Stochastic multiscale modeling of MEMS stiction failure

Truong Vinh HOANG

Liège, Belgium, September 19th, 2017

University of Liège, Belgium

Le Fonds de la Recherche Scientifique

Overview

- MEMS: Micro-Electro-Mechanical System
 - Technology to develop microscopic devices
 - Small size: lower power requirement, reduced manufacturing material cost
 - Part of flourishing technology

Size of MEMS chips (Source: mCube)

SEM image of a micro-gears system (Courtesy Sandia National Laboratories)

- MEMS: Micro-Electro-Mechanical System
 - Applications: Accelerometers, digital mirrors, pressure sensors, gyroscopes, resonators, DNA chips ...

Figures sources: contus.com, wiki.seeedstudio.com, carsdirect.com, howtomechatronics.com

- MEMS: Micro-Electro-Mechanical System
 - Applications: Accelerometers, digital mirrors, pressure sensors, gyroscopes, resonators, DNA chips ...

Digital mirror for projector (Epson®)

Affymetrix GeneChip® (source: wikipedia)

Motivation

• Small volume to area ratio, small gap

$$\frac{\text{volume}}{\text{surface area}} \sim \frac{l^3}{l^2} = l, \quad l \sim 10^{-6} \text{ m}: \text{ characteristic length}$$

- Surface forces become important (one million times more important than at macro scale)
- Adhesions forces: capillary forces and van der Waals (vdW)
- Stiction phenomenon
 - Two contacting bodies are permanently stuck
 - Common failure of MEMS

Adhesion of two contacting rough surfaces

Stiction configurations of micro beams to its substrate 5

Motivation

• Small volume to area ratio, small gap

 $\frac{\rm volume}{\rm surface \ area} \sim \frac{l^3}{l^2} = l, \quad l \sim 10^{-6} \ {\rm m: \ characteristic \ length}$

- Surface forces become important
- Adhesions forces: vdW forces and capillary forces
- Stiction phenomenon
 - Two contacting bodies are permanently stuck
 - Common failure of MEMS

Stiction failure of comb drive (Courtesy of IMEC)

Stiction failure in a MEMS sensor

(Jeremy A.Walraven Sandia National Laboratories. Albuquerque, NM USA)

Motivation

- Multiscale problem
 - Range of adhesive forces (nanometers) << size of structure (micrometers)
 - Effective contact zone is local (1) [de Boer et al. 2007]
- Surface roughness
 - Interaction involves only highest asperities (2)
- Stiction phenomenon suffers from scatter:
 - (1) and (2): number of contacting asperities at the effective contact zone is not sufficient to obtain a statistically homogenized behavior
 - Identical design and fabrication process MEMS structures but different stiction behaviors
 - Tested beam arrays: s-shape beams (different crack lengths)

Adhesion of two contacting rough surfaces

Stiction configurations of micro beam to its substrate

Objectives

- To quantify the uncertainty of MEMS stiction behavior
 - Design a MEMS product striking a balance between costs and stiction failure percentage
- Develop a numerical method
 - Quantifying the uncertainty of the stiction behavior of MEMS
 - Accounting for roughness of contacting surfaces
 - Numerically verified and experimentally validated
 - With acceptable computation cost
- Difficulties
 - Multiple scales, multiple physics
 - Surface roughness characterization
 - Uncertainty quantification across multiple scales and multiple physics
 - High computational costs

Stochastic multiscale model

- I. Deterministic multiscale model
- Dealing with the aspects of multiple scales and multiple physics of stiction phenomenon
- II. Stochastic analysis
 - Dealing with stochastic analysis over multiscale model
 - At an acceptable computational cost
- III. Numerical verification and experimental validation
- IV. Conclusions and perspectives

I. Deterministic multiscale model

- II. Stochastic analysis
- III. Numerical verification and experimental validation
- IV. Conclusions and perspectives

- Goal: evaluate the stiction failure configuration of a MEMS structure
- Brute forte solution: a Finite Element model with a small element size
 - Element size $h \sim 1$ nm to capture the adhesive stresses of capillary and vdW interactions
 - Structure size $L \sim 100 \,\mu m$
 - L/h ~ 100 million : Expensive computational cost
- Develop a multiscale model
 - To reduce computational cost

- Lower-scale: measurement of surface topology
 - Lower scale: using Atomic Force Microscopy (AFM) to measure the contacting surfaces
- Meso-scale: surface contact model
- Upper-scale: MEMS Stiction behavior

SEM image of surface roughness

Samples were fabricated at IMT-Bucharest: National Institute for Resesearch and Development in Microtechnologies, Romania

- Lower-scale: measurement of surface topology
- Meso-scale: surface contact model
 - Evaluate the apparent adhesive contact forces between AFM measurements
 - Upper-scale: MEMS Stiction model

Deterministic multiscale model

- Lower-scale: surface roughness
- Meso-scale: surface contact model
- Upper-scale: MEMS Stiction behavior
 - Construct a FE model of the considered MEMS structure to evaluate its stiction behavior
 - Meso-scale contact forces function is considered as contact law associated with integration points
 - Ratio between structure size and element size is reduced (~ 100): computational cost is reduced compare to (single scale model) brute force FE

- Meso-scale contact model
- Upper-scale FE stiction model

- Physics of adhesive forces
 - vdW interaction is not discussed here (see my thesis for details)
 - Capillary forces: resulting from condensing water including meniscus and absorbed surface layer.

Lalace pressure: $\Delta P = \frac{\gamma_{\rm LG}}{r_K} = \frac{\mathcal{R}T\ln RH}{V_m}$, Kelvin radius: $r_K = \frac{\gamma_{\rm LG}V_m}{\mathcal{R}T\ln RH}$ (*RH* humidity level, $\gamma_{\rm LG}$ liquid vapor energy,

 V_m liquid molar volume, \mathcal{R} universal gas constant, T absolute temperature)

Theoretical adhesion energy is constant: $w_C = h_{\text{water}} \Delta P = 0.144 \, [\text{J/m}^2]$

- Contact problem between a rough surface and a flat surface
 - Adhesive stress is weak compared to material stiffness
 - Physical contact happens only at the highest asperities: multiple asperity contact theory
 - Saturation effect: water menisci can be merged together at high humidity levels
 - Menisci could not be treated locally at each asperity

Meso-scale contact model

- FE method [Ardito et al. 2013, 2014]
 - Advantage: accurate
 - Disadvantage: high computational cost
- Analytical model, e.g. Greenwood-Williamson (GW) model [Greenwood et al. 1966]
 - Based on multiple asperity contact theory [Ardito et al. 2016]
 - Evaluate the adhesive contact forces at each contacting asperity
 - Sum all the forces to get the total adhesive contact force
 - Summation is simplified by a statistical average
 - infinite surface size is assumed
 - Advantage: efficient in terms of computational cost
 - Disadvantages:
 - Saturation effect is not accounted for
 - Size effect (for stochastic analysis) is not accounted for since infinite surface size is assumed
- Semi-analytical surface contact model (in this thesis)
 - Based on multiple asperity contact theory with low computational cost
 - Adavantages: account for saturation effect and size effect

- Spherical asperity contact models
 - Hertz model: non-adhesive elastic contact [Hertz 1882]
 - Derjaguin-Muller-Toporov (DMT) model: long range and weak adhesive stress, hard material [Derjaguin et al. 1975]
 - Johnson-Kendall-Roberts (JKR) model: short range and strong adhesive stress, soft material [Johnson et al. 1971]
 - Maugis model: transition model [Maugis 1992]
 - Modified DMT model (adhesive elastic contact): long range, weak interaction stress, hard material
 - Developed in this thesis

Applicability of contact models			
	DMT	Maugis	Modified DMT
Capillary interaction on polysilicon* (hard material)	\checkmark	\checkmark	\checkmark
Extending to surface contact (with saturation)			\checkmark

(*) Polysilicon is one of the most important materials in context of MEMS

Hertz model (non-adhesive elastic contact)

• DMT model

- Assumption: weak and long range adhesive forces, hard material
 - Deformation resulting from adhesive stress is negligible compared to the one from elastic stress
 - Deformed configuration can be evaluated using Hertz model
 - Radius a: of physical contact area
 - Radius **c**: the largest radius at which the contact distance is $h_{
 m water}$
 - Total contact force can be evaluated by adding the elastic repulsive force and capillary force

Deformed configuration (evaluated by Hertz model)

- Modified DMT model
 - Additional assumption: at the points (•) whose contact distance is equal to the height of meniscus h_{water} the sphere is not deformed
 - The ability to evaluate radius *c* solely from undeformed geometry is key to account for the saturation effect.

c evaluated solely using undeformed geometry

Capilary interaction: $F_C = \Delta P(\pi c^2 - \pi a^2)$ $F_{\rm r}$, a are evaluated from Hertz model Total force: $F = F_r + F_C$

(area of deformed sphere inside meniscus) (asperities physical contact area)

Deformed configuration

- Verification of the modified DMT model
 - Comparison on a sphere vs. flat surface interaction: Modified DMT model, DMT model, Maugis model
 - Good agreements between three models
 - The validity of additional assumption in the modified DMT model is numerically verified

equivalent to

- Semi-analytical model for contact between rough surfaces
 - Equivalent contact problem

 $z_{\rm eq}$ vs. flat surface

24

- Semi-analytical model for contact between rough surfaces
 - Extend modified DMT model to surface contact
 - Repulsive and capillary interactions are evaluated separately •
 - Capillary effect is treated in a global way: saturation effect is accounted for •

(elastic interaction)25

- Semi-analytical model to contact between rough surfaces
 - Extend modified DMT model for surface contact
 - Repulsive and capillary interactions are evaluated separately
 - Capillary effect is treated in a global way: saturation effect is accounted for

$$\begin{array}{c} \text{total repulsive force } f_r = \sum F_r^{(i)} \\ \text{capillary force} \quad f_C = \Delta P(A_{h_{\text{water}}} - \sum \pi a^{(i)2}) \\ \bigstar \\ \text{(area of topology whose contact distance } \leq h_{\text{water}}) \\ \end{array} \right\} \begin{array}{c} \text{total force } f = f_r + f_C \\ \bigstar \\ \text{(asperities physical contact area)} \end{array}$$

- Semi-analytical model for contact between rough surfaces
 - A typical evaluated contact forces function has three zones depending on contact distance
 - Two contacting surfaces are far way: no interaction (zero forces)
 - Two contacting surfaces approach each other: adhesive interaction is dominant (negative forces)
 - Two contacting surfaces enter to significant physical contact: elastic compression is dominant (positive forces)

- Semi-analytical model vs. GW model
 - In GW model: saturation effect is not accounted for
 - The merging parts of menisci are repeatedly counted
 - Overestimating adhesion force that could be not realistic

Maximum adhesive stress by GW model: 20 MPa (Not realistic) (Theoretical maximum adhesive stress of water at *RH*=90%: $\Delta P = 14$ MPa)

- Semi-analytical model vs. GW model
 - GW model: size of contacting surface is considered as infinite
 - GW model might not fully capture the adhesion effect (adhesion effect is only important at microscopic scale)
 - Adhesion force is underestimated (when saturation does not happens e.g. at low humidity levels)
 - Cut-off of surface height can be used in GW model, however which cut-off should be used is still questionable

RH=30 % (low humidity level, no saturation)

- Meso-scale contact model
- Upper-scale FE stiction model

Upper-scale FE stiction model

- FE model
 - Governing equation (elastic deformation):

 $\mathbf{K}\mathbf{u} = \mathbf{f}^c(\mathbf{u}) + \mathbf{f}^a$

- ${\bf u}:$ vector of unknown beam nodal displacements and rotations
- \mathbf{K} : stiffness matrix (e.g. evaluated using Euler-Bernoulli beam theory)
- \mathbf{f}^c : nodal forces vector resulting from meso-scale adhesive forces
- \mathbf{f}^a : nodal forces vector resulting from applied forces
- Solved using Newton-Raphson method as contact law is non-linear
- Apply loading–unloading process to obtain the stiction configuration

Upper-scale contact model

• FE model

• Governing equation (elastic deformation):

$\mathbf{K}\mathbf{u} = \mathbf{f}^c(\mathbf{u}) + \mathbf{f}^a$

- $\mathbf{u}:$ vector of unknown beam nodal displacements and rotations
- K: stiffness matrix (e.g. evaluated using Euler-Bernoulli beam theory)
- \mathbf{f}^{c} : nodal forces vector resulting from meso-scale adhesive forces
- \mathbf{f}^a : nodal forces vector resulting from applied forces
- Solved using Newton-Raphson method as contact law is non-linear
- Apply loading–unloading process to obtain the stiction configuration
 - Range of adhesive stress is small (nanometers)

Motivation for Sec. II: Stochastic analysis

Non-deterministic evaluated contact forces (AFM measurement vs. flat surface)

I. Deterministic multiscale model

II. Stochastic analysis

- Quantify the uncertainty of stiction phenomenon
- III. Numerical verification and experimental validation
- IV. Conclusions and perspectives

- Characteristic lengths
 - Lower-scale: $l^{
 m m}$, the characteristic length of the distances among neighboring asperities
 - Meso-scale: $l^{\rm meso}$, the characteristic length of the size of surface used to evaluate contact forces
 - Upper-scale: l^{M} , the characteristic length of the size of MEMS structure
- Scale separation conditions (general)

 $l^m \ll l^{\rm meso} \ll l^{\rm M}$

- $l^m \ll l^{meso}$: number of contacting asperities is sufficient to derive statistically representative homogenized contact behavior
- $l^{
 m meso} \ll l^{
 m M}$:meso scale contact behavior is applicable to evaluate upper scale behavior
- Meso-scale adhesive contact behavior is deterministic and can be applied as deterministic contact law to upper-scale FE model
- Size of MEMS structure is reduced, to hold: $l^{
m meso} \ll l^{
m M}$

 $l^m \leq l^{\text{meso}} \ll l^{\text{M}}$

- $l^m \leq l^{meso}$: number of contacting asperities is not sufficient to derive a statistically representative homogenized contact force
- Meso-scale adhesive contact behavior is nondeterministic
- Uncertainty quantification of MEMS stiction
 - Account for the randomness of the evaluated contact forces at meso-scale

- MCS: evaluate probabilistic behavior of MEMS structure
 - Evaluate *N_{MC}* realizations of stiction behaviors of considered MEMS structure
- Straightforward approach: direct MCS
 - Measure the contacting surfaces at the locations corresponding to the integration points
 - Evaluate the corresponding forces and integrate these forces as random contact laws
 - Inefficiency: high computational cost
 - Impractical: Many AFM measurements

1 realization

- MCS: evaluate probabilistic behavior of MEMS structure
 - Evaluate *N_{MC}* realizations of stiction behaviors of considered MEMS structure
- Straightforward approach: direct MCS
 - Measure the contacting surfaces at the locations corresponding to the integration points
 - Evaluate the corresponding forces and integrate these forces as random contact laws
 - Inefficiency: high computational cost
 - Impractical: Many AFM measurements

- MCS: evaluate probabilistic behavior of MEMS structure
 - To evaluate *N_{MC}* realizations of stiction behaviors of considered MEMS structure
- Straightforward approach: direct MCS
 - Measure the contacting surfaces at the locations corresponding to the integration points
 - Evaluate the corresponding forces and integrate these forces as random contact laws
 - Impractical: Many AFM measurements
 - Inefficiency: high computational cost

1 realization

- MCS: evaluate probabilistic behavior of MEMS structure
 - To evaluate *N_{MC}* realizations of stiction behaviors of considered MEMS structure
- Straightforward approach: direct MCS
 - Measure the contacting surfaces at the locations corresponding to the integration points
 - Evaluate the corresponding forces and integrate the forces as random contact laws
 - Impractical: Many AFM measurements
 - Inefficiency: high computational cost

N_{MC} realizations

Upper scale: N_{MC} stiction behaviors

- MCS: evaluate probabilistic behavior of MEMS structure
 - To evaluate *N_{MC}* realizations of stiction behaviors of considered MEMS structure
- Straightforward approach: direct MCS
 - Measure the contacting surfaces at the locations corresponding to the integration points
 - Evaluate the corresponding forces and integrate the forces as random contact laws
 - Impractical: Many AFM measurements
 - Inefficiency: high computational cost

Estimation of the cost of Direct MCS		
Number of realization	N_{MC}	
Number of AFM measurements	$2N_p imes N_{MC}$	
Number of explicitly evaluated apparent contact force functions	$N_p imes N_{MC}$	

 $N_p \sim 200$: number of intergration points in the FE model $N_{MC} \sim 1000$: number of realizations in MCS

- Lower-scale model: **<u>surface generator</u>**
 - Surface generator: generate a large number of numerical surfaces with approximated statistical properties characterized from measurements
 - Some AFM measurements (~ 3) are required
- Meso-scale model
 - Evaluate the *m* apparent contact forces between *m* pairs of generated contacting surfaces
- <u>Stochastic model of contact forces</u>
 - Input data: $m(\ll N_p \times N_{MC})$ explicitly evaluated apparent contact forces
 - To generate $N_p imes N_{MC}$ apparent contact forces
- Upper-scale model: MCS
 - Contact laws are generated from stochastic model
 - Performing MCS with FE model using the generated contact laws

Estimation of the cost of MCS			
Method	Direct MCS	Stochastic multiscale	
Number of AFM measurement scans	$2N_p imes N_{MC}$	2 imes 3	
Number of explicitly evaluated apparent contact force functions	$N_p imes N_{MC}$	m	

- Surface generator
- Stochastic model of contact forces

- Input data:
 - AFM measurements
- Characterization:
 - Identify the statistical properties using random field method
- Simulations:
 - Generate numerical surfaces respecting the identified statistical properties

AFM measurements (1D illustration)

• First order marginal probability density function (mPDF),

- Evaluate the first order mPDF
 - Statistical moments: mean, roughness, skewness, kurtosis evaluated from AFM data

roughness
$$rms = \sqrt{m_2} = \mathbb{E}[z^2]^{1/2}$$

skewness $\gamma = \frac{m_3}{rms^3} = \frac{\mathbb{E}[z^3]}{rms^3}$, kurtosis $\beta = \frac{m_4}{rms^4} = \frac{\mathbb{E}[z^4]}{rms^4}$

- \mathbb{E} : Expectation
- Method: maximum entropy principle [Shannon1949]
 - Search for the PDF that maximizes its entropy and matches the statistical moments

$$p_Z(z) = \exp(-\lambda_0 - \sum_{i=1}^4 \lambda_i z^i).$$

 λ_i coefficients to find using constraints

- Neglecting skewness and kurtosis: Gaussian distribution
- Accounting for skewness and kurtosis: Non-Gaussian distribution

- Evaluate the first order mPDF
 - Non-Gaussian estimated PDF is in better agreement with measurements histogram
 - Contact happens at only the highest asperities, accuracy of first order mPDF when getting to the high asperities is crucial.

48

Surface generator

- Spatial correlation
 - Auto-covariance function (ACF) characterizes the spatial correlation of two points at a given distance

 $r_Z(\tau) = \mathbb{E}[z(\mathbf{x}), z(\mathbf{x}+\tau)]$

AFM measurement (1D representation)

Auto-covariance function

- Evaluate the power spectrum density (PSD) function
 - ACF is the inverse Fourier transform of the PSD function
 - PSD function characterizes the density of variance in wave number space
 - PSD function decreases when increasing wave number

 $s_Z(\zeta) = \int_{\Re^2} \exp(-i \langle \zeta \tau \rangle) r_Z(\tau) d\zeta$ (Fourier transform of ACF)

50

- Non-Gaussian surface generator from the first order mPDF and PSD function
 - Generate Gaussian surfaces (1) and map them to Non-Gaussian surfaces (2)
 - The generated non Gaussian surfaces well respect the first order mPDF

$$s_Z \xrightarrow{(1)} z_G(\theta) \xrightarrow{(2)} z_{NG}(\theta)$$

(1) Generate Gaussian surface [Poiron et al. 1995]

$$z_{\rm G}(\mathbf{x}, \theta) = \sqrt{2\Delta\zeta^2} \,\Re e \left[\sum_{l_1=1}^{\mu} \sum_{l_2=1}^{\mu} \upsilon_{(l_1, l_2)}(\theta) \sqrt{\frac{1}{(2\pi)^2}} s_Z(\zeta_{l_1}, \zeta_{l_2})} \exp\left(\mathbf{i} < \mathbf{x}, \zeta > +\mathbf{i} \psi_{(l_1, l_2)}(\theta)\right) \right]$$

Random variable PSD function Random phases

Sum of sinus functions whose phases are random and weighted by square root of PSD function

- Non-Gaussian surface generator from the first order mPDF and PSD function
 - Generate Gaussian surfaces (1) and map them to Non-Gaussian surfaces (2)
 - The generated non Gaussian surfaces well respect the first order mPDF

$$s_Z \xrightarrow{(1)} z_G(\theta) \xrightarrow{(2)} z_{NG}(\theta)$$

(2) map Gaussian surfaces to non-Gaussian surfaces using iso-probabilistic transformation [Shinozuka 1971]

Surface generator

- Non-Gaussian surface generator from the first order mPDF and PSD function
 - Generate Gaussian surfaces (1) and map them to Non-Gaussian surfaces (2)
 - The generated non-Gaussian surfaces well respect the first order mPDF identified from AFM measurements
 - The PSD function of non-Gaussian surfaces is no longer the input one
 - Iterative process is required [Shinozuka 1971]: PSD function of the Gaussian surfaces is iteratively updated

$$s_{Z}^{(i-\text{th iteration})} \xrightarrow{(1)} z_{G}(\theta) \xrightarrow{(2)} z_{NG}(\theta): \quad s_{Z_{NG}} \approx s_{Z}$$
(Iteratively updated) (End criteria)

Random apparent contact forces

- Surface generator
- Stochastic model of contact forces

- Input: m explicitly evaluated apparent contact forces
- To generate $N_p \times N_{MC}$ apparent contact forces required for MCS with an approximated distribution
- Because $m \ll N_p \times N_{MC}$, the computation cost to evaluate contact forces is significantly reduced
- **Requirement**: the distribution of generated forces must well approximate the distribution of explicitly evaluated forces.

• Parameterization

Stochastic model of apparent contact forces

• Parameterization

m explicitly evaluated adhesive contact forces curves

m parameter vectors

Stochastic model of apparent contact forces

Data preprocessing procedures

$$\mathbf{v}^{(k)} \xrightarrow{(1)} \mathbf{q}^{(k)} \xrightarrow{(2)} \eta^{(k)}$$

- (1) account for physical conditions
 - By definition, energy and maximum pull-out forces must be always positive
 - Maximum force contact distance must be larger than threshold force contact distance
 - Using log-scale to enhance the positiveness

$$\mathbf{v}^{(k)} = \left[\bar{e}^{(k)}, \bar{f}_{\max}^{(k)}, \bar{d}_{\max}^{(k)}, \bar{d}_{\lim it}^{(k)}\right]^{\mathrm{T}} \text{ subject to physical constraints}$$

$$\mathbf{q}^{(k)} = \left[\frac{\log(\bar{e}^{(k)})}{\cosh t_{1}}, \frac{\log(\bar{f}_{\max}^{(k)})}{\cosh t_{2}}, \frac{\bar{d}_{\max}^{(k)}}{\cosh t_{3}}, \frac{\log(\bar{d}_{\max}^{(k)} - \bar{d}_{\lim it}^{(k)})}{\cosh t_{4}}\right]^{\mathrm{T}} \in \Re^{4}$$

$$\overset{q^{(k)} = \left[\frac{\log(\bar{e}^{(k)})}{\cosh t_{1}}, \frac{\log(\bar{f}_{\max}^{(k)})}{\cosh t_{2}}, \frac{\log(\bar{d}_{\max}^{(k)} - \bar{d}_{\lim it}^{(k)})}{\cosh t_{4}}\right]^{\mathrm{T}} \in \Re^{4}$$

$$\overset{q^{(k)} = \left[\frac{\log(\bar{e}^{(k)})}{\cosh t_{1}}, \frac{\log(\bar{f}_{\max}^{(k)})}{\cosh t_{2}}, \frac{\log(\bar{d}_{\max}^{(k)} - \bar{d}_{\lim it}^{(k)})}{\cosh t_{4}}\right]^{\mathrm{T}} \in \Re^{4}$$

$$\overset{q^{(k)} = \left[\frac{\log(\bar{e}^{(k)})}{\cosh t_{1}}, \frac{\log(\bar{f}_{\max}^{(k)})}{\cosh t_{2}}, \frac{\log(\bar{d}_{\max}^{(k)} - \bar{d}_{\lim it}^{(k)})}{\cosh t_{4}}\right]^{\mathrm{T}} \in \Re^{4}$$

Parameterization

Data preprocessing procedures

$$\mathbf{v}^{(k)} \xrightarrow{(1)} \mathbf{q}^{(k)} \xrightarrow{(2)} \eta^{(k)}$$

- (2) Dimensional reduction: reduce effect of the curse of dimensionality
 - To reduce the computational cost
 - Using principal component analysis (PCA) [Jolliffe 2002]

$$\eta_i^{(k)} \xrightarrow{\text{PCA}} \{\eta_1^{(k)}, \cdots, \eta_4^{(k)}\}$$

- $\eta_i^{(k)}$ has unit variance, and its importance is weighted by corresponding eigenvalue of covariance matrix of \pmb{q}

 the obtained vectors have a reduced number of dimensions however still representative for the evaluated contact forces

Reduced dimension vectors: $\eta^{(k)} = \{\eta_1^{(k)}, \cdots, \eta_{N_g}^{(k)}\}, N_g \leq 4$

 Generalized polynomial chaos expansion (gPCE) to represent the randomness of reduced dimension vectors [Ghanem et al. 2003, Xiu et al. 2002]

Stochastic model of apparent contact forces: summarize

- Generate contact forces
 - Generate a large number of contact force functions with a negligible computational cost

• gPCE model approximates well the distribution of the reduced dimension vectors

Joint PDF of $\eta_1, \ \eta_2$

Relative mean square error:

$$\frac{\int_{[0,1]^{N_g}} \left\| \mathfrak{T}^{-1}(\xi) - \sum_{\alpha=1}^{N} \mathbf{c}_{\alpha} \Psi_{\alpha}(\xi) \right\|^2 \mathrm{d}\xi}{\int_{[0,1]^{N_g}} \left\| \mathfrak{T}^{-1}(\xi) \right\|^2 \mathrm{d}\xi} = 5\%$$

Stochastic model of apparent contact force: overview

- Generated contact forces:
 - Computational cost is significantly reduced compared to the direct MCS approach
 - There exists error in terms of distribution compared to the explicitly evaluated contact forces
 - Investigation of the effects of this error on the evaluated PDF of quantities of interest: numerical verification
- Investigation of the agreement between numerical predictions and experiments
 - Experimental validation

- I. Deterministic multiscale model
- II. Stochastic analysis
- III. Numerical verification and experimental validation
 - IV. Conclusion and perspective

- Stiction tests with micro cantilever arrays [Xue et al. 2008]
 - Beams were forced to enter to contact with their substrate
 - External factors were then released, the beams exposed the s-shape stiction configuration

Micro-cantilever beam arrays (top view) [Xue et al 2008] Stiction tests to measure crack length characterizing the adhesion energy

66

- Stiction tests with micro cantilever arrays [Xue et al. 2008]
 - From the S-shape failure configurations of the beams, the crack lengths were measured

Interferometric image of beams undergoing stiction failure (top view) [Xue et al 2008]

Sketch of the left figure

- Stiction tests with micro cantilever arrays [Xue et al. 2008]
 - From the S-shape failure configurations of the beams, the crack lengths were measured
 - Effective adhesion energy, required energy to close or open a unit area of free surface, is then evaluated
 - The shorter the crack length, the higher the internal elastic energy of deformed beam, and thus the higher the effective adhesion energy
- Using developed method to model the stiction tests of micro cantilever beams

Effective adhesion energy

(When contacting surfaces are flat, or in the full saturation condition:

 Γ = Theoritcal energy of capillary interaction)

- Numerical verification: verify the stochastic model approach versus Direct MCS
 - Direct MCS: all the contact forces required for MCS are explicitly evaluated
 - Stochastic model-based method: a stochastic model of contact forces is developed to generate the required contact forces for MCS
- Experimental validation: compare numerical prediction with experimental data

- Direct MCS (with generated surfaces) as reference vs. Stochastic model-based method
- Prediction given by the stochastic method well approximates the distribution of crack lengths given by direct MCS
 - 0.3% difference in terms of mean of crack length
 - 0.2% difference in terms of standard deviation of crack length
- Computational cost is reduced by 97% with the stochastic method
 - Direct MCS 671 CPU days, Stochastic method 17 CPU days

• Experimental validation: compare with experiments [Xue et al. 2008]

Experimental validation

- Experimental validation: compare with experiments [Xue et al. 2008] with three cases
 - Difficulty: AFM measurements are not directly accessible but only processed data
 - Roughness, skewness, kurtosis: used to evaluated the first order mPDF
 - Summit statistical properties: summit density, and mean radius of all summits
 - PSD function is indirectly identified from summit statistical properties
 - There might exist errors due to the indirect identification

• Case 1 (of three cases): Beam B2 vs Substrate S1 [Xue et al. 2008]

	Beam B2			Substrate S1		
	AFM	non-Gaussian	Gaussian	AFM	non-Gaussian	Gaussian
rms [nm]	3.4	3.4	3.4	0.17	0.17	0.17
skewness $[-]$	-0.76	-0.76	0	-0.31	-0.31	0
kurtosis [-]	3.9	3.9	3	3.9	3.9	3
$ar{R}_{ m sum} \left[\mu { m m} ight]$	0.84	0.85	0.56	3.0	3.0	3.0
$ar{N}_{ m sum} \left[\mu { m m}^{-2} ight]$	20.9	20.0	29.2	111.5	109	115

rms: root mean square roughness, \bar{R}_{sum} : mean radius of summits, \bar{N}_{sum} : summits density.

• Case 1 (of three cases): Beam B2 vs Substrate S1 [Xue et al. 2008]

	Beam B2			Substrate S1		
	AFM	non-Gaussian	Gaussian	AFM	non-Gaussian	Gaussian
$rms \; [nm]$	3.4	3.4	3.4	0.17	0.17	0.17
skewness [-]	-0.76	-0.76	0	-0.31	-0.31	0
kurtosis [-]	3.9	3.9	3	3.9	3.9	3
$ar{R}_{ m sum} [\mu{ m m}]$	0.84	0.85	0.56	3.0	3.0	3.0
$\bar{N}_{ m sum}~[\mu{ m m}^{-2}]$	20.9	20.0	29.2	111.5	109	115

rms: root mean square roughness, \bar{R}_{sum} : mean radius of summits, \bar{N}_{sum} : summits density.

- Generated non-Gaussian surfaces are representative the real surfaces in terms of statistical properties
 - Statistical moments are perfectly matched
 - Summit statical properties are well approximated
 - Errors are due to the indirect identification of PSD function
- For generated Gaussian surfaces, skewness value is always zeros, and kurtosis is always three by default
 - Non representative

• Case 1 (of three cases): Beam B2 vs Substrate S1 [Xue et al. 2008]

	Beam B2			Substrate S1		
	AFM	non-Gaussian	Gaussian	AFM	non-Gaussian	Gaussian
$rms \; [nm]$	3.4	3.4	3.4	0.17	0.17	0.17
skewness $[-]$	-0.76	-0.76	0	-0.31	-0.31	0
kurtosis [-]	3.9	3.9	3	3.9	3.9	3
$ar{R}_{ m sum} [m \mu m]$	0.84	0.85	0.56	3.0	3.0	3.0
$ar{N}_{ m sum} ~[\mu { m m}^{-2}]$	20.9	20.0	29.2	111.5	109	115
_		_				

 \bar{R}_{sum} : mean radius of summits, \bar{N}_{sum} : summits density.

- Generated non-Gaussian surfaces are representative the real surfaces in terms of statistical properties
 - Statistical moments are perfectly matched
 - There are errors in terms of summit statistical properties: negligible for this case
 - Due to the indirect identification of PSD function
- For generated Gaussian surfaces, skewness value is always zeros, and kurtosis is always three by default
 - Non representative

• Case 1 (of three cases): Beam B2 vs Substrate S1 [Xue et al. 2008]

	Beam B2			Substrate S1		
	AFM	non-Gaussian	Gaussian	AFM	non-Gaussian	Gaussian
$rms \; [nm]$	3.4	3.4	3.4	0.17	0.17	0.17
skewness [-]	-0.76	-0.76	0	-0.31	-0.31	0
kurtosis [-]	3.9	3.9	3	3.9	3.9	3
$ar{R}_{ m sum} [\mu { m m}]$	0.84	0.85	0.56	3.0	3.0	3.0
$\bar{N}_{ m sum} \ [\mu { m m}^{-2}]$	20.9	20.0	29.2	111.5	109	115

rms: root mean square roughness, \bar{R}_{sum} : mean radius of summits, \bar{N}_{sum} : summits density.

- Generated non-Gaussian surfaces are representative the input data from the measurements
 - Statistical moments are perfectly matched
 - There are errors in terms of summit statistical properties: negligible for this case
 - Due to the indirect identification of PSD function
- For generated Gaussian surfaces, skewness value is always zeros, and kurtosis is always three by default
 - Non representative

- Case 1 (of three cases): Beam B2 vs Substrate S1 [Xue et al. 2008]
 - Overall trend: the higher the humidity level,
 - The larger the adhesion energy: toward theoretical value of capillary forces 144 mJ/m²
 - The smaller the uncertainty range
 - The water height increases at high humidity level, and consequently the importance of surface roughness reduces compared to meniscus height

- Experimental data: black error bars

- Numerical predictions: mean values associated with confidence ranges of 95%, 60%

- Case 1 (of three cases): Beam B2 vs Substrate S1 [Xue et al. 2008]
 - Overall trend: the higher the humidity level,
 - The larger the adhesion energy: toward theoretical value of capillary forces 144 mJ/m²
 - The smaller the uncertainty range
 - The water height increases at high humidity level, and consequently the importance of surface roughness reduces compared to meniscus height

- Case 1 (of three cases): Beam B2 vs Substrate S1 [Xue et al. 2008]
 - Good agreement between numerical predictions (non-Gaussian surfaces) and experiment data: model is validated
 - The predictions obtained from Gaussian surface significantly underestimates the experimental data

• Case 1 (of three cases): Beam B2 vs Substrate S1 [Xue et al. 2008]

	Beam B2			Substrate S1		
	AFM	non-Gaussian	Gaussian	AFM	Non-Gaussian	Gaussian
$rms \ [nm]$	3.4	3.4	3.4	0.17	0.17	0.17
skewness [-]	-0.76	-0.76	0	-0.31	-0.31	0
kurtosis [-]	3.9	3.9	3	3.9	3.9	3
$ar{R}_{ m sum} [m \mu m]$	0.84	0.85	0.56	3.0	3.0	3.0
$\bar{N}_{ m sum} \ [\mu { m m}^{-2}]$	20.9	20.0	29.2	111.5	109	115

 The heights of the contacting asperities of non-Gaussian surfaces are less scatter than the ones of Gaussian surface due to the negative skewness

• Case 2 (of three cases): Beam B1 vs Substrate S1 [Xue et al. 2008]

	Beam B1			Substrate S1		
	AFM	non-Gaussian	Gaussian	AFM	non-Gaussian	Gaussian
rms [nm]	1.7	1.7	1.7	0.17	0.17	0.17
skewness [-]	-0.78	-0.78	0	-0.31	-0.31	0
kurtosis [-]	4.6	4.6	3	3.9	3.9	3
$ar{R}_{ m sum}$ [$\mu{ m m}$]	0.41	0.41	0.30	3.0	3.0	3.0
$ar{N}_{ m sum}~[\mu { m m}^{-2}]$	68	63	71	111.5	109	115
_		_	I			

 \bar{R}_{sum} : mean radius of summits, \bar{N}_{sum} : summit density.

- Generated non-Gaussian surfaces vs. AFM measurements
 - Statistical moments are perfectly matched
 - Moderate error in terms of density of the summits for the case of Beam B1: 8% of error
 - Due to the indirect approximation of PSD function

- Case 2 (of three cases): Beam B1 vs Substrate S1 [Xue et al. 2008]
 - Overall trend (similar to case 1)
 - Moderate agreement between numerical prediction and and experiment data
 - Due to the error in terms of density of the summits of generated surfaces
 - Numerical predictions can be improved: accounting for other random sources, e.g. geometrical dimensions of cantilever beams (see my thesis for more details)
 - A kink in the evolution experimental results: the non-proper implementation of experiments

- Experimental data: black error bars

- Numerical predictions: mean values associated with confidence ranges of 95%, 60%

• Case 3 (of three cases): Beam B1 vs Substrate S2 [Xue et al. 2008]

	Beam B1			Substrate S2		
	AFM	non-Gaussian	Gaussian	AFM	non-Gaussian	Gaussian
$rms \ [nm]$	1.7	1.7	1.7	5.5	5.5	5.5
skewness [-]	-0.78	-0.78	0	-1.1	-1.1	0
kurtorsis [-]	4.6	4.6	3	5.1	5.1	3
$ar{R}_{ m sum} \left[\mu { m m} ight]$	0.41	0.41	0.30	0.12	0.14	0.09
$\bar{N}_{ m sum} ~[\mu { m m}^{-2}]$	68	63	71	48	59	68
\bar{R}_{sum} : mean radius of summits, \bar{N}_{sum} : summit density.						

- Generated non-Gaussian surfaces vs. AFM measurements
 - Statistical moments are perfectly matched
 - Significant error in mean radius of summits for the case of Substrate S2: 23% of error
 - Significant error in density of the summits for the case of Substrate S2: 17% of error
 - Due to the indirect identification of PSD function

- Case 3 (of three cases): Beam B1 vs Substrate S2 [Xue et al. 2008]
 - Significant differences between numerical predictions and and experiment data
 - Due to the significant errors between generated surfaces and real surfaces (AFM measurements)

- Experimental data: black error bars

- Numerical predictions: mean values associated with confidence ranges of 95%, 60%

- Summarization of the comparison between numerical predictions vs. experiments [Xue et al. 2008]
 - The lower the errors of generated surfaces compared with AFM measurements, the smaller the difference between numerical predictions and experimental data

	Case 1	$Case \ 2$	Case 3
Input: Error of summit statiscal properties	negligible	moderate	significant
Output: Error of numerical predictions	small	moderate	$\operatorname{significant}$

 Accounting for non-Gaussian properties of contacting surfaces significantly improves the numerical predictions accuracy

- I. Deterministic multiscale model
- II. Stochastic analysis
- III. Numerical verification and experimental validation
- ► IV. Conclusions and perspectives

Conclusions

- A Stochastic model-based multiscale method for stiction problems taking the surface topology into account by
 - Lower-scale: using random field method to characterize the AFM surface measurements and generate numerical surfaces
 - The accuracy is improved thanks to the non-Gaussianity is accounted for
 - Meso-scale: a semi-analytical contact model to evaluate the meso-scale apparent contact forces
 - At an acceptable computational cost while accounting for saturation effect and size effect
 - Applying gPCE to build a stochastic model of the random meso-scale contact forces
 - To reduce efficiently the **computational cost**
 - Upper-scale: Integrate contact forces generated using the stochastic model as random contact laws to a FE model
 - Performing MCS to obtain the distribution of the stiction behaviors
- The model is numerically verified and then experimentally validated
 - Numerical predictions are in a good agreement with experimental results when the real surfaces are well represented using generated surfaces
- The model is helpful to broaden our knowledge about stiction phenomenon
 - "... Why one MEMS device sticks and another identical one does not" [van Spengen 2015]

Perspectives

- Applying the model to evaluate the **failure percentage** of MEMS designs such as
 - The stiction of MEMS accelerometers under shock
 - The stiction of MEMS gears system
- Accounting for plastic deformation and fatigue of contacting surfaces
 - Initial design is stiction free
 - Stiction risk increases when contacting surfaces are plastically deformed and/or fatigue
 - To predict the life time of a given device before stiction failure

Thank you for your attentions

Q&A section