

Complex impact of goldfish introduction on palmate newt dominated pond ecosystem

BENJAMIN LEJEUNE^{1,2}, **GILLES LEPOINT**² & **MATHIEU DENOËL**¹

¹*Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Resource Research Unit of Research (FOCUS), University of Liège, Belgium*

²*Laboratory of Oceanology, Freshwater and Oceanic Resource Research Unit of Research (FOCUS), University of Liège, Belgium*

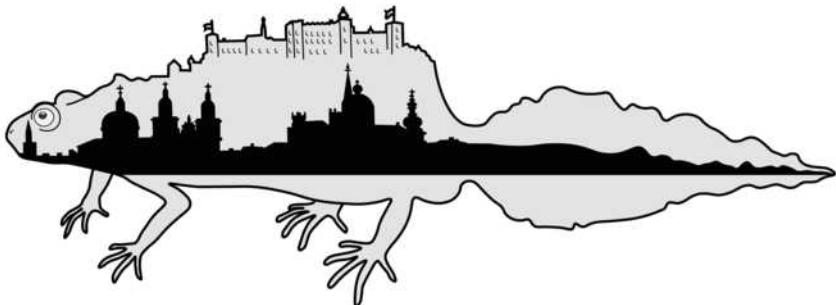
E-Mail: benjamin.lejeune@doct.ulg.ac.be

Introduction of invasive species is one of the main threat to amphibian populations. Beyond direct predation or competition effects with native species, omnivorous invasive species are of particular concern as they can have important and long-term impacts on native populations by affecting the entire community. In Larzac (Southern France), declining trends in the pond-breeding palmate newt populations are correlated to goldfish (*Carassius auratus*) introductions (Denoël & Lehmann, 2006; Denoël & Winandy, 2015). However, the processes leading to local extinction of newts from invaded ponds are not fully understood. In particular, goldfish seem to have a strong impact on the pond ecosystem, potentially making it an unsuitable habitat for newts.

To assess the impact of goldfish leading to newt extinction, we compared the community assemblages and modelled the communities' isotopic niches of ponds naturally dominated by the palmate newt (*Lissotriton helveticus*) and ponds where these newts have been extirpated following goldfish introduction, using varied techniques including Carbon and Nitrogen stable isotopes analyses in a Bayesian framework.

Our results show that beyond direct interactions with newts, goldfish have profound detrimental impacts on the aquatic vegetation, anurans, macroinvertebrates and zooplankton communities of the ponds by operating a global alteration of the food web on multiple trophic levels, reducing its size, diversity and evenness, and consuming almost all exploitable resources available for newts. In the long-term, these changes likely explain newts' exclusion from invaded ponds and illustrate the detrimental effects of goldfish introductions for native ponds ecosystems.

This research was supported by Fonds de la Recherche Scientifique – FNRS.


References:

Denoël, M. & A. Lehmann (2006). Multi-scale effect of landscape processes and habitat quality on newt abundance: implications for conservation. *Biological Conservation* 130: 495-504.

Denoël, M. & L. Winandy (2015). The importance of phenotype diversity in conservation: Resilience of palmate newt morphotypes after fish removal in Larzac ponds (France). *Biological Conservation* 192: 402-408.

SEH 2017

19th European Congress of Herpetology

PROGRAMME & ABSTRACTS

UNIVERSITÄT
SALZBURG

ÖGH

Österreichische
Gesellschaft für
Herpetologie

MUSEUM
FÜR NATUR
& TECHNIK

HAUS
DER
NATUR
SALZBURG

University of Salzburg
18th - 23rd September 2017