Characterisation of a secondary carotenoid producer microalga of the genus Coelastrella

Amélie CORATO1 Fabrice FRANCK2 and Philippe JACQUES2 1Laboratory of Bioenergetics, 2MIP, University of Liège

INTRODUCTION
Some green microalgae synthesize secondary carotenoids as protecting agents under stress. These pigments have high value as feed supplement for aquaculture and as health products. The most promising pigment is astaxanthin, because of its antioxidant, antitumoral and anti-inflammatory properties. The most used natural source of this pigment is the microalga Haematococcus pluvialis. However this species grows slowly and lacks robustness for easy cultivation. Therefore, other species are investigated for astaxanthin production. Here, we isolated a local microalgal strain that is a natural producer of secondary carotenoids. We identified it and analysed culture conditions leading to secondary carotenoid accumulation.

IDENTIFICATION
Molecular biology
We sequenced the Internal Transcribed Spacer 2 (ITS2) and the 18S [1]. We used a nucleotide BLAST (on NCBI) to identify the strain and the SINA program (Silva) to confirm it. These methods lead us to classify the strain as Coelastrella sp.

Morphological aspect (by Microscopy and Scanning Electron Microscopy (SEM))
The isolated strain is a green microalga, easily cultivable in the laboratory. It is constituted of spherical-shaped (Φ ~ 10µm), non-mobile cells with a single starred plastid with numerous lobes and a large pyrenoid (Fig. 1). After ~20 days of culture, the strain turns from green to orange-red color (Fig. 1). The SEM micrographs allowed us to observe that the cells have meridional ribs that converge at two poles of the cells (Fig. 2). These ribs are a typical characteristic of Coelastrella genus [1,2].

Figures 1 and 2: SEM micrographs of green and orange-red cells

PIGMENT CONTENT
Stress conditions
To accelerate carotenogenesis, we applied a stress which was a combination of nitrogen starvation and exposure to high light intensity (>500 µmol photons.m⁻².s⁻¹). This led to complete cell reddening after 5 days, compared to ~20 days without any stress applied.

Pigments analyses
The pigment content was analysed by reverse HPLC (CORTECS C18 Column, 90Å, 2.7 µm, 4.6 mm X 150 mm, 1/pkg).
- Pigments from green cells
 usual pigments were found in the green (unstressed) cells (Fig. 3).

Figure 3: HPLC chromatogram (430 nm) of a pigment extract from green cells

- Pigments from orange-red cells
 pigments from stressed cells were first subjected to saponification in order to de-esterify secondary carotenoids [3]. We applied stressful conditions during 4 days to autotrophic and heterotrophic pre-cultures. A typical chromatogram (obtained for heterotrophically-grown cells) is presented in Fig. 4. This chromatogram shows several secondary carotenoids, among which astaxanthin and canthaxanthin, as well as non-identified cars.

Figure 4: Chromatogram of a pigment extract (430 nm) from orange-red cells synthesized after a heterotrophic pre-culture.

CONCLUSION
In this study, we first identified a locally isolated strain as Coelastrella sp. that is a secondary carotenoid producer. A known typical feature of this genus, that we could observe in the strain by scanning electron microscopy, is the presence of meridional ribs. This strain grows both autotrophically and heterotrophically and is able of fast change in pigment composition under controlled stress conditions. A variety of secondary carotenoids accumulate, among which astaxanthin, canthaxanthin and echinenone. Unidentified compounds will be further analyzed by mass spectrometry.

REFERENCES

GROWTH
Generation times in different conditions were obtained from optical density measurements during growth in 250 ml flasks using Bold-3N medium.

Autotrophic growth
Table 1 shows the effects of light intensity and CO₂ supplementation on generation times for autotrophic cultivation. Growth appeared strongly limited by CO₂ on air. CO₂ supplementation (5 %) led to fast growth with maximum rate around 400 µmol photons.m⁻².s⁻¹.

Table 1: Generation times in different conditions.

Heterotrophic growth
Among different carbon sources, the microalga was only capable of assimilating glucose in darkness. The generation time on glucose (10 g L⁻¹) was lower than in any autotrophic condition tested but the growth continues for longer times (data not shown).

Figure 4: Chromatogram of a pigment extract (430 nm) from orange-red cells synthesized after a heterotrophic pre-culture.

Table 2: Pigments content in different conditions. The contents are expressed in mg.g⁻¹ of dry weight (average ± standard deviation in 3 experiments).