

Juno JUICE

Mars Express MAVEN TGO

ICON SMILE

Benjamin Palmaerts (LPAP)

STAR workshop

15 September 2017

MARS EXPRESS - ESA

Launch: 2 June 2003

Orbit insertion: 25 December 2003

Extended mission: 31 December 2018

SPICAM UV spectrograph

Used for variety of atmospheric studies:

- Nitric oxide nightside emission \rightarrow global transport by the Martian general circulation
- Dayside UV emission \rightarrow chemical composition and thermal profile of the upper atmosphere
- Nightside aurora in regions of crustal magnetic field

- Altitude determination
- Mapping and relation with crustal magnetic field topology
- Currently: search for proton aurora

Launched: 18 Nov 2013

Orbital insertion: 21 Sept 2014

Currently: third extension up to September 2018

Future: will serve as a telecomm relay

IUVS

Imaging spectroscopy from 110–340 nm, with resolution of 0.5–1.0 nm.

Four operating modes

IUVS science objectives

Vertical profiles to characterize composition & structure – Multispecies periapsis limb scans

Global images to characterize spatial distribution & variability

Deuterium/Hydrogen ratio vs. altitude to constrain escape process

Vertical CO2 profile to characterize the underlying atmosphere

STAR implication

Analysis of vertical profiles and global images

Atmosphere modeling and comparison

EXOMARS Trace Gas Orbiter (ESA-ROSCOSMOS)

Launched: 17 March 2016

Orbital insertion: 19 October 2016

Currently: aerobraking phase

Science operations: May-June 2018 Quasi-Polar orbit, 400km

NOMAD

Two IR spectrographs One UV-visible spectrograph

Nadir + limb + solar occultation observations

NOMAD science objectives

Detection and mapping of minor constituents, including methane (?)

CO₂ and temperature mapping

Ozone limb profiles – seasonal and latitudinal mapping

Upper atmosphere science

ULg implication

Management and testing by CSL

Analysis of UV solar occultation

UV-visible upper atmospheric emissions

- Circular orbit

- 27° inclination \rightarrow equatorial regions
- 550 km (+-45km) altitude
- Lifetime: 2 years nominal duration
- Launch : Nov. 2017 (Pegasus XL@Kwajalein)

Mission objectives

Three scientific goals:

- 1) What are the sources of strong ionospheric variability
- 2) Understand the transfer of energy and momentum from our atmosphere into space
- How solar wind and magnetospheric effects modify the internally-driven atmospherespace system

Scientific payload

- Two limb-scanners in UV: EUV (extreme UV) and FUV (far UV)
- One imager in visible: MIGHTI
- One in-situ ion probe: IVM

STAR contribution

- Far Ultraviolet Imager (FUV)
 - UV alignment, calibration, optical design and analyses performed at CSL
 - Two detectors at 135.6 and 155 nm for OI and N2
 LBH respectively
 - Measure O+ altitude profile (nighttime)
 - Measure O, N2 and O/N2 ratio altitude profile (daytime)

Science objectives

- Comparison of ICON electron density profiles with GPS, radio-occultation and ionosonde data
- Detection of ionospheric disturbances
- Investigation of solar activity influence
- Radiative transfer of He 58.4

SMILE (ESA-CNSA)

European Space Agency

Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission is a project dedicated to space physics and the study of the Earth magnetosphere.

SMILE (ESA-CNSA)

- Relation between the solar wind and the Earth magnetosphere, from the bow shock to the aurora.
- Expected launch: 2021
- CSL contributes to the UVI instrument, lead by U. Calgary (Canada).
- New instrument concept: UV λ fine selection using coated mirrors.
- Scientific analysis by LPAP

Cassini-Huygens – NASA & ESA

Orbital insertion: 01.07.2004 End of the mission: TODAY!

Ultraviolet Imaging Spectrograph (UVIS)

EUV 56-118 nm FUV 111-191 nm

Swath of the UVIS slit by spin of Cassini

Far from the planet

Close from the planet

Radioti et al., 2013

