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ABSTRACT: 7 

Shallow-water models with porosity are used to compute floods at a relatively coarse resolution 8 

while accounting indirectly for detailed topographic data through porosity parameters. In many 9 

practical applications, these models enable a significant reduction of the computational time while 10 

maintaining an acceptable level of accuracy. In this paper, we improve the use of porosity models 11 

on Cartesian grids by three original contributions. First, a merging technique is used to handle cells 12 

with low porosity values which tend otherwise to seriously hamper computational efficiency. Next, 13 

we show that the optimal method for the determination of the porosity parameters depends on the 14 

modelling scale, i.e. the grid resolution compared to the characteristic size of obstacles and flow 15 

ways. Finally, we investigate the potential benefit of using a different porosity parameter in each 16 

term of the shallow-water equations. Five test cases, two of them being original, are used to validate 17 

the model and assess each contribution. In particular, we obtained speedup values between 10 and 18 

100 while the errors on water depths remain around few percent. 19 

Keywords: Porosity model, Cartesian grid, Merging, Urban floods modelling. 20 

 21 

1 INTRODUCTION 22 

With an estimated cumulated damage of 100 billion euros in Europe over the period 1986 - 2006 23 

and over 1,100 casualties between 1998 and 2009, floods remain the most common natural hazard 24 
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(De Moel et al., 2009; EEA, 2010). Adequate flood risk management must be based on reliable esti-25 

mates of both flood hazard and flood vulnerability. A key component of the former is the computa-26 

tion of flow characteristics in the floodplains as they have a direct influence on flood impacts 27 

(Brazdova and Riha, 2014; Kreibich et al., 2014; Kellermann et al., 2015). 28 

Shallow-water models are recognized as state-of-the-art for conducting inundation modelling for 29 

large scale real-world applications (El Kadi Abderrezzak et al., 2009; Costabile and Macchione, 30 

2015). The flow characteristics computed by such models are strongly affected by the quality of 31 

topographic data and by the relative size of the numerical model resolution compared to the typical 32 

size of obstacles and flow ways in the floodplains (Dottori et al., 2013). Today, topographic data 33 

have become widely available at a scale as fine as a few metres. While such high-resolution topo-34 

graphic data enable in principle the computation of surface flow variables with a high accuracy, 35 

solving the shallow-water equations at the metre-scale may become hardly tractable due to the com-36 

putational burden. 37 

In the following, we distinguish between three different modelling scales, as sketched in Figure 1 in 38 

the case of a Cartesian grid: 39 

 micro-scale, i.e. all obstacles are resolved explicitly and with a fairly good accuracy (e.g., 40 

with about ten cells over the typical width of flow paths); 41 

 meso-scale, i.e. the obstacles are explicitly represented by “holes” in the computational do-42 

main (as described by Schubert and Sanders, 2012); but they are poorly resolved (e.g., with 43 

just a couple of cells over the typical width of flow paths); 44 

 macro-scale, i.e. the obstacles have a typical size comparable or smaller than the mesh size 45 

(e.g., the flow paths are generally smaller than the size of one computational cell).  46 
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 47 

Figure 1: Definition of (a) fine-scale, (b) meso-scale and (c) macro-scale modelling and representation of the obsta-48 

cles explicitly represented by holes in the computational domain (dark cells). 49 

Depending on the study objectives, meso-scale and/or macro-scale modelling may prove useful for 50 

inundation modelling over particularly large areas, or when a high number of model runs is neces-51 

sary (scenario analysis, stochastic modelling …). In such cases, subgrid models may be used to en-52 

hance the results accuracy. Subgrid models enable grid coarsening, while preserving to some extent 53 

the detailed topographic information.  54 

Porosity models are one kind of subgrid models, in which fine-scale topographic information is re-55 

produced at a coarser scale through porosity parameters. The role of these porosity parameters is to 56 

mimic at the coarse scale the influence of the unresolved subgrid obstacle features on the different 57 

terms of the shallow-water equations. 58 

Some authors use the same porosity to reproduce the effect of obstacles on the conserved variables 59 

and on the flux terms of the shallow-water equations (Guinot and Soares-Frazão, 2006). Such iso-60 

tropic porosity models are based on a single porosity parameter ϕREV at the scale of a Representative 61 

Elementary Volume (REV), as detailed by Sanders et al. (2008). However, the scale required to ob-62 

tain a REV is generally much greater than the cell size (Guinot, 2012) which makes the determina-63 

tion of the isotropic porosity challenging. 64 

Sanders et al. (2008) developed an anisotropic integral porosity model (IP) in which two types of 65 

porosity parameters are distinguished: a storage porosity ϕ (cell property) reflects the cell storage 66 

capacity and a conveyance porosity ψ (edge property) reflects the effect of obstacles on the flux 67 
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terms. The storage porosity is evaluated as the geometrical void fraction within a cell. The convey-68 

ance porosity is computed as the void fraction along an edge, leading to conveyance porosities very 69 

sensitive to the mesh design. For this reason, Sanders et al. (2008) recommend the use of a gap-con-70 

forming mesh in which the mesh intersects optimally the obstacles to capture the conveyance effects 71 

of these obstacles. Since the porosity parameters are explicitly mesh-dependent, the governing 72 

equations are written directly in a discretized form. Recently, Guinot et al. (2017) proposed a dual 73 

integral porosity model (DIP), which outperforms the anisotropic integral porosity model. It distin-74 

guishes cell-based and edge-based flow variables, and it involves a transient momentum dissipation 75 

model. 76 

The use of Cartesian grids is of practical relevance (Kim et al., 2014) as it makes the computational 77 

mesh consistent with commonly available gridded data, as obtained from most remote sensing tech-78 

niques. Moreover, explicit numerical schemes computed on Cartesian grids are well adapted for 79 

parallelization techniques like GPUs (Brodtkorb et al., 2012). In this paper, similarly to the integral 80 

porosity models, we start directly from the discretized form of the equations and we make three new 81 

contributions to improve the application of the porosity models on Cartesian grids. 82 

 For stability reasons, the computational time may dramatically increase in the presence of 83 

cells with a very low storage porosity. As a first contribution, this paper introduces a merg-84 

ing technique to address this issue. 85 

 Up to now, anisotropic porosity models were preferably used with unstructured meshes as 86 

they require a gap-conforming mesh for the determination of the conveyance porosity (Kim 87 

et al., 2014). As a second contribution, we compare the standard method determining the 88 

conveyance porosity directly along edges of the computational cells (footprint method) to an 89 

original approach taking into account the presence of obstacles in a region defined around 90 

the edge. We show that the performance of the two methods are influenced by the relative 91 

sizes of the computational cells compared to the obstacles (meso- vs. macro-scale model-92 

ling). 93 
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 In general terms, porosity parameters should be different in each term of the governing 94 

equations to reproduce optimally the effects of obstacles at a coarse scale. As a third contri-95 

bution, the potential benefit of distinguishing the porosity parameters in the various terms of 96 

the governing equations is explored here for an idealized urban network. 97 

The governing equations of the models with anisotropic porosity are introduced in sections 2.1 (in-98 

tegral form) and 2.2 (discrete form). The numerical resolution of the governing equations is pre-99 

sented in section 3. The new contributions are evaluated based on test cases in section 4. 100 

2 GOVERNING EQUATIONS 101 

2.1 Integral form 102 

The integral form of the porous two-dimensional shallow-water equations writes for a control vol-103 

ume as (Sanders et al., 2008; Guinot et al., 2017): 104 

 i d i d i d
t   


    

   U M F n S   (1) 105 

with   the total horizontal surface of the control volume,   the boundary of the control volume, t 106 

the time, ,
T

x yn n   n  the x- and y-normal unit vector components and i the binary phase function 107 

equal to 0 where obstacles stand and to 1 in the voids. 108 

The conserved vector variable U , the momentum dissipation term M, the fluxes F and the source 109 

term S are: 110 
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with h the water depth, u and v the x- and y-velocity components, 2 2V u v  , g the gravitational 112 

acceleration, xx , xy , yx  and yy  the components of the transient momentum dissipation tensor, 113 

f

Dc  the roughness coefficient, ,

b

D xxc , ,

b

D xyc , ,

b

D yxc  and ,

b

D yyc  the components of the drag tensor account-114 

ing for the resistance of obstacles to the flow. The term 
0

2 2gh  corresponds to the divergence for-115 

mulation of the bed slope term with 
0

h  representing a water depth evaluated for a piecewise sta-116 

tionary water level 
0  , as detailed in section 3.1 (Valiani and Begnudelli, 2006). 117 

The transient momentum dissipation tensor was introduced by Guinot et al. (2017). It improves the 118 

reproduction of the propagation speed of a positive wave, at the expense of an additional parameter 119 

to be calibrated. Here, we focus mostly on steady and quasi-steady flow configurations, so that this 120 

tensor does not need to be considered ( 0xx xy yx yy       ); except in our fifth test case focus-121 

ing on wave propagation (section 4.5). 122 

The drag tensor formulation introduced in Eq. (2) reflects the anisotropic nature of the drag force. 123 

However, in the following, we opt for a simplified scalar formulation (i.e. assuming , , 0b b

D xy D yxc c 124 

, ,

b b

D xx D yyc c ), as originally used by Sanders et al. (2008): 125 

 
0

, ,
2

b b D
D xx D yy

c ah
c c  , (3) 126 

where 
0

Dc  is a dimensionless drag coefficient and a denotes the width of obstructions in the direc-127 

tion normal to the flow, per unit of planform area. This scalar drag formulation is a substantial limi-128 

tation of the present study, as further discussed in section 4.2.4. Recently, a more advanced head 129 

loss model was proposed by Velickovic et al. (2017). The model was tested for networks of perpen-130 

dicular streets constituted by arrays of 5 × 5 aligned buildings. Based on a generalized tensor for-131 

mulation and a so-called amplification factor, it accounts explicitly for the non-alignment of the 132 

main streets to the main flow direction and for the deviation of the bulk velocity to the direction of 133 
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the streets. Nonetheless, further work is required to adapt the methodology and the calibration strat-134 

egy to more general configurations. 135 

2.2 Discrete form 136 

Over a computational cell j, the average water depth 
j

h  and unit discharges 
j

uh  and 
j

vh  are 137 

defined as: 138 

 ; ;
j j j

j j j

j j j

ih d iuh d ivh d

h uh vh
i d i d i d
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Based on Eq. (4), other average variables can be deduced: 140 
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Porosity parameters of the cell are defined as: 142 
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We introduce different edge porosity parameters for each type of flux term: 
c , 

1,m A , 
2,m A  and 144 

,m P  respectively for the continuity flux term, the two advective terms and the pressure term. For a 145 

cell edge k, of length 
k , the edge porosity parameters are defined as: 146 
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   
, (7) 147 

where notation  
k

 denotes the flow variables at the edges, as estimated by a piecewise constant 148 

reconstruction of the average values 
j
 at the cells. The porosity parameters for the y- direction 149 

are defined similarly as for the x- direction. 150 
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Unlike standard definitions of the porosity, the parameters defined in Eq. (7) lump geometric ef-151 

fects, flow-related effects (similar to those reflected by Boussinesq coefficients in the usual shal-152 

low-water equations) and effects of the flow field reconstruction. Parameters s ,x j  and s ,y j , as de-153 

fined in Eq. (6), also combine geometric and flow-related effects. Therefore, in the following, the 154 

quantities ,c k , 
1 ,mA k , 

2 ,mA k , ,mP k , s ,x j  and s ,y j  are all referred to as “porosity parameters” (in-155 

stead of just “porosities”).  156 

Substituting definitions (4), (6) and (7) in Eq. (1) and considering the roughness and drag coeffi-157 

cients as uniform over each cell, the discrete formulation of the shallow water model with aniso-158 

tropic porosity parameters writes as: 159 

  
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where the discrete average variable U , average fluxes  F  and average source term S  are given 161 

by: 162 
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  (9) 163 

Appendix A details the eigenvalue analysis of the system of governing equations for a one-direc-164 

tional flow over a horizontal and frictionless bottom. It shows that hyperbolicity of the system is 165 

ensured when 
1mA c  . 166 
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In practice, the determination of each independent porosity parameter is challenging and may re-167 

quire an a priori knowledge of the flow field. For this reason, unless otherwise stated, the cell po-168 

rosity ϕs is replaced in the following by the storage porosity ϕ while the edge porosity parameters 169 

c , 
1mA , 

2mA  and mP  are merged into a single conveyance porosity  . Under this assumption, 170 

Eqs (8) and (9) become identical to those derived by Sanders et al. (2008). Only in section 4.4, the 171 

potential improvement brought by discriminating the different edge porosity parameters is analysed 172 

for an idealized urban network. It is also discussed in section 4.5. 173 

For the determination of the drag term, we use in the following the simplified formulation intro-174 

duced by Schubert and Sanders (2012) to approximate parameter a independently from the flow di-175 

rection: 176 

  
1

1
1

K

k k

k

a
K




  

 , (10) 177 

where K is the number of edges. 178 

3 NUMERICAL MODEL 179 

3.1 Spatial discretization 180 

The governing equations are solved with the hydraulic model Wolf2D using a first-order conserva-181 

tive finite volume scheme based on a flux vector splitting technique applied on a Cartesian grid 182 

(Erpicum et al., 2010). The piecewise stationary free surface elevations 
0,x  and 

0, y  used in the di-183 

vergence formulation of the bed slope term are evaluated as a linear combination of the free surface 184 

levels at the edges of the computational cell. The weighting factors in the linear combination are 185 

chosen to minimize the error in the energy balance, as detailed by Bruwier et al. (2016). 186 
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3.2 Time discretization 187 

The time integration is performed using an explicit Runge-Kutta method. The stability of the 188 

scheme is ensured by a Courant-Friedrichs-Lewy criterion, modified by Sanders et al. (2008) to 189 

consider the porosity parameters. The criterion writes: 190 

 
1

min
max( )

j j

j
k k j

K

t CFL
c





 
  
 
 

, (11) 191 

where Δt is the time step, j j jc gh V   the wave celerity of cell j, CFL the Courant number de-192 

pending on the Runge-Kutta method.  193 

3.3 Models summary 194 

Depending on the method used for the determination of the porosity parameters, different porosity-195 

based models can be derived from the governing equations (8) and (9), as detailed in Table 1. 196 

If all porosity parameters are set to unity, the classical shallow-water model (CS model) is retrieved.  197 

If the storage and edge porosity parameters are set to the same value ϕREV, the isotropic porosity 198 

model (PS-I) is obtained.  199 

If different values are used for the storage and edge porosity parameters, the model becomes aniso-200 

tropic (PS-A). Different PS-A models can be derived depending on how the edge porosity parame-201 

ters are evaluated: 202 

 The standard approach in literature is based on a direct determination of a single conveyance 203 

porosity as the linear void fraction along each computational edge, which make it highly 204 

mesh-dependent. Here, this approach is referred to as model PS-A-1. 205 

 While the gap-conforming property required for PS-A-1 models can be ensured using an un-206 

structured mesh (Sanders et al., 2008), this is hardly feasible based on a Cartesian grid, as 207 

used here. Indeed, the determination of the conveyance porosities directly along the edges 208 

can fail to detect the presence of nearby obstacles, as highlighted by Chen et al. (2012) and 209 
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Özgen et al. (2016). For this reason, we compare the PS-A-1 model to an original method, 210 

which consists in relating the conveyance porosity of an edge to the minimum fraction of 211 

free length parallel to this edge over half a computational cell on either sides of the edge 212 

(Figure 2). We call this model PS-A-2. Although this model remains mesh-dependent to 213 

some extent, the porosity parameters are less sensitive to the mesh design than those of the 214 

PS-A-1 model. 215 

 216 

Figure 2: Example of determination of conveyance porosities with the PS-A-1 and PS-A-2 models. 217 

In the case of meso-scale modelling (Figure 1b), the mesh is close to be gap-conforming and the 218 

PS-A-1 model is therefore expected to perform well (Arrault et al., 2016). In contrast, in the case of 219 

macro-scale modelling (Figure 1c), the obstacles are generally reproduced on the coarse grid only 220 

through the porosity parameters since they are not resolved explicitly. The mesh is mainly non gap-221 

conforming and the PS-A-2 model is expected to improve the determination of the conveyance po-222 

rosity parameters. 223 

Finally, two models distinguish different edge porosity parameters c , 
1mA , 

2mA  and mP : 224 

 In the recent dual integral porosity model (DIP) of Guinot et al. (2017), the edge porosity 225 

parameters are obtained from a closure model based on mass conservation considerations 226 

and on the assumption that obstacles have a significant influence on flow velocity but a neg-227 
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ligible one on the free surface elevation. The resulting edge porosity parameters are combi-228 

nations of the storage and conveyance porosities,   and  , as detailed in Table 1. In the 229 

following, this model is referred to as model PS-A-1-D. 230 

 In one of the test cases (idealized urban network), we also introduce a model (PS-A-D 231 

model) in which the edge porosity parameters are estimated from an a priori estimation of 232 

the main flow characteristics, as detailed in section 4.4. 233 

Acronym 

Guinot et al. (2017) Storage  

porosity 

Edge porosity parameters 

Evaluation of the edge porosity param-

eters 

CS  1 1 / 

PS-I 

Single porosity model 

(SP) 
REV  

REV  / 

PS-A-1 

Integral porosity 

model (IP) 

  

  

Geometrically along the edge  

(footprint method) 

PS-A-2 

 Minimum free length parallel to the edge 

over half a cell on either sides of the edge 

PS-A-1-D 

Dual integral porosity 

model (DIP) 

c  ,
1 2

2

, ,m A m A


 


  , 

,m P   

Closure relation involving  and   de-

termined by the footprint method 

PS-A-D 

 

c ,
1,m A , 

2,m A , ,m P  
Based on an a priori estimation of the 

flow features 

Table 1: Classification of the porosity models.  234 

3.4 Merging technique 235 

From the stability criterion given by Eq. (11), the time step is expected to decrease dramatically in 236 

the presence of very low values of the storage porosity. A crude approach to circumvent this prob-237 

lem consists in removing from the computational domain the cells having a storage porosity lower 238 

than a threshold ϕmin. A more elaborate technique consists in merging such cells with neighbouring 239 

cells, following a similar approach as developed by Causon et al. (2000) for cutcells. This technique 240 

was adapted here. It follows a four-step procedure, as sketched in Figure 3: 241 
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1) Identify all computational cells with a storage porosity lower than a threshold ϕmin (cell C in 242 

Figure 3). 243 

2) The low porosity cell is merged with the neighbouring cell sharing the border with the high-244 

est conveyance porosity (cell B). If several of these borders have the same conveyance poros-245 

ity parameters, the merging is performed with the neighbouring cell having the lowest stor-246 

age porosity. If several of these neighbouring cells have the same storage porosity, the 247 

merging is split evenly between all of them. 248 

3) The merging of the cells consists in increasing the storage porosity of the neighbouring cell 249 

by the storage porosity of the low porosity cell. If the merging involves multiple neighbour-250 

ing cells, the storage porosity of the low porosity cell is shared equally between the neigh-251 

bouring cells. 252 

4) The topology of the edges is also updated by the cell merging. In Figure 3, the right edge of 253 

cell D (DC) is connected to cell B while the left edge of cell B (AB) becomes connected to 254 

cells A and D (edge AB + DC). The bottom edge of cell B is set impervious. 255 

 256 

Figure 3: Representation of an application of the merging technique on cell C. 257 

4 TEST CASES 258 

Five test cases are presented in this section, two of them being original. As detailed in Table 2, each 259 

of the first four test cases enables assessing one specific contribution of the manuscript, while in the 260 

fifth test, the ability of the porosity model to reproduce wave propagation is assessed. 261 
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Based on a simple configuration involving a straight channel of varying orientation, the first origi-262 

nal test case demonstrates the gain in efficiency and accuracy obtained thanks to the merging tech-263 

nique (section 4.1). This technique is then used in all subsequent test cases. 264 

The second and third test cases (sections 4.2 and 4.3) aim at comparing different methods for the 265 

determination of the conveyance porosity parameters at meso- and macro- scale. In section 4.2, 266 

steady flows are computed in three synthetic but quasi-realistic urban networks. The PS-A-1 model 267 

is used for two urban networks discretized at the meso-scale. The PS-A-1 and PS-A-2 models are 268 

compared for the third urban network which lies at the transition between the meso-scale and the 269 

macro-scale. In section 4.3, the two models PS-A-1 and PS-A-2A are compared for the computation 270 

of a dam-break flow over an isotropic array of buildings discretized at the macro-scale.  271 

Based on an idealized urban network, the fourth test case (section 4.4) shows the potential benefit 272 

of distinguishing the porosity parameters involved in each term of the governing equations (PS-A-D 273 

model). This test case also compares the PS-A-D model to the DIP model of Guinot et al. (2017). 274 

In a fifth test case, the PS-A-D model is used with the transient momentum dissipation model intro-275 

duced by Guinot et al. (2017) to reproduce a dam-break flow (positive and negative wave) over an 276 

idealized urban area. 277 

Objective 

Test 
case 

1 

Test 
case 

2 

Test 
case 

3 

Test 
case 

4 

Test 
case 

5 

Assess the merging technique ■ □ □ □ □ 

Compare different evaluations of the convey-

ance porosity for meso-scale modelling 
 ■    

Compare different evaluations of the convey-

ance porosity for macro-scale modelling 
  ■ ■  

Explore the use of distinct porosity parameters 

in the various fluxes 
   ■ □ 

Positive and negative wave  propagation     ■ 

Table 2: Overview of the five test cases and their specific objectives. Symbol ■ indicates that the corresponding 278 

model feature is tested systematically in the test case, while symbol □ refers to model features which are used in the 279 

test case but the test case is not specifically dedicated to their assessment. 280 
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In all test cases, the average error L is used as a metrics to quantify the difference between the re-281 

sults computed with the porosity models (w1) and a set of N reference values (w2): 282 

 
2 1

1

1
 

N

i

L w w
N 

    (12) 283 

In line with Kim et al. (2015), we distinguish here five types of errors: 284 

 the structural model error L1 reflects the differences between micro-scale results and meas-285 

urements; 286 

 the scale error L2 results from the averaging of the micro-scale results to the coarse scale 287 

(called hereafter “CS-P predictions”); 288 

 combining errors L1 and L2, the pore-scale error L1+2 represents the differences between the 289 

CS-P predictions and measurements. 290 

 the coarse model error L3 corresponds to the difference between the results of a coarse 291 

scale model and the CS-P predictions. If the coarse scale model is a porosity model, error L3 292 

is called porosity model error; 293 

 finally, the total error L0 is obtained by comparing directly the (coarse) model results to the 294 

measurements. 295 

Note that errors L1, L2 and L1+2 are independent of the considered porosity model. 296 

4.1 Rectangular channel with varying orientation 297 

4.1.1 Description of the test case 298 

We first consider the simple configuration of a normal flow in a prismatic channel for a discharge 299 

Q. The channel is characterized by a rectangular cross-section of width W, a bed slope i, a length L 300 

and a Manning roughness coefficient n. The values of these parameters are taken as representative 301 

of one reach of a typical large river (Table 3).  302 
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Parameter Symbol Value 

Length L 15 km 

Width W 120 m 

Longitudinal slope i 0.2% 

Manning roughness coefficient n 0.025 sm-1/3 

Discharge Q 2,000 m3/s 

Theoretical normal depth hu 2.517 m 

Mesh size x 30 m 

Table 3: Parameters of the rectangular channel. 303 

Using a shallow-water model on a Cartesian grid and prescribing the normal depth hu as a down-304 

stream boundary condition, the computed water depths remain equal to hu all along the channel if 305 

the channel is oriented along the Cartesian grid (Figure 4a). In contrast, if the channel is not aligned 306 

with the grid (Figure 4b), the computed water depths are higher than the theoretical normal depth 307 

and the flow variables fluctuate spatially due to abrupt changes of cross-section resulting from the 308 

banks discretization. At some distance from the downstream end of the channel, the computed 309 

depths along the centreline fluctuate around a mean value ĥu (Figure 5), which we consider here as 310 

a “numerical” normal depth. 311 

 312 

Figure 4: (a) Channel aligned with the grid (α = 0°) and (b) channel of a different orientation than the grid, leading to 313 

artificial changes of cross-section in the numerical discretization. 314 
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 315 

Figure 5: Spatial variation of the water depth h along the centreline of the channel, theoretical normal water depth hu 316 

and numerical normal water depth ĥu (angle α = 15°). 317 

In the following, we compare the numerical normal depth ĥu to the theoretical one hu using the 318 

ratio ĥu/hu. 319 

4.1.2 Classical shallow-water model vs. porosity-based model 320 

Simulations were performed for an orientation of the channel varying between α = 0° and α = 45°, 321 

with a step of 1°. Using the CS model, the numerical normal depth ĥu steadily increases when α is 322 

varied between 0° and 20° (Figure 6). The numerical values of the normal depth exceed the theoret-323 

ical one by almost 40% for angles α in-between 20° and 35°. This overestimation is gradually re-324 

duced as α increases from 35° up to 45°. 325 

The results of CS model are compared to those obtained with the PS-A-1 model. For all orientation 326 

angles α, the PS-A-1 model leads to numerical normal depths ĥu much closer to the theoretical ones. 327 

In addition, the remaining overestimation of the normal depth decreases significantly when the 328 

threshold porosity ϕmin is reduced. This demonstrates the ability of the PS-A-1 model to compensate 329 

almost completely for the staircase effect resulting from the discretisation of the oblique boundaries 330 

of the channel on a Cartesian grid. 331 
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  332 

Figure 6: Numerical normal depth ĥu compared to the theoretical one as a function of the orientation angle α, using 333 

the CS model and the PS-A-1 model for different threshold porosities ϕmin (x = 30 m). 334 

4.1.3 Porosity model with merging 335 

When the merging technique is used, the computed normal depths ĥu become much closer to the 336 

theoretical value hu, even for relatively high values of 
min  (Figure 7 and Figure 8a). For instance, 337 

for a 
min  value of 0.2, the overestimation of hu is reduced from ~16% (no merging) to ~1% (with 338 

merging). For low values of ϕmin, the numerical normal depth is even underestimated with the PS-339 

A-1 model with merging, but this underestimation does not exceed 5%. 340 

For a given threshold porosity, the computational time (CT) with merging is slightly higher than 341 

without (Figure 8b). However, since the merging technique enables the use of much higher values 342 

of ϕmin to reach a given accuracy, the benefit of this technique in terms of computation time is great.  343 

For instance, to limit the numerical error on hu at 5%, a threshold porosity of ϕmin = 0.05 is required 344 

without merging ( max


|ĥu/hu -1| 4% ) while a value of ϕmin = 0.75 may be used in combination 345 

with the merging technique ( max


|ĥu/hu -1| 3% ) (Figure 8a). For these values, the PS-A-1 model 346 

without merging is 14.5 times computationally more expensive than the CS model, whereas the PS-347 

A-1 model with merging is only 1.9 times more expensive. 348 



19 

 

Using a micro-scale CS model with cell sizes of 5 m (instead of 30 m), the maximum relative error 349 

max


|ĥu/hu -1| is around 11%. Since the computation cost scales theoretically with Δx3, the compu-350 

tation time for the CS model with a cell size of 5 m is about 63 times higher than with the CS model 351 

with a cell size of 30 m, which is around two orders of magnitude slower than the PS-A-1 model 352 

with merging for a similar accuracy. 353 

  354 

Figure 7: Numerical normal water depth ĥu compared to the theoretical one as a function of the orientation angle α, using the CS 355 

model and PS-A-1 models without and with merging for ϕmin = 0.2 (x = 30 m). 356 

 357 

Figure 8: (a) Maximum relative error between the numerical normal depth ĥu and the theoretical one uh  over all the 358 

orientation angles α for the PS-A-1 model without and with merging; (b) Ratio between the computational time (CT) 359 

of the PS-A-1 model without and with merging and the CT of the CS model as a function of the threshold porosity 360 

ϕmin (x = 30 m). 361 
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4.2 Synthetic urban networks 362 

This original test case is based on three synthetic urban configurations (Figure 9) characterized by 363 

strongly contrasting geometric parameters (i.e. different streets widths and curvatures, buildings ar-364 

eas, building coverage ratios …). In Supplemental data, we provide data describing the geometry of 365 

the buildings in each urban configuration. 366 

 367 

Figure 9: Definition of the three synthetic urban configurations (contour lines) and explicit representation of the 368 

buildings on a Cartesian grid of 10 m (dark areas). 369 

4.2.1 Description of the test cases 370 

The considered urban networks extend over a domain of 1 × 1 km2
 with a flat bottom and a uniform 371 

Manning roughness coefficient of n = 0.04 sm-1/3. 372 

A total inflow discharge of 200 m3/s was prescribed uniformly along the left and bottom sides of the 373 

domain (upstream boundary). The following weir formula was used as downstream boundary con-374 

dition along the right and top sides of the urban area: 375 

  
3

0.5 2 0.3q g h    (13) 376 

The average areas of the buildings of configurations 1, 2 and 3 are respectively 3,861 m2, 8,423 m2 377 

and 744 m2. 378 

4.2.2 Numerical models 379 

Different computations were performed for the three configurations: 380 
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 Reference values for the hydraulic variables were generated at a micro-scale of 1 m with the 381 

CS model (CS-1m.). The computed water depths and unit discharges are displayed in Figure 382 

S1 of the Supplemental data. 383 

 Configurations 1 and 2 were computed at a coarse scale of 10 m. At this scale, the cell area 384 

remains more than one order of magnitude smaller than the average area of the buildings 385 

(Figure 9a,b), corresponding thus to meso-scale modelling. Computations were performed 386 

with the CS (CS-10m) and PS-A-1 models with merging (ϕmin = 0.5) considering different 387 

values for the drag coefficient 
0

Dc . 388 

 Configuration 3 was simulated at the coarse scale of 10 m with the porosity models with 389 

merging (ϕmin = 0.1). The threshold ϕmin was taken at a lower value than for configurations 1 390 

and 2 to reproduce more accurately the narrow streets between buildings. While some ob-391 

stacles are physically represented in the computational domain (meso-scale), 10.6% of ob-392 

stacles are only reproduced through the porosity parameters (macro-scale). The ability of 393 

PS-A-1 and PS-A-2 models to reproduce the reference results at the coarse scale is analysed 394 

and compared without drag term and with an optimal drag coefficient of 
0 2Dc  . 395 

The water depths computed with the different numerical models are compared along the upstream 396 

boundary, while the distribution of the unit discharges is compared along the downstream boundary. 397 

4.2.3 Results 398 

Using the CS model at the coarse scale (CS-10m) for configurations 1 and 2, the water depth pro-399 

files along the upstream border are overestimated (Figure 10) and the coarse model errors on water 400 

depths L3,h are around 5% of the mean water depths (Figure 11). The PS-A-1 model without drag 401 

term underestimates the water depths; but the corresponding L3,h values decrease to around 2%. A 402 

very satisfactory reproduction of the water depth profiles is obtained with the drag term, for which 403 

the coarse model errors are reduced to about 0.5%. 404 
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The normal unit discharge profiles along the downstream borders are visually close to each other 405 

(Figures S2). Differences mainly occur at the extremities of the profiles where the flow does not 406 

cross the urban area. The coarse model errors on discharges L3,q are reduced by using the PS-A-1 407 

models instead of the CS-10m model but are not significantly influenced by the drag term. 408 

 409 

Figure 10: Computed water depths along the inflow boundaries, i.e. along the left and bottom sides of the urban area 410 

in configurations 1 (a) and 2 (b). 411 

 412 

Figure 11: Coarse model errors L3 on the water depth (a) and unit discharge profiles (b) for configurations 1 and 2. 413 

In configuration 3, the water depths along the upstream boundary are underestimated with the PS-414 

A-1 model and slightly overestimated with the PS-A-2 model when no drag term is considered (Fig-415 

ure 12). The results in Figure 13 show that, without any calibration (
0 0Dc  ), the PS-A-2 model 416 

(L3,h ≈ 1%) performs significantly better than the PS-A-1 model (L3,h ≈ 4%), for a configuration at 417 

the transition between meso- and macro- scale modelling. The PS-A-1 model with a drag term gives 418 

a value of the porosity model error on the water depth L3,h (0.5%) similar to the best values obtained 419 

for configurations 1 and 2. The normal unit discharges remain weakly affected by the method used 420 

for the determination of the conveyance porosities and by the drag term (Figures 13b and S3).  421 
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Overall, the three meso-scale configurations considered here reveal that evaluating the conveyance 422 

porosity parameters directly along the edges by the standard footprint method (i.e. model PS-A-1) 423 

leads to accurate results. Using the PS-A-1 model at a coarse scale of 10 m lead here to a reduction 424 

of the computational time by about two orders of magnitude compared to a simulation at a micro-425 

scale of 1 m while preserving accuracies on the upstream water depths around 0.5% of the mean 426 

value. 427 

 428 

Figure 12: Computed water depths along the inflow boundaries, i.e. along the left and bottom sides of the urban area 429 

in configurations 3. 430 

 431 

Figure 13: Porosity model errors L3 on the water depth (a) and unit discharge profiles (b) for configuration 3 with a 432 

grid size of 10 m. 433 

4.2.4 Limitation of the scalar formulation of the drag term 434 

Additional computations were performed for Configuration 1 (Figure 9) with two different sets of 435 

flow boundary conditions (Table 4). The results presented in section 4.2.3 were obtained by consid-436 

ering inflow boundary conditions along the left and bottom sides of the urban area, and downstream 437 

boundary conditions along the right and top sides. Here, the computations were repeated by setting 438 
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the inflow and outflow boundary conditions along two opposite sides of the domain (i.e. left and 439 

right, or bottom and top sides), while the two remaining sides were considered as impervious. 440 

The profiles of computed water depths along the upstream sides of the urban area are displayed in 441 

Figure 14, which is similar to Figure 10. Compared to the results of a standard shallow-water model 442 

(CS-10m model), the water depths computed with the anisotropic porosity model (PS-A-1 model) 443 

are closer to the reference (CS-P predictions). For both the left-to-right and the bottom-to-top flow 444 

configurations, the coarse model errors on water depths L3,h range between 2% and 5% of the mean 445 

water depth when the drag coefficient is varied between 
0 0.0Dc   and 

0 2.0.Dc   This is substantially 446 

lower than when no porosity model is used (10% with the CS-10m model). 447 

The optimal values of the drag coefficient for the left-to-right and bottom-to-top flow configura-448 

tions is the same (
0 0.5Dc  ). This is in agreement with the overall orientation of the network of 449 

streets almost along the diagonals of the computational domain, which makes the two flow configu-450 

rations approximately equivalent. In contrast, we find that the optimal drag coefficient differs be-451 

tween the initial set of flow boundary conditions (section 4.2.3) and the two flow configurations 452 

considered here (left-to-right and bottom-to-top). In the former case, the optimal value of 
0

Dc  was 453 

equal to 2.0, whereas here the coarse model error on water depths is minimal when 
0

Dc  is reduced to 454 

0.5. This result confirms a fundamental limitation of the scalar formulation of the drag term, which 455 

fails to capture the dependence of drag effects on the orientation of the main flow direction com-456 

pared to the network of street. The loss in accuracy resulting form this limitation remains nonethe-457 

less lower than the enhancement in accuracy brought by the use of a porosity model instead of a 458 

standard shallow-water model (CS-10m). Although only tested so far for idealized periodic urban 459 

networks, the more advanced tensor formulation introduced by Velickovic et al. (2017) paves the 460 

way for the development of generalized drag models as needed for simulating complex urban flood-461 

ing in realistic street networks. 462 

 463 
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Flow boundary conditions According to section 4.2.1 Left-to-right Bottom-to-top 

Left side Inflow boundary Inflow boundary Impervious 

Right side Outflow boundary Outflow boundary Impervious 

Bottom side Inflow boundary Impervious Inflow boundary 

Up side Outflow boundary Impervious Outflow boundary 

Optimal drag coefficient 
0 2.0Dc   0 0.5Dc   0 0.5Dc   

Table 4: Considered flow boundary conditions and corresponding optimal values of the drag coefficient. 464 

 465 

Figure 14: Water depths along the upstream boundaries in the “left-to-right” (a) and “bottom-to-top” (b) flow config-466 

urations. 467 

4.3 Dam-break flow over an anisotropic array of buildings 468 

4.3.1 Test case description 469 

We consider a dam-break flow over an urban area consisting of 18 identical buildings of 470 

20  20 cm2, as shown in Figure 15 and described by Yoon (2007). The urban network is aniso-471 

tropic as the street widths are different in both directions. Experimental measurements of the time 472 

evolution of water depths are available at 17 locations within and nearby the urban area. The initial 473 

water depth in the reservoir is 0.3 m. Transmissive boundary conditions are prescribed along the 474 

open sides of the floodplain. Consistently with Kim et al. (2015), we use the friction formula of 475 

Haaland (1983) with a Nikuradse sand-grain roughness height of ks = 3  10-4 m. 476 

 477 
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 478 

Figure 15: Experimental set-up of Yoon (2007), as described by Kim et al. (2015). 479 

4.3.2 Pore-scale error 480 

Reference results were generated by using the CS model with a fine resolution of 0.05 m. In this 481 

mesh, all computational cells are either filled by obstacles or entirely free for water. The micro-482 

scale results of the CS model were then aggregated at the coarse scale of 0.25 m by averaging the 483 

flow variables of the cells not occupied by obstacles (CS-P predictions). 484 

Comparing the CS-P predictions of water depths to the measurements, the pore-scale error L1+2 (av-485 

eraged over all time steps and all stations) is around 0.68 cm, which represents 16% of the average 486 

measured water depths over the first 300 sec. 487 

4.3.3 Tested porosity models 488 

Kim et al. (2015) applied an unstructured porosity model to reproduce the experimental results with 489 

a gap-conforming mesh and cell sizes ranging between 0.25 m and 0.33 m. Here, we apply porosity 490 

models on a Cartesian grid with a resolution of 0.25 m. 491 
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Since the cell size is larger than the building size, the discretisation corresponds to macro-scale 492 

modelling. We compare the results obtained with the PS-A-1 and PS-A-2 models. Because the opti-493 

mal drag coefficient 
0

Dc  is known to depend on the model used (Kim et al., 2015; Özgen et al., 494 

2016), four values of 
0

Dc  (1, 2, 3 and 4) were tested in combination with each model. 495 

Since the positive wave crosses the two blocks of buildings in a few seconds, which is negligible 496 

compared to the total transient phase of 600 seconds, the transient momentum dissipation model is 497 

not useful in this quasi-steady test case. 498 

4.3.4 Influence of porosity model and drag coefficient 499 

As shown in Table 5, the PS-A-2 model, which captures the presence of nearby obstacles, gives in 500 

all cases more accurate results than the PS-A-1 model, in which the conveyance porosity is evalu-501 

ated locally at the edges. This difference prevails both for the total error L0 and for the porosity 502 

model error L3, evaluated either for water depth or for flow velocity. 503 

The drag coefficient minimizing the porosity model errors L3 corresponds to 
0 3Dc   when consider-504 

ing the water depths and 
0 2Dc   for the fluid velocities; but both values perform actually very simi-505 

larly. Based on an unstructured mesh, Kim et al. (2015) reported an optimal value of 
0 1Dc   for both 506 

hydraulic variables, which suggests some dependence of the optimal drag coefficient on the poros-507 

ity model used. 508 

The minimum value for porosity model errors on water depths with the Cartesian grid 509 

(L3,h = 0.32 cm) is twice lower than the pore-scale error. 510 

 511 
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 PS-A-1 PS-A-2 

 0 1Dc   0 2Dc   0 3Dc   0 4Dc   0 1Dc   0 2Dc   0 3Dc   0 4Dc   

L0,h 
1.58 

(36%) 

1.44 

(33%) 

1.04 

(24%) 

0.87 

(20%) 

1.07 

(24%) 

0.92 

(21%) 

0.85 

(19%) 

0.81 

(18%) 

L3,h 
1.13 

(28%) 

0.97 

(24%) 

0.51 

(13%) 

0.60 

(15%) 

0.53 

(13%) 

0.36 

(9%) 

0.32 

(8%) 

0.33 

(8%) 

L3,V 
18.6 

(28%) 

22.3 

(34%) 

16.6 

(25%) 

21.6 

(33%) 

15.0 

(23%) 

14.0 

(21%) 

15.3 

(23%) 

16.9 

(26%) 

Table 5: Total errors L0 and porosity model errors L3 for water depths (cm) and velocity magnitudes (cm/s). The rela-512 

tive values in brackets are determined by comparing the absolute values to the average of the reference flow variables 513 

over the firsts 300 sec. 514 

4.3.5 Time series 515 

Figure 16 compares the time evolution of water depths predicted by the PS-A2 model (
0 3Dc  ) to 516 

the reference computation (CS-P) and to the observations at different gage stations. The results 517 

show that the differences between the observations and the CS-P predictions are distinctively higher 518 

than those between the PS-A-2 model and the CS-P values. Additionally, the PS-A-2 model cap-519 

tures satisfactorily the peak values and the time evolution of the water depths at most stations. As 520 

shown in Figure S4, the CS-P predictions for velocity magnitudes are fairly well reproduced by the 521 

PS-A-2 model for most stations except along the centreline, were high velocities occur. This was 522 

also noticed by Kim et al. (2015). 523 
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 524 

Figure 16: Comparison of water depth measurements, CS-P predictions and computations with the PS-A-2 model 525 

using the optimal value of 
0 3Dc   for water depths. 526 

4.4 Idealized urban network 527 

The potential benefit of discriminating the porosity parameters between the different terms of the 528 

governing equations (PS-A-D model in Table 1) is discussed here for an idealized urban network 529 

made of single-size aligned buildings. Key flow features can be estimated a priori because of the 530 

simple geometry of the urban network. Therefore, the values of the porosity parameters may be set 531 

to reproduce the expected impact of obstacles on each term. The results computed with the PS-A-D 532 

model are also compared to those of the PS-I, PS-A-1 and PS-A-1-D models. 533 
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4.4.1 Description of the test case 534 

The considered domain is divided into four parts (Part I to Part IV from upstream to downstream in 535 

Figure 17), all with a frictionless bottom. Parts I to III are flat while a slope of 10% is introduced in 536 

Part IV to prescribe a transmissive boundary condition at the downstream end. Part II is made of a 537 

symmetric and isotropic urban network in which the building grid is aligned with the main flow di-538 

rection. The average storage porosity in part II is equal to 0.75. A uniform unit discharge of 10 m2/s 539 

is prescribed at the upstream end over the entire width. 540 

 541 

Figure 17: Idealized urban network: simulation domain and discretization at the coarse scale. 542 

4.4.2 A priori estimation of porosity parameters for the PS-A-D model 543 

We first estimate the porosity parameters to be used in the governing equations of the PS-A-D 544 

model so that this model mimics the micro-scale model. Based on a simplified, yet realistic, de-545 

scription of the flow field (Figure S5 in Supplemental data), we assume (i) a uniform value he of 546 

water depth in the urban network; (ii) no transverse velocity and a uniform streamwise velocity ue 547 

in the streets aligned with the x-axis; (iii) negligible velocities in the wake of buildings. 548 

Consequently, the macro scale water depths h  and velocities u  and v  within a coarse cell of 549 

the urban area are estimated by: 550 
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, (14) 551 

with x  and y  the lengths of the cell edges. 552 

Based on this a priori estimation of the flow field and considering that the streamwise velocity com-553 

ponent occurs over one-half of the length of the edges normal to the streamwise direction, the fluxes 554 

at these edges may be estimated by: 555 
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F   (15) 556 

Using Eq. (14) to express the a priori estimation of the flow variables he and ue as a function of the 557 

coarse scale variables leads to: 558 

  
2

3
0

2

9
0

4 2

0 0

h u

x
h u

 
 
 

  
 
 
 
  

F   (16) 559 

Assuming a constant reconstruction of the flow variables from the cells to the edges and comparing 560 

Eq. (16) to Eq. (9), this leads to the following estimation of the porosity parameters: 3 4c   and 561 

1, 9 8m A  . These values are consistent with the condition 
1mA c   ensuring the hyperbolicity of 562 

the system of equations. The edge porosity parameter 
1,m A  used for the computation of the advec-563 

tive term is higher than 1. This results from the macro scale value 
2

u  being lower than half of 
2

eu : 564 

2 24 / 9 eu u . 565 

Since the pressure fluxes vanish in the case of a horizontal free surface, the corresponding edge po-566 

rosity ,m P  remains undetermined. Therefore, we have analysed the sensitivity of the results to the 567 
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value of ,m P  by testing , 0.5m P   and , 1.0m P   (PS-A-D0.5 and PS-A-D1.0 models, respec-568 

tively). 569 

Note that, at the edges partly occupied by an obstacle, the porosity parameters are identical in the 570 

PS-A-D0.5 and PS-A-1-D models ( 3 / 4   and 1/ 2  ). In contrast, along the edges free of ob-571 

stacles, the value of  remains the same ( = 3 / 4) but the values of  are different:  = 1 / 2 in the 572 

PS-A-D0.5 model and  = 1 in the PS-A-1-D model. 573 

4.4.3 Results and discussion 574 

Here, micro-scale modelling refers to a cell size of 1 m and the coarse scale models are based on a 575 

cell size of 10 m. We consider as a reference the results computed with the CS model at the micro-576 

scale (CS-1m), averaged over the coarse cells of 10 m (CS-P predictions). Hence, these reference 577 

data incorporate the scale error. Hydraulic variables computed with the different models are com-578 

pared along the longitudinal profile A-A’ (Figure 17). As shown in Figure 18, the results reveal the 579 

following. 580 

 In the urban area (Part II), the free surface levels and velocities computed with the micro-581 

scale CS-1m model do not evolve significantly. The unit discharge in this part (~22 m2/s) 582 

is slightly higher than twice the uniform discharge prescribed at the upstream end 583 

(10 m2/s). This tends to confirm that the flow is concentrated along the longitudinal 584 

streets free of obstacles, as assumed in the a priori estimation of the flow field. 585 

 The scale error between the CS-1m model and CS-P values are generally limited for the 586 

water depths; but they are significant for the dynamic variables. At the downstream end, 587 

differences between CS-1m and CS-P are related to the cross-waves expanding from 588 

downstream of the building area. The scale errors between CS-1m and CS-P are gener-589 

ally lower than the porosity model errors for water depths while they are higher for veloc-590 

ities and unit discharges. This shows a strong dependence of the scale error on the con-591 

sidered flow variable. 592 
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 The PS-I, PS-A-1 and PS-A-1-D models underestimate the water depths and overestimate 593 

the velocities in the urban area when no drag term is used. Using the PS-A-1 model, an 594 

optimal value of the drag coefficient regarding the reproduction of the free surface level 595 

at the upstream end was found equal to 
0 1.75Dc  . In the urban area (Part II), the PS-A-1 596 

model with an optimal drag coefficient overestimates the water depths. PS-I, and PS-A-D 597 

(same results for 
0 0Dc   and 

0 1.75Dc  ) models enable a good reproduction of unit dis-598 

charges in the urban area while the PS-A-1 and PS-A-1-D (same results for PS-A-D1.0 599 

and PS-A-D0.5 models) model induces oscillations. These oscillations result from the 600 

changes in the value of the porosity parameters from one edge to the following one. The 601 

PS-A-D0.5 model reproduces all flow variables with a good accuracy.  602 

These results show that discriminating the porosity parameters between the various terms of the 603 

governing equations based on considerations of the flow dynamic can improve the reproduction of 604 

the effects of the obstacles on these terms. However, such a discrimination is feasible in practice 605 

only for simple urban networks for which general characteristics of the flow pattern can be esti-606 

mated a priori. It remains hardly transferable to more complex urban geometries due to the lack of 607 

an ad hoc methodology. 608 
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 609 

Figure 18: Free surface levels, velocity magnitudes and unit discharges along A-A’ for the different models. Vertical 610 

dotted lines represent the location of the buildings. 611 

4.5 Wave propagation 612 

We consider a dam-break flow over a horizontal and frictionless bottom with a large number of ob-613 

stacles as represented in Figure 19. This test case is similar to those introduced by Guinot (2012) 614 

and used by Özgen et al. (2016) and Guinot et al. (2017). The initial water depth is 10 m for nega-615 

tive abscissa and 1 m for positive ones. 616 

 617 

Figure 19: Channel geometry for the test case assessing wave propagation. 618 
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Computations were performed with a fine resolution CS model (1 m) and with the porosity models 619 

PS-A-D1.0 ( 1.0mP  ) and PS-A-D1/6 ( 1/ 6mP  , consistently with the geometry of the contrac-620 

tion) using a cell size of 60 m. The transient momentum dissipation coefficient  was calibrated to 621 

reproduce optimally the propagation speed of the front of the positive wave. Using a similar a priori 622 

estimation of the flow field as for the test case of section 4.4, the porosity parameters are 7 /12  , 623 

7 /12c   and 49 / 24mA  . These values turn out to be identical to those derived with the dual 624 

integral porosity model (Guinot et al., 2017) if the cell edges are located at the contractions (625 

7 /12   and 1/ 6  , leading to 7 /12  , 7 /12c   , and 
2 2 49 / 24mA         ). 626 

This is a remarkable result, since the two estimations of the porosity parameters stem from two in-627 

dependent lines of reasoning. 628 

The computed water depths profiles are shown in Figure 20 at the time t = 200 s. As reported by 629 

Guinot et al. (2017), the transient momentum dissipation model enables a considerable improve-630 

ment in the reproduction of the speed of positive waves. Like in section 4.4, PS-A-D model pro-631 

vides more accurate results if the edge porosity mP  is representative of the smallest free length 632 

(PS-A-D1/6 model). This supports the closure model introduced by Guinot et al. (2017). Surpris-633 

ingly, the value of the optimal transient momentum dissipation coefficient ( = 0.60) is quite differ-634 

ent from the one ( 0.41  ) obtained by Guinot et al. (2017), showing the high sensitivity of this 635 

coefficient to the geometry which is here slightly different from the geometry used by Guinot et al. 636 

(2017). 637 
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 638 

Figure 20: Comparison of the water depth profiles between the refined CS models and the PS-A-D models at 639 

t = 200 s. 640 

5 CONCLUSION 641 

The main contributions of this paper are three improvements of porosity-based models on Cartesian 642 

grids: (i) the use of a merging technique for cells with low storage porosity values, leading to a high 643 

increase in computational efficiency, (ii) the comparison of different methods for the determination 644 

of edge porosity parameters on Cartesian grids and (iii) a discussion of the potential benefit of dis-645 

tinguishing the values of flow-dependent porosity parameters to be used in the different terms of the 646 

governing equations. 647 

 At the meso-scale, cells with low storage porosity values reduce significantly the computa-648 

tional efficiency due to the stability condition. We implemented a technique which consists 649 

in merging cells having a storage porosity below a threshold to neighbouring cells. In the 650 

case of a rectangular channel discretised on a Cartesian grid, this technique enables both ac-651 

curate and efficient computations. 652 

 We defined two different modelling scales depending on the relative sizes of obstacles com-653 

pared to the cell size. At the “meso-scale”, the obstacles remain explicitly discretized on the 654 

grid, while at the “macro-scale”, the presence of obstacles is reflected only through the po-655 

rosity parameters. In the case of porosity models applied on Cartesian grids, we found that 656 
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the optimal method for evaluating the conveyance porosity depends on the modelling scale. 657 

At the meso-scale, the obstacles intersect the computational edges and the conveyance po-658 

rosity can therefore be evaluated directly along the edges. In contrast, at the macro-scale, the 659 

presence of obstacles not intersecting the cell edges must be considered when evaluating the 660 

conveyance porosities. Based on a dedicated test case involving synthetic urban networks, 661 

we found that taking the minimum fraction of free length parallel to the edge over half of a 662 

cell on either sides of the edge gives more accurate results than the determination of the con-663 

veyance porosity locally along the edges. 664 

 In our derivation of the porosity model we introduced different porosity parameters in the 665 

different terms of the governing equations. Considering an idealized urban network for 666 

which key features of the flow field can be estimated a priori, we estimated physically rele-667 

vant values for each porosity parameter, reflecting the specific effect of obstacles on each 668 

term of the governing equations at the coarse scale. While this approach proved promising, 669 

its generalization to more complex flows remains challenging. 670 

The above-mentioned porosity models consider that the obstacles are sufficiently high so that they 671 

cannot be overtopped by the flood. The porosity parameters are therefore independent of the flow 672 

depth. Özgen et al. (2016) introduced recently a depth-dependent anisotropic porosity model to con-673 

sider the possible submergence of low-level obstacles. This is certainly a path to follow for further 674 

generalizing the model presented here.  675 
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APPENDIX A. DERIVATION OF THE EIGENVALUES OF THE GOVERNING EQUATIONS 744 

Considering an infinitesimal control volume, a horizontal and frictionless bottom and applying the 745 

divergence theorem for continuous and differentiable solutions, the governing equations are rewrit-746 

ten in a differentiable formulation for a one-directional flow (Guinot et al., 2017): 747 
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  (17) 748 

The corresponding Jacobian matrix A is: 749 
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with c gh . 751 

The eigenvalues for the one-directional case are: 752 
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with    1
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 
. 754 

If the values of the edge porosity parameters are replaced by the corresponding values according to 755 

Table 1 for model PS-A-1-D (i.e. DIP model, with mA1 = mA2 = 2/; c = , and mP = ,), the 756 

same eigenvalues as computed by Guinot et al. (2017) are retrieved. 757 

To ensure the existence of the eigenvalues in Eq. (19), configurations leading to  
1

1c mA     758 

should be excluded. For steady and quasi-steady flows ( being set to zero), the hyperbolicity of the 759 

system is hence ensured when 
1mA c  . 760 
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