambda x) = |\lambda| p(x)$ $\forall x \in E$, $\forall \lambda \in \mathbb{C}$.

If $p(x) = 0 \iff x = 0$, then p is a *norm*.

Property

The (semi)norm p defines a vector (pseudo)metric on E:

$$d(x, y) = p(x - y).$$

Examples

$C_0(K), \ L^1(\mathbb{R}), \ L^2([a, b])$ are (complete) normed spaces (i.e. Banach spaces).
In general, one single (semi)norm is not sufficient...

- If \(\Omega \) is an open subset of \(\mathbb{R}^n \) and if \((f_m)_{m \in \mathbb{N}_0} \) is a sequence of \(C_0(\Omega) \) which uniformly converges to \(f \) on every compact of \(\Omega \), then \(f \in C_0(\Omega) \).
In general

In general, one single (semi)norm is not sufficient...

- If Ω is an open subset of \mathbb{R}^n and if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $C_0(\Omega)$ which uniformly converges to f on every compact of Ω, then $f \in C_0(\Omega)$.

\[\sim \text{Convergence defined by a family of seminorms } \sup_{K} |.| (K \text{ compact of } \Omega). \]
In general, one single (semi)norm is not sufficient...

- If Ω is an open subset of \mathbb{R}^n and if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $C_0(\Omega)$ which uniformly converges to f on every compact of Ω, then $f \in C_0(\Omega)$.

Convergence defined by a family of seminorms $\sup_K ||.||$ (K compact of Ω).

- For holomorphic functions: likewise!
Locally convex spaces

Definition
A topological vector space (t.v.s.) E is a *locally convex space* (l.c.s.) if its topology can be defined by a family of seminorms \mathcal{P}:
Locally convex spaces

Definition
A topological vector space (t.v.s.) E is a *locally convex space* (l.c.s.) if its topology can be defined by a family of seminorms \mathcal{P}: a subset U of E is a neighbourhood (ngbh) of $x \in E$ if $\exists p \in \mathcal{P}, \varepsilon > 0$ s.t.

$$\{y \in E : p(x - y) \leq \varepsilon\} \subseteq U.$$
Locally convex spaces

Definition
A topological vector space (t.v.s.) E is a *locally convex space* (l.c.s.) if its topology can be defined by a family of seminorms \mathcal{P}: a subset U of E is a neighbourhood (ngbh) of $x \in E$ if

$$\exists p \in \mathcal{P}, \varepsilon > 0 \text{ s.t. } \{y \in E : p(x - y) \leq \varepsilon\} \subseteq U.$$

Remark
Good definition if $\forall p, q \in \mathcal{P}, \exists r \in \mathcal{P}, C > 0 \text{ s.t.}$

$$\sup(p(x), q(x)) \leq Cr(x) \quad \forall x \in E.$$
Locally convex spaces

Definition
A topological vector space (t.v.s.) E is a *locally convex space* (l.c.s.) if its topology can be defined by a family of seminorms \mathcal{P}: a subset U of E is a neighbourhood (ngbh) of $x \in E$ if $\exists p \in \mathcal{P}, \varepsilon > 0$ s.t.

$$
\{ y \in E : p(x - y) \leq \varepsilon \} \subseteq U.
$$

Remark
Good definition if $\forall p, q \in \mathcal{P}, \exists r \in \mathcal{P}, C > 0$ s.t.

$$
\sup(p(x), q(x)) \leq Cr(x) \quad \forall x \in E.
$$

Functional Analysis: study of l.c.s.
Examples of topological properties

For a l.c.s. \((E, \mathcal{P})\),

- \(E\) is Hausdorff iff \(\cap_{p \in \mathcal{P}} \ker(p) = \{0\}\);
- every \(x \in E\) has a countable basis of nghbs iff \(\mathcal{P}\) can be chosen countable;
- \(E\) is metrizable iff the two previous points are verified.
Examples of topological properties

For a l.c.s. \((E, \mathcal{P})\),

- \(E\) is Hausdorff iff \(\bigcap_{p \in \mathcal{P}} \ker(p) = \{0\}\);
- every \(x \in E\) has a countable basis of nghbs iff \(\mathcal{P}\) can be chosen countable;
- \(E\) is metrizable iff the two previous points are verified.

Definition

A Fréchet space is a complete, metrizable, l.c.s.
Introduction

Some notions of compactness

Diametral dimensions
Some notions linked to compactness

Let E be an l.c.s.

- A *bounded set* of E is a subset B of E s.t., for every 0-neighborhood U, $\exists \lambda > 0 : B \subseteq \lambda U$.
Some notions linked to compactness

Let E be an l.c.s.

- A bounded set of E is a subset B of E s.t., for every 0-neighborhood U, $\exists \lambda > 0 : B \subseteq \lambda U$.

- If U, V is 2 subsets of E, V is precompact with respect to U if, $\forall \varepsilon > 0$, $\exists P$ finite subset of E s.t.

$$V \subseteq \varepsilon U + P.$$
Some notions linked to compactness

Let E be an l.c.s.

- A *bounded set* of E is a subset B of E s.t., for every 0-neighborhood U, \(\exists \lambda > 0 : B \subseteq \lambda U \).

- If U, V is 2 subsets of E, V is *precompact with respect to U* if, \(\forall \epsilon > 0, \exists P \text{ finite subset of } E \text{ s.t.} \)
 \[V \subseteq \epsilon U + P. \]

- $K \subseteq E$ is *precompact* if it is precompact with respect to each 0-neighborhood.
Proposition

Compact \implies Precompact \implies Bounded.
Proposition

Compact \implies Precompact \implies Bounded.

Remarks

- A precompact set is not always compact, but, in complete spaces, a set is precompact iff its closure is compact.
Proposition

Compact \implies Precompact \implies Bounded.

Remarks

- A precompact set is not always compact, but, in *complete spaces*, a set is precompact iff its closure is compact.
- The closed unit ball of an infinite-dimensional normed space is never precompact. In particular, a closed bounded set is not always (pre)compact.
Two important classes of Fréchet spaces

Let E be a Fréchet space.

- E is *Montel* if every bounded set is precompact.
Two important classes of Fréchet spaces

Let E be a Fréchet space.

- E is *Montel* if every bounded set is precompact.
- E is *Schwartz* if, for every 0-neighborhood U, there exists a 0-neighborhood V which is precompact with respect to U.

Warning! A Schwartz space is always Montel, but the converse is false!
Two important classes of Fréchet spaces

Let E be a Fréchet space.

- E is *Montel* if every bounded set is precompact.
- E is *Schwartz* if, for every 0-neighborhood U, there exists a 0-neighborhood V which is precompact with respect to U.

Examples

- If Ω is an open set of \mathbb{C}, $H(\Omega)$ is Schwartz and Montel.
Two important classes of Fréchet spaces

Let \(E \) be a Fréchet space.

- \(E \) is **Montel** if every bounded set is precompact.
- \(E \) is **Schwartz** if, for every 0-neighborhood \(U \), there exists a 0-neighborhood \(V \) which is precompact with respect to \(U \).

Examples

- If \(\Omega \) is an open set of \(\mathbb{C} \), \(H(\Omega) \) is Schwartz and Montel.
- An infinite-dimensional Banach space is neither Montel, nor Schwartz.
Two important classes of Fréchet spaces

Let E be a Fréchet space.

- E is **Montel** if every bounded set is precompact.
- E is **Schwartz** if, for every 0-neighborhood U, there exists a 0-neighborhood V which is precompact with respect to U.

Examples

- If Ω is an open set of \mathbb{C}, $H(\Omega)$ is Schwartz and Montel.
- An infinite-dimensional Banach space is neither Montel, nor Schwartz.

Warning!

A Schwartz space is always Montel, but the converse is false!
Introduction

Some notions of compactness

Diametral dimensions
Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.
Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition

An *isomorphism* of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.
Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition
An isomorphism of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

- **Question**: when are 2 t.v.s. non-isomorphic?
Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition

An *isomorphism* of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

- **Question:** when are 2 t.v.s. non-isomorphic?

 ~> *Topological (linear) invariants:* properties preserved by isomorphisms
Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition
An isomorphism of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

• **Question:** when are 2 t.v.s. non-isomorphic?

→ **Topological (linear) invariants:** properties preserved by isomorphisms

Examples
Dimension in linear algebra, being Hausdorff in topological spaces, etc.
Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition

An *isomorphism* of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

- **Question:** when are 2 t.v.s. non-isomorphic?

 ~ *Topological (linear) invariants:* properties preserved by isomorphisms

Examples

Dimension in linear algebra, being Hausdorff in topological spaces, etc.

And diametral dimension(s) in t.v.s.!
Kolmogorov’s diameters

Let E be a vector space, $V, U \subseteq E$, $V \subseteq \lambda U$ ($\lambda > 0$).
Kolmogorov’s diameters

Let E be a vector space, $V, U \subseteq E$, $V \subseteq \lambda U$ ($\lambda > 0$).

Definition
The n^{th} Kolmogorov’s diameters of V with respect to U is

$$
\delta_n(V, U) = \inf \{ \delta > 0 : \exists L \subseteq E, \text{dim}(L) \leq n, \text{s.t. } V \subseteq \delta U + L \}.
$$
Kolmogorov’s diameters

Let E be a vector space, $V, U \subseteq E$, $V \subseteq \lambda U$ ($\lambda > 0$).

Definition
The n^{th} Kolmogorov’s diameters of V with respect to U is

$$\delta_n(V, U) = \inf \{ \delta > 0 : \exists L \subseteq E, \dim(L) \leq n, \text{ s.t. } V \subseteq \delta U + L \}.$$

Important property
If U is a ball centred at 0 and associated to a seminorm, then

$$V \text{ is precompact with respect to } U \iff \delta_n(V, U) \to 0.$$
Diametral dimension

Let E be a t.v.s. and \mathcal{U} be a basis of 0-nghbs.

Definition

The *diametral dimension* of E is

$$\Delta(E) = \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, V \subseteq U, \text{ s.t. } \xi_n \delta_n(V, U) \to 0 \right\}.$$
Diametral dimension

Let E be a t.v.s. and \mathcal{U} be a basis of 0-nghbs.

Definition
The *diametral dimension of E* is

$$\Delta(E) = \left\{ \xi \in \mathbb{C}^{N_0} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, V \subseteq U, \text{ s.t. } \xi_n \delta_n(V, U) \to 0 \right\}.$$

Properties

1. Δ is a topological invariant (if $E \cong F$, then $\Delta(E) = \Delta(F)$).
Diametral dimension

Let E be a t.v.s. and \mathcal{U} be a basis of 0-nghbs.

Definition

The *diametral dimension of E* is

$$\Delta(E) = \left\{ \xi \in C^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, V \subseteq U, \text{ s.t. } \xi_n \delta_n(V, U) \to 0 \right\}.$$

Properties

1. Δ is a topological invariant (if $E \cong F$, then $\Delta(E) = \Delta(F)$).
2. If E is Fréchet,
 - if E is not Schwartz, $\Delta(E) = c_0$;
 - if E is Schwartz, $l_\infty \subseteq \Delta(E)$.
Another diametral dimension...

Definition

\[\Delta_b(E) = \left\{ \xi \in C^{N_0} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, \xi_n \delta_n(B, U) \to 0 \right\}. \]
Another diametral dimension...

Definition

\[\Delta_b(E) = \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, \xi_n \delta_n(B, U) \to 0 \right\}. \]

Open question

Do we have

\[\Delta(E) = \Delta_b(E) \]

if \(E \) is Fréchet?
Proposition

If E is Fréchet,

- if E is not Montel, $\Delta_b(E) = c_0$;
- if E is Montel, $l_\infty \subseteq \Delta_b(E)$.
Proposition

If E is Fréchet,

- if E is not Montel, $\Delta_b(E) = c_0$;
- if E is Montel, $l_\infty \subseteq \Delta_b(E)$.

Consequences

- If E is not Montel, $\Delta(E) = \Delta_b(E) = c_0$.
- If E is Montel but not Schwartz, then $\Delta(E) = c_0 \subsetneq \Delta_b(E)$.
Proposition

If E is Fréchet,

- if E is not Montel, $\Delta_b(E) = c_0$;
- if E is Montel, $l_\infty \subseteq \Delta_b(E)$.

Consequences

- If E is not Montel, $\Delta(E) = \Delta_b(E) = c_0$.
- If E is Montel but not Schwartz, then $\Delta(E) = c_0 \subset \Delta_b(E)$.

New open question

Do we have

$$\Delta(E) = \Delta_b(E)$$

if E is Fréchet-Schwartz?
A positive partial result

Slight variations of diametral dimensions...

$$\Delta^\infty(E) := \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, \text{s.t. } (\xi_n \delta_n(V, U))_n \in \ell_\infty \right\},$$

$$\Delta_b^\infty(E) := \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, (\xi_n \delta_n(B, U))_n \in \ell_\infty \right\}.$$
A positive partial result

Slight variations of diametral dimensions...

\[\Delta_{\infty}(E) := \left\{ \xi \in \mathbb{C}^{N_0} : \forall U \in \mathcal{U}, \exists \forall V \in \mathcal{U}, \text{s.t.} \ (\xi_n \delta_n(V, U))_n \in \ell_{\infty} \right\}, \]

\[\Delta_b^{\infty}(E) := \left\{ \xi \in \mathbb{C}^{N_0} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, (\xi_n \delta_n(B, U))_n \in \ell_{\infty} \right\}. \]

Theorem (2016, L.D., L. Frerick, J. Wengenroth)

If \(E \) is Fréchet-Schwartz, then

\[\Delta_{\infty}(E) = \Delta_b^{\infty}(E). \]
A positive partial result

Slight variations of diametral dimensions...

$$\Delta^\infty(E) := \left\{ \xi \in C^{N_0} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, \text{ s.t. } (\xi_n \delta_n (V, U))_n \in \ell_\infty \right\},$$

$$\Delta^\infty_b(E) := \left\{ \xi \in C^{N_0} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, (\xi_n \delta_n (B, U))_n \in \ell_\infty \right\}.$$

Theorem (2016, L.D., L. Frerick, J. Wengenroth)

If E is Fréchet-Schwartz, then

$$\Delta^\infty(E) = \Delta^\infty_b(E).$$

In particular, if $\Delta(E) = \Delta^\infty(E)$, then $\Delta(E) = \Delta_b(E)$.
Schwartz spaces with $\Delta(E) = \Delta^\infty(E)$
Schwartz spaces with $\Delta(E) = \Delta^\infty(E)$

- Classic sequence spaces ("Köthe echelon spaces") (2017, F. Bastin, L.D.);
Schwartz spaces with $\Delta(E) = \Delta^\infty(E)$

- Classic sequence spaces ("Köthe echelon spaces") (2017, F. Bastin, L.D.);
Another sufficient condition

Definition (2013, T. Terzioğlu)

A bounded set B of a Fréchet space E is *prominent* if, for every 0-neighborhood U, there exist a 0-neighborhood V and $C > 0$ s.t. $\forall n$

$$\delta_n(V, U) \leq C\delta_n(B, V).$$
Another sufficient condition

Definition (2013, T. Terzioğlu)
A bounded set B of a Fréchet space E is *prominent* if, for every 0-neighborhood U, there exist a 0-neighborhood V and $C > 0$ s.t. $\forall n$

$$\delta_n(V, U) \leq C\delta_n(B, V).$$

Proposition (2013, T. Terzioğlu)
If E has a prominent bounded set, then $\Delta(E) = \Delta_b(E)$, but the converse is false.
Another sufficient condition

Definition (2013, T. Terzioğlu)

A bounded set B of a Fréchet space E is prominent if, for every 0-neighborhood U, there exist a 0-neighborhood V and $C > 0$ s.t. $\forall n$

$$\delta_n(V, U) \leq C\delta_n(B, V).$$

Proposition (2013, T. Terzioğlu)

If E has a prominent bounded set, then $\Delta(E) = \Delta_b(E)$, but the converse is false.

Fréchet spaces with Property ($\overline{\Omega}$): if $\mathcal{U} = (U_k)_k$,

$$\forall m, \exists k, \forall j, \exists C > 0, \forall r > 0, U_k \subseteq rU_m + \frac{C}{r}U_j$$

(the converse is false).
And for non-Fréchet/non-metrizable spaces?
And for non-Fréchet/non-metrizable spaces?

Theorem (2017, F. Bastin, L.D.)
There exists a family of Schwartz (and/or nuclear), non-metrizable, l.c.s. E with

\[\Delta(E) \neq \Delta_b(E). \]
And for non-Fréchet/non-metrizable spaces?

Theorem (2017, F. Bastin, L.D.)

There exists a family of Schwartz (and/or nuclear), non-metrizable, l.c.s. E with

$$\Delta(E) \neq \Delta_b(E).$$

Main idea: considering spaces for which the linear span of each bounded set is finite-dimensional.
Thank you for your attention!
References I

F. Bastin and L. Demeulenaere.

L. Demeulenaere.
Dimension diamétrale, espaces de suites, propriétés \((DN)\) et \((\Omega)\).

L. Demeulenaere, L. Frerick, and J. Wengenroth.

H. Jarchow.
Locally Convex Spaces.
Introduction to Functional Analysis.
Number 2 in Oxford Graduate Texts in Mathematics.
Translated from German by M.S. Ramanujan.

T. Terzioglu.
Quasinormability and diametral dimension.