Upscaling winter wheat above-ground biomass measurements using multispectral imagery and 3D data from unmanned aerial vehicle

Michez A.¹, Bauwens S.¹, Heinesch B.², Manise T.³, Glesener M.², Mercatoris B.², Dumont B.³, Lejeune P.¹

^{1, 2, 3} University of Liège - Gembloux Agro-Bio Tech ¹ BIOSE research unit - ² TERRA Teaching and Research Center - ³ AGROBIOCHEM research unit

Contact: <u>adrien.michez@ulg.ac.be</u>

ICOS BELGIUM

Science Conference 2017

I. UPSCALING ICOS MONITORING PROGRAM WITH UAV IMAGERY

Field measurements in the ICOS (Integrated Carbon Observation System) program are spatially limited

 \rightarrow Monitored gas fluxes may have a large footprint

Case of Above-Ground Biomass (AGB)

→ Field sampling time consuming

ICOS candidate station of Lonzée (Belgium, Wallonia)

- Four years rotation crop (winter wheat in 2017)
- One of the first European site devoted to production crops

 \rightarrow Spatially limited

Can UAV imagery time series be (part of) a solution?

- \rightarrow Cost effective and final user-controlled systems
- \rightarrow Higher spatial (0.1 m imagery) and temporal resolution than other remote sensing technique (e.g. satellite or other airborne imagery)

- 3 m high mast
- Intensive biomass monitoring, soil respiration, NDVI (Normalized Difference Vegetation Index) and PRI (Photochemical Reflectance Index), nitrogen, volatile organic compounds fluxes, N₂O fluxes

II. ACQUISITION AND PREPROCESSING OF UAV IMAGERY

Octocopter drone

- X frame type, PixHawk controller
- High spatial resolution consumer grade RGB camera (Sony RX100)
- Multispectral camera (Parrot Sequoia)

Acquisition of time series

- 8 flights from 14th of February to the 7th of July 2017
- Production of reflectance maps (green, red, NIR and Red-Edge, derived from Sequoia camera)
- Two straight-forward vegetation indices (Normalized Difference Vegetation Index NDVI and Green NDVI GNDVI)
- Production of Crop Height Model maps (RX100)

III. MODELING AND MAPPING ABOVE-GROUND BIOMASS (AGB) WITH UAV IMAGERY

AGB field reference data

- Sampling approach: use of data monitored by the ICOS program and by field research conducted in experimental fields within the area of interest
- Field measurement: Crop samples were collected (destructive), dried and weighted in order to compute a reference AGB normalized per unit area (t / Ha)

AGB modelling with UAV data

- Each AGB field estimation was associated with the imagery associated to the closest flight date
- Multiple linear regressions modelling:

AGB = a + b * GNDVI + c * NDVI + d * CHM

 Good result for multidate (r² = 0.85, RMSE = 2.3 t/Ha, 96 obsv.) and single date approach (4th July, r² = 0.71, RMSE = 1.9 t/Ha, 16 obsv.)

Mapping AGB with UAV data

- Predicted AGB map displays a high spatial heterogeneity with some spatial patterns
- Low AGB values are found along two old pedestrian trails
- Higher AGB values for crop sprayed twice (in-between two tractor tracks)

IV. PERSPECTIVES

Upscaling AGB monitoring within entire footprint of the station with UAV imagery? → Clear potential of UAV imagery to monitor the AGB variation Operational recommendation for UAV integration in ICOS AGB monitoring:

- The ICOS monitoring provides for this site only 20 AGB observations just before the harvest
- → need for specific (and more frequent) sampling strategy to enable UAV multitemporal AGB monitoring within the footprint of the flux tower

Acknowledgments

Authors would like to thank the 'drone' team who performed the UAV flight surveys (particularly Cédric Geerts & Samuel Quevauvillers)

