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Abstract 15 

In this case study, we study the generation of warning waves with prescribed 16 

characteristics in a mountain stream. We determine which dam release will generate the 17 

desired warning wave. We solve this inverse problem following a two-model approach. 18 

An analytical kinematic model is used for a preliminary design of the dam release and a 19 

detailed two-dimensional (2D) fully dynamic model is used to converge to the final 20 

solution. Although the presented case study is far from an idealized academic case, the 21 

analytical model performs well and, beyond its role for preliminary design, turns out to 22 

be of prime interest for both understanding and discussing the results of the detailed 2D 23 

Manuscript Click here to download Manuscript Manuscript.docx 

http://www.editorialmanager.com/jrnhyeng/download.aspx?id=335126&guid=f3e1069a-fb55-4a1e-a48d-30e7ebfe254b&scheme=1
http://www.editorialmanager.com/jrnhyeng/download.aspx?id=335126&guid=f3e1069a-fb55-4a1e-a48d-30e7ebfe254b&scheme=1


 

2 

 

model. The complex interactions between the release hydrograph, the geometry of the 24 

river and the friction formula are brought to light by the analytical model, which 25 

highlights the complementarity of both models and the usefulness of such a two-model 26 

approach.  27 
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Introduction 30 

The operation of many hydropower schemes is based on the derivation of water from a 31 

river, through a penstock or a gallery, to the hydropower plant. Such schemes involve a 32 

water intake structure located upstream, often associated with a small dam, as well as a 33 

downstream outlet structure located typically several kilometers downstream (Fig. 1). In 34 

the river reach located between the upstream water intake and the downstream outlet 35 

structure (referred hereafter as the bypassed reach), the flow rates are much lower than 36 

they were before the construction of the hydropower scheme. However, under particular 37 

circumstances (malfunctioning of the hydropower plant or evacuation of excess flood 38 

discharge from upstream), it may be necessary to suddenly release a substantially higher 39 

discharge in this river reach. This sudden increase in discharge may cause danger for 40 

various users of this river reach, particularly in the case of recreational activities (e.g. 41 

fishing, bathing, hiking). One possible measure for mitigating this risk is the design of a 42 

warning system to alert users of the bypassed reach of the imminent danger. 43 

One non-structural option for this consists in controlled releases of the upstream 44 

dam to generate a so-called warning wave along the bypassed reach. Such a wave must 45 

be designed such as to provide a clear signal of danger to the users of the river but it 46 
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must not be dangerous. Thus the amplitude of this wave (in terms of variations in water 47 

depths and velocities) and its steepness (time interval over which the final amplitude of 48 

the wave is reached) must comply with a number of requirements all along the bypassed 49 

reach. The actual features of the warning wave however depend on the combined effect 50 

of the controlled release at the upstream dam and the properties of the river reach such 51 

as slope, cross-sectional shape and roughness; they are the solution of a so-called 52 

signaling problem (Whitham, 1974). As a result, determining the dam release which 53 

results in a warning wave with predefined properties implies the resolution of an inverse 54 

signaling problem (Sellier 2016): which boundary conditions lead to a wave that meets 55 

the requirements during its subsequent propagation? 56 

Inverse problems look for the causes leading to known consequences, or for a 57 

model’s parameters for known outputs. They are present in many engineering fields but 58 

are often ill-posed, i.e. the existence, uniqueness and/or stability of their solution is not 59 

guaranteed (Sabatier 2000; Sellier 2016). The standard formulation for an inverse 60 

problem is the search for the minimum of an objective function. Several optimization 61 

methods can thus be used as solution strategies (see Gunzburger (2003) and Sellier 62 

(2016) for a review in the field of free surface hydraulics). These methods are iterative 63 

and require generally many runs of the direct model, which may become 64 

computationally intractable when detailed multidimensional (2D, 3D) flow models are 65 

used. 66 

In this context, simplified analytical models have an advantage over complex 67 

numerical models for posing the problem and helping to converge to the solution. 68 

Several authors combined analytical and detailed flow models for the study of wave 69 

propagations in rivers, particularly in the case of flow induced by dam break or debris 70 

flow (e.g. Aureli et al. 2014; Pudasaini et al. 2011). Experience shows that a preliminary 71 
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design based on a simplified model provides valuable information on the underlying 72 

physics and on the range of solutions (existence conditions, identification of over-73 

constrained problem…) which may be overlooked if only a complex numerical model is 74 

used. This latter model however plays also a part in that it helps refining the solution by 75 

accounting for details neglected in the simplified model. 76 

In this paper, we present a case study in which the inverse problem of the 77 

determination of a dam release to generate a warning wave is solved based on a two-78 

model approach. An analytical kinematic model is used for a preliminary design of the 79 

dam release and a detailed 2D fully dynamic model is used to converge to the final 80 

solution. The strength of this combination is particularly obvious in the sensitivity 81 

analysis conducted for the final solution, where the simplified model provides a clear 82 

understanding of an a priori surprising behavior of the solution. 83 

The two-model approach is presented based on a case study in a mountain 84 

stream, which is described in section 2. The hydraulic models are depicted in section 3, 85 

while the results are discussed in section 4. 86 

Case study 87 

Context 88 

We consider as a case study a hydropower scheme under construction in the French 89 

Alps, on the river Romanche, in the municipality of Livet-et-Gavet. The project, called 90 

‘Romanche Gavet’ and carried out by Electricité de France (EDF), consists in the 91 

replacement of five one-century-old hydropower schemes  by a single larger one. 92 

The new scheme consists in (Fig. 1) an upstream water intake, nearby a 4.7m-93 

high and 40m-wide upstream dam, a tunnel, as well as a downstream hydropower plant, 94 
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nearby a 6m-high and 40m-wide downstream dam. The hydropower plant is equipped 95 

with two Francis turbines, working under a head of 270m and a total discharge of 96 

41m³/s. 97 

In this study, the focus is set on the river reach located between the upstream 98 

and downstream dams (bypassed reach). It is approximately 9.5km long and has a mean 99 

slope of about 3% (Fig. 2); the width of the main riverbed is approximately 30m. 100 

Topographic data, obtained from high resolution laser altimetry were available on a 101 

1m × 1m Cartesian grid. This high resolution grid is valuable here to reproduce the 102 

highly irregular riverbed (see the many changes in flow regime induced by these 103 

irregularities as exemplified in the detail of Fig. 1). 104 

Under normal operation of the new hydropower scheme, the discharge flowing 105 

through the bypassed reach is maintained at a low value of 4m³/s (environmental flow). 106 

In case of a malfunctioning of the hydropower plant or in case of the arrival of a flood 107 

wave, the river reach is used to evacuate the excess discharge from upstream towards 108 

downstream, which may imply a sudden and large increase of the discharge in the 109 

bypassed reach. 110 

Warning wave 111 

The dam operator must trigger a so-called warning wave in the downstream reach 112 

before releasing high discharges. The features of this warning wave were defined based 113 

on considerations on the vulnerability associated to different usages of the downstream 114 

river reach (recreational, fishing, bathing, hiking…). The determination of these 115 

features of the warning wave lies out of the scope of the present study, which is 116 

dedicated to the calculation of the upstream dam release (Fig. 3) suitable to produce the 117 

desired warning wave features in the bypassed river reach (Fig. 4). 118 
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In the present case, the warning wave consists in a relatively rapid increase in 119 

water depth and flow velocity. It corresponds to a prescribed rise in discharge from its 120 

initial value Q0 up to a predefined discharge Qp. The warning wave must additionally 121 

fulfil the following criteria: 122 

 The dynamics of the wave must be such that the water level increases as fast as 123 

possible but with a gradient that remains below an upper bound called Gmax in 124 

order to prevent any danger for the users of the river. On a limnigraph, this 125 

gradient is defined between the beginning of the increase in water level and up 126 

to the time when 80% of the total increase in water level is reached (Fig. 4a). 127 

 All along the bypassed reach, the maximum discharge of the warning wave must 128 

be kept during a minimum time interval tmin before any further increase in 129 

discharge. In practice, this time interval is defined as the time during which the 130 

discharge remains between Qp
– = Qp - 1m³/s and Qp

+ = Qp + 1m³/s (Fig. 4b). 131 

In the present case study, the following parameter values were used: Q0 = 4m³/s, 132 

Qp = 10m³/s, Gmax = 8cm/min (1.33  10-3m³/s), tmin = 60s. This set of values defines a 133 

so-called “reference scenario”, while the effect of varying these values is analyzed in 134 

section Discussion in which alternate release scenarios are considered. 135 

The objective of this study is to design a release hydrograph at the upstream dam 136 

so that all the above requirements are fulfilled all along the bypassed river reach. The 137 

two degrees of freedom to achieve this are the rising time ΔT1 and the duration of the 138 

plateau ΔT2 (Fig. 3). 139 
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Hydraulic models 140 

Detailed 2D model 141 

Detailed 2D flow simulations were performed using Wolf2D, an academic code 142 

developed at the University of Liege (Belgium). It solves the conservative form of the 143 

2D shallow-water equations (Guinot 2008; Wu 2008) on multiblock Cartesian grids 144 

based on a finite volume scheme. A flux vector splitting method is used to handle 145 

shocks and flow regime transitions accurately (Erpicum et al. 2010a). The time 146 

integration is performed by means of an explicit Runge-Kutta algorithm. The model was 147 

validated in previous studies, both against field data (Erpicum et al. 2010b) and 148 

experimental observations of complex turbulent flow (Peltier et al. 2015; Roger et al. 149 

2009). 150 

The computation domain covers the bypassed river reach, between the upstream 151 

dam (near the water intake) and slightly downstream of the outlet of the hydropower 152 

plant, where another dam is located. The downstream boundary condition is a constant 153 

free surface elevation, consistently with the operation rules of the downstream dam. The 154 

upstream boundary condition is the hydrograph to be determined. The characteristics of 155 

the detailed 2D model are given in Tab. 1. 156 

Friction modelling 157 

The size of the particles covering the riverbed ranges from a few centimeters to several 158 

decimeters, i.e. a value which is similar to the water depth. For this reason, we did not 159 

use a standard formula for friction modelling, such as Manning formula, but instead we 160 

opted for the physically-based Barr-Bathurst formula as proposed by Machiels et al. 161 

(2011).  162 
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The friction coefficient λ (-) in Darcy-Weisbach’s formulation depends on the 163 

relative roughness ks/h, where ks (m) is the characteristic size of the roughness elements 164 

and h (m) the water depth. For relatively small values of ks, λ also depends on the 165 

Reynolds number. For relatively large values of ks (i.e. ks/h ≥ 0.15), λ is given by: 166 

 
1/2

1 1
1.987log min ,1

5.15

sk

h

  
      

  (1) 167 

When the characteristic size of the roughness ks exceeds the water depth h, the friction 168 

coefficient  reaches a maximum value of 0.5 and becomes independent of the size of 169 

the roughness elements. 170 

Formulation (1) leads to discontinuous expressions for the wave celerity of a 171 

kinematic model and its derivatives (see Eqs. (20) and (21)). However, this formulation 172 

is necessary to account for the macro-rough flow conditions in the river. Particularly, it 173 

reflects the distinct influence of the characteristic height ks of roughness elements 174 

depending on whether the water depth is higher or lower than ks. 175 

The model was calibrated against measured free surface elevations obtained 176 

from a field survey conducted by EDF in 2011. A total of 3,130 point measurements 177 

were collected in six different areas of the considered river reach. Based on these field 178 

data, the characteristic size of the roughness has been set to a constant value of 0.4m, 179 

except in the most upstream part of the river (zone A-B in Figs. 1-2), where it has been 180 

set to 0.15m, consistently with the milder slope and the finer bed material in this area 181 

(Tab. 1). 182 
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Analytical model 183 

Applicability 184 

The fully dynamic shallow-water equations may be reasonably approximated by 185 

different simplified models depending on the value of non-dimensional numbers, 186 

mainly the kinematic wave number k and the Froude number F, defined as: 187 

 
 

2

0

1/22
,

Q
k F

A g

g A L

Q h

S
    (2) 188 

with S0 (-) the mean slope of the river reach, A (m²) its mean cross-section, L (m) its 189 

length, Q (m³/s) the discharge, h (m) the typical water depth and g (m/s²) the gravity 190 

acceleration. 191 

In the present case study, the following values may be considered: S0 ~ 0.03, 192 

L ~ 10km, h ~ 0.3m, A ~ 10m², Q ~ 10m³/s. Hence, typical values of k and F are, 193 

respectively: k ~ 3 × 10³ and F ~ 0.5, which indicates that a kinematic wave 194 

approximation is applicable, since k >> 1 (Singh 2001; Sturm 2010). 195 

Model derivation 196 

Under this approximation, the flow discharge is simply deduced from a friction 197 

formula and the governing equations reduce to a single partial differential equation 198 

expressing mass conservation (Whitham, 1974; Hunt, 1984a; Hunt, 1984b), with t (s) 199 

the time and x (m) the abscissa in the streamwise direction: 200 

 0
A Q

t x

 
 

 
  (3) 201 

Different friction formulas can be used provided that the discharge Q is 202 

continuously differentiable with respect to the cross-section A. We assume a friction 203 
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formula in which the discharge Q depends only on the cross-section A, i.e. parameters 204 

like the friction coefficient or the wetted parameter can vary with A, but the purely 205 

geometrical parameters of the river, like its slope or its width, are constant in space and 206 

time: 207 

  Q Q A   (4) 208 

The characteristic form of Eq. (3) reads 209 

 
d

0
d

A

t
   (5) 210 

and is valid along space-time paths (the characteristic curves), defined by the following 211 

wave celerity: 212 

 
d d

d d

x Q
c

t A
    (6) 213 

Eq. (5) states that, along these paths, the flow properties (i.e. A, but also Q 214 

according to Eq. (4)) remain constant. As a result, these characteristic curves are 215 

straight lines. 216 

In the space-time plane (x, t), the characteristic curves originating from the 217 

initial condition (locus defined by x > 0, t = 0) and the characteristic curves originating 218 

from the boundary condition (locus defined by x = 0, t > 0) define the flow properties in 219 

the whole domain (i.e. for x > 0 and t > 0). However, depending on the flow conditions, 220 

characteristic curves can merge, which generates a shock, i.e. a discontinuity in the flow 221 

as the flow properties are not unique at these points. 222 

To further study the conditions under which shocks appear, it is necessary to 223 

specify some properties of the function Q(A): for A ≥ 0, Q(A) and its first two 224 

derivatives are positive. These properties are shared by numerous friction formulas.  225 
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As the celerity given by (6) increases with A and therefore with Q, an upstream 226 

boundary condition corresponding to a rising hydrograph is likely to lead to a shock 227 

(Fig. 5). Following a procedure applied by Capart (2013) in the case of a dam breaching 228 

on an initially dry bed, we derive the position of the wave front under the assumption 229 

that the shock occurs at this front. We then verify under which condition this is actually 230 

the case (Appendix 2). The initial condition is a steady flow with a discharge Q0 and a 231 

cross section A0. The upstream boundary condition is a hydrograph Q(0, t) = QR(t) 232 

characterizing the dam release. Subscript ‘R’ (‘Release’) is also used for the other 233 

parameters directly related to the upstream boundary condition, i.e. the upstream cross 234 

section AR = A(QR) and the corresponding wave celerity cR = c(QR). 235 

The position of the front (xF, tF) is given by the integration of the continuity 236 

equation (3) on the domain Ω defined in Fig. 5 and the application of Green-Gauss’ 237 

theorem: 238 

 0 d d d
A Q

Q t A x
t x 

  
     

     (7) 239 

where  is the contour of the domain , oriented anticlockwise. In 240 

the following, parameter τ (s) is a time measured at the upstream boundary condition. 241 

Taking advantage of Q and A being constant on ,and, this leads to: 242 

       

32 4
1

0 0
0

d 0F F R F R FR A Q t t AQ t t x Q x


  

 


        (8) 243 

Or, after rearrangement: 244 

          0 0 0
0

d 0R F R FR Q tQ xAt Q At Q


           (9) 245 

Since the characteristic curve originating from (0, τ) is a straight line, we have: 246 
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   F R Ftcx      (10) 247 

Substituting Eq. (10) into Eq. (9) gives: 248 
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  (12) 250 

The denominator in Eqs. (11) and (12) is greater or equal to 0 for AR(τ) ≥ A0 251 

because the function Q(A) is convex as it is twice piecewise differentiable and has a 252 

positive second derivative (Boyd et al., 2009). However, expressions (11) and (12) do 253 

not tend to the origin of the axes as τ tends to 0. Under the assumption of continuous 254 

functions, they instead respectively tend to (see Appendix 1): 255 

 

0

0
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0

0

d d
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limF F
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c Q

Q
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    (13) 256 

 

0
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0
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d
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c Q

Q

c
x x
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    (14) 257 

Thus, from (0, 0) to (xF,0, tF,0), the wave front follows the characteristic curve 258 

originating from (0, 0). At (xF,0, tF,0), the first shock occurs and the wave front then 259 

follows the path given by (11) and (12). Its propagation velocity is given by: 260 
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F
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  (15) 261 
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which is Rankine-Hugoniot’s formula. From Eq. (15), it is clear that if the upstream 262 

hydrograph reaches a constant value, the velocity of the propagation of the wave front 263 

finally becomes constant. The path of the wave front then becomes a straight line again. 264 

Note that, if dQR/dt = 0 for t = 0, tF,0 and xF,0 as given by (13) and (14) are both 265 

infinite. This however does not necessarily exclude the presence of a shock as discussed 266 

below. 267 

The above developments have been made under the assumption that, if a shock 268 

appears, the shock is located at the wave front and not upstream of it (otherwise, the 269 

upper edge of the domain Ω in Fig. 5 would not be a straight line). As detailed in 270 

Appendix 2, this is indeed the case for linear hydrographs and hydrographs rising less 271 

than proportionally to time, and for usual friction formulae such as Eq. (1). 272 

Application to the case study 273 

To apply the model to the case study, the upstream boundary condition and the 274 

considered friction formula must be specified. The former corresponds to the dam 275 

release, which is composed of two successive linear hydrographs. The slopes of this 276 

hydrograph are denoted by γ (m³/s²): 277 

 
d

d

RQ

t
   (16) 278 

Thus, for  ≤ ΔT1 + ΔT2, we have (the developments for  > ΔT1 + ΔT2 are 279 

equivalent): 280 
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  (17) 281 



 

14 

 

Besides, we use the Bathurst friction formula (1) (the full expression of the Barr-282 

Bathurst formula is not necessary given the low water depths) in combination with a 283 

Darcy-Weisbach formulation, i.e. the discharge Q can be evaluated by: 284 

 

1/23

08 Sg A
Q

P

 
 
 

   (18) 285 

The friction coefficient λ (-) is a function of A, through the water depth h, which we 286 

assume to be approximated by A/b where b is the width of the river. The wetted 287 

perimeter P (m) is also a function of A. However, since the water depth h ~ 0.3m is 288 

about two orders of magnitude smaller than the width b ~ 30m of the river, the wetted 289 

perimeter P is well approximated by the width and is therefore considered as a constant. 290 

Thus, after grouping all constant parameters in a coefficient α (s-1), Eq. (18) can be 291 

rewritten as (with ‘log’ the base 10 logarithm and ‘ln’ the natural logarithm): 292 
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 (19) 293 

The celerity (6) is then given by: 294 
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  (20) 295 

And the derivative of the celerity reads: 296 
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Note that neither c nor dc/dQ are continuous at A = bks. These discontinuities are 298 

not negligible since they represent respectively 41 % of c and 87 % of (dc/dQ) for 299 

A = bks. However, on both sides of the discontinuity, the function Q(A) and its first two 300 

derivatives are monotonic and d³Q/dA³ is negative, so that, according to Appendix 2, the 301 

analytical model can be applied on both sides of the discontinuity in expression (20) for 302 

the wave celerity. 303 

The values of two parameters have to be specified: ks and b. The characteristic 304 

size of the roughness elements ks was set to 0.4m during the calibration of the detailed 305 

2D model. The fact that ks was set to 0.15m in the most upstream part of the river (zone 306 

A-B in Fig. 1) is disregarded here because the analytical model assumes constant 307 

parameters along the river. The mean width b of the river was estimated at 30m (surface 308 

of the flow divided by the curvilinear length of the river). Thus, with a mean slope of S0 309 

= 0.03, the coefficient α defined by (19) takes a value of 0.28s-1. 310 

The cross-section for which the expressions of Q, c and dc/dQ change is As = bks 311 

= 12m². The corresponding discharge is Qs = 16m³/s, i.e. the change does not occur in 312 

the warning wave, but in the wave generated by the subsequent release. This second 313 

release is almost a shock, so that the discontinuity in the friction formula does not affect 314 

the results. In the warning wave, the friction coefficient λ is constant and equal to its 315 

maximal value. 316 

Further approximation 317 

As shown in Fig. 6, the path of the front of the warning wave is successively described 318 

by a straight line from (0, 0) to (xF,0, tF,0), a non-linear curve from (xF,0, tF,0) to (xF,p, tF,p) 319 

and a straight line beyond (xF,p, tF,p). For a preliminary design, it can be useful to replace 320 

the non-linear part by a straight line, the slope of which is given by: 321 
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  (22) 322 

This value is independent of the rising time ΔT1. Hereafter, the results based on the 323 

linearization of the front trajectory are referred to as approximate results (subscript 324 

‘approx’). 325 

Results 326 

Two parameters of the release at the upstream dam have to be determined (Fig. 3): 327 

 The rising time, ΔT1, which must be such that the gradient of the limnigraphs 328 

does not exceed Gmax (Fig. 4a); 329 

 The duration of the plateau, ΔT2, which must be such that the time interval 330 

during which the hydrograph remains between Qp
– and Qp

+ is not lower than 331 

tmin = 60s (Fig. 4b). 332 

The constraints associated with both parameters can be interpreted as minimum 333 

time intervals between the occurrence of two successive values in the limnigraphs or in 334 

the hydrographs (Fig. 4). The analytical model predicts that, in the case of increasing 335 

discharges, all time intervals decrease with the distance to the upstream dam (Fig. 7a) 336 

because the celerity c given by (20) increases with Q. Thus, the determining river 337 

section for the design of the wave is the most downstream one. 338 

In the following, the results ΔT1 and ΔT2 obtained with the analytical model are 339 

presented and compared to those of the detailed 2D model. The results of the latter 340 
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model are given as multiples of 60s (i.e. there was no attempt to get results with a finer 341 

precision). 342 

Rising time 343 

According to the analytical model, when the discharge rises from Q0 = 4m³/s to Qp = 344 

10m³/s, the water depth rises from h0 = 0.16m to hp = 0.29m. Hence, the water depths in 345 

the bypassed reach are roughly doubled by the warning wave. The average increase in 346 

flow velocity is around 40 %. The water depth required for the computation of the water 347 

level gradient is h80% = 0.26m, which corresponds to a discharge Q80% = 8.7m³/s and a 348 

celerity c80% = 1.66m/s. At the upstream dam, this discharge is released at t80% = (Q80% – 349 

Q0)/(Qp – Q0) ΔT1 = 0.78ΔT1. Downstream of the bypassed reach, the minimum time 350 

interval between h0 and h80% so that the maximum value of the gradient Gmax is verified 351 

is tmin = (h80% – h0)/Gmax = 79s (Fig. 4a). 352 

According to (22), vF,m = 1.41m/s in the approximated analytical model. The 353 

minimum duration of the rising time at the upstream dam can be deduced from the path 354 

of the front and the characteristic line originating at t80% , together with (14). It is given 355 

by: 356 

 

min

,

1,approx

80% 0 0 0

0

0%

0

0 ,

8

2
1

1823s
F m

p p F m

L L

v c
T

Q Q A c c

v

t

Q Q Q Q

 


 

 









 

  (23) 357 

The complete analytical model (solution of a non-linear equation) leads to ΔT1 = 358 

1979s. The detailed 2D model (iterative procedure) gives ΔT1 = 1920s. The results of 359 

both models are given in Tab. 2 and plotted in Fig. 7. 360 

The results of the detailed 2D model presented in Fig. 7 correspond to points 361 

located in the center of the river, taken every 50m. For all positions, the limnigraphs 362 



 

18 

 

have been processed so as to find h0, t0, h80% and t80% (as defined in Fig. 4a). Fig. 7b 363 

(detailed 2D) shows that the changes in water depth induced by the warning wave along 364 

the bypassed reach have a large dispersion: the standard deviation σΔh = 0.035m is equal 365 

to 28% of the mean value μΔh = 0.13m. In contrast, Fig. 7a and c show that the times at 366 

which t0 and t80% are reached display a clear trend. Thus, the irregularities of the 367 

riverbed have a direct impact on the local amplitude of the warning wave while their 368 

impacts on the propagation velocity of the warning wave are more or less compensated. 369 

In the end, as shown in Fig. 7d, the gradient Δh/Δt of the warning wave still displays a 370 

clear steepening of the wave as predicted by the analytical model: Δh/Δt increases by 371 

one order of magnitude from upstream to downstream. 372 

The results of the analytical model compare surprisingly well with those of the 373 

detailed 2D model despite the broad range of flow features which are not explicitly 374 

taken into account by the analytical model. In the analytical model, the idealization of 375 

the topography (Fig. 2) does not only reduce all water depths to a single value for a 376 

given discharge (Fig. 7b) but it also overlooks the numerous changes in flow regime 377 

(critical sections and hydraulic jumps) which are present along the bypassed reach 378 

according to the detailed 2D model (Fig. 1). Nonetheless, the fact that both intermediate 379 

results (amplitude and arrival time of the warning wave) are well reproduced 380 

demonstrates the valuable contribution of the analytical model for the preliminary 381 

design of the warning release. 382 

Nevertheless, differences between both models remain. First, the downstream 383 

boundary condition (constant water depth at the downstream dam) is not taken into 384 

account in the analytical model. Its influence on the results of the detailed 2D model can 385 

be seen clearly in Fig. 7d: the maximum value of the gradient of the warning wave is 386 

not situated at the very end of the bypassed reach but several hundred meters upstream 387 
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because the amplitude of the wave is cancelled out at the downstream dam by the 388 

boundary condition and is attenuated in its vicinity due to the backwater effect. Another 389 

difference between the results of both models is induced by diffusion. Upstream of the 390 

bypassed reach, a 600m-long zone has a slope which is significantly lower than the 391 

mean value of 3% (zone A-B in Fig. 1). In this zone, the kinematic number k is much 392 

lower and the kinematic theory is not strictly applicable. Therefore, the arrival times t0 393 

and t80% as given by the detailed 2D model in Fig. 7a are delayed. 394 

Duration of the plateau 395 

The minimum time interval between the arrival of the discharges Qp
– = 9m3/s and Qp

+ = 396 

11m3/s at a given location must be higher than tmin = 60s (Fig. 4b). According to the 397 

analytical model, the determining section is again the most downstream one. The 398 

discharge Qp
– belongs to the warning wave and, since the rising time ΔT1 has already 399 

been set (ΔT1 = 1920s), its arrival time at x = L is known (according to (12), the 400 

characteristic curve originating from (0, τp
–) does not intersect the front within the 401 

computation domain): tp
– = 7240s (rounded to a multiple of 60s). As a result, the arrival 402 

time of the discharge Qp
+ at x = L must be tp

+ = tp
– + 60 = 7300s. The discharge Qp

+ 403 

belongs to the second release and, since the steepness of this second release is much 404 

higher than the one of the warning release (ΔQ = 68 m³/s in Δt = 60s), it is reasonable to 405 

consider that all characteristic curves merge before x = L. Indeed, according to (11) and 406 

(12), with τ = 60s, all characteristic curves have merged 360m downstream of the 407 

upstream dam and 120s after the release of the second wave. The front then propagates 408 

at a velocity given by Eq. (15): 409 
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This leads to: 411 
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        (25) 412 

The detailed 2D model (iterative procedure) gives ΔT2 = 2700s. The results of 413 

both models are given in Tab. 2 and plotted in Fig. 8a. The differences are twofold. 414 

First, for the path of Qp
–, the propagation velocity given by the detailed 2D model for 415 

the first 600m is lower than the value given by the analytical model. As already stated in 416 

the previous subsection, this is due to the milder slope in this zone which induces a 417 

diffusion of the wave. Second, for the path of Qp
+, the propagation velocities given by 418 

both models differ along the whole bypassed reach. The origin of this difference is also 419 

a diffusion phenomenon, which can be understood based on the hydrographs displayed 420 

in Fig. 8b. Since the second release at the upstream dam is much steeper than the 421 

warning release, the diffusion, which is proportional to the second derivative of Q with 422 

respect to x, is also much higher. At x = 600m, the shape of the hydrograph 423 

corresponding to the second release has been modified in such a way that it is no longer 424 

linear (in contrast to what happens for the warning release). For x > 600m, the 425 

hydrograph steepens, but, as can be deduced from (11) and (12), it has acquired a shape 426 

which is much less conducive to a full steepening than the linear shape. As a result, at x 427 

= 9000m, the shock has only developed for the first half part of the hydrograph. Thus, 428 

using Qf = 78m³/s in Eq. (24) leads to an important overestimation of the celerity of the 429 

front of the second release. 430 

Discussion 431 

The results discussed so far were obtained by assuming that the model parameters (such 432 

as ks) and the constraints on the warning wave (Qp, Qf, tmin) take the same value as 433 
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used in the real-world case study. This is referred to as a “reference scenario”. Here, we 434 

analyse how the results are affected when different values are considered for the 435 

roughness height ks, the discharge Qp of the warning wave, the discharge Qf of the 436 

second wave, and the minimum time tmin between the warning wave and the second 437 

wave. 438 

We highlighted above that expressions (20) and (21) for the wave celerity and its 439 

first derivative are discontinuous for A = bks. For the values of the parameters 440 

considered in the real-world case study (reference scenario), this discontinuity has no 441 

consequence on the results T1 and T2 because it only affects the second wave. Here, 442 

to enable exploring a wider range of values for parameters ks, Qp and Qf, we first fix this 443 

issue of a discontinuous expression for the wave celerity. To do so, we slightly adapt the 444 

analytical model so that all expressions become continuous. We also show that this 445 

adaptation of the model hardly changes the model results for the reference scenario. 446 

In the following, we first introduce the upgraded analytical model. Then, we 447 

discuss the influence of the roughness height ks on the model results and, finally, we test 448 

three alternate designs of the warning wave. 449 

Continuous analytical model  450 

The function Q(A) given by Eq. (19) can be rewritten as: 451 

     3/21.987log 5.15 , max 1,
s

A
Q f A A f A

bk


 
  

 
   (26) 452 

The function f (A) is not continuously differentiable for A = bks. It can however be 453 

approximated by the following expression, which is continuously differentiable: 454 
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, (27) 455 

with  a dimensionless parameter (  ]1; +[). Eq. (27) tends towards the ‘max’-456 

function as in Eq. (26) when   +. 457 

With this expression, Eqs. (20)-(21) become: 458 
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  (29) 460 

For  < 8, the conditions detailed in Appendix 2 are met for all discharges, so 461 

that the smoothed analytical model can be applied in any configuration. Note that given 462 

the high irregularity of the riverbed, a smoothing of the friction formula makes sense 463 

from a physical point of view: not all points of a given cross section reach a water depth 464 

h = ks at the same time.  465 

The results of this continuous model are given in Tab. 3 and compared to the 466 

results obtained previously. The smoothing of the friction formula induces changes in 467 

T1 and T2 which remain below 180s. The results of the continuous analytical model 468 

differ from those of the detailed 2D model by less than 240s. Therefore, all results of 469 

the analytical model presented hereafter are obtained with the smoothed friction 470 

formula. 471 

Sensitivity to roughness 472 

The values of rising time ΔT1 and duration of the plateau ΔT2 presented above are based 473 
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on the value ks = 0.4m which was calibrated so as to reproduce available data with the 474 

detailed 2D model. As an uncertainty is still associated with this parameter, we analyzed 475 

the effect of this parameter on the results obtained above. According to the analytical 476 

model, ks has a direct impact on the celerity of the characteristic curves and, thus, on the 477 

time intervals which have been computed. 478 

The sensitivity analysis presented below shows how the maximum gradient of 479 

the warning wave induced by the release defined above is influenced by the value of ks. 480 

The results of both models (detailed 2D model and continuous analytical model) are 481 

given in Fig. 9. Both models display a behavior which is not monotonic. They both 482 

highlight a maximum in the value of the gradient when the uncertain parameter ks is 483 

varied. 484 

This behavior is surprising at first sight but can be easily understood thanks to 485 

the analytical model. For low ks values, the friction coefficient in Bathurst formula (19) 486 

depends on ks and is an increasing function of this parameter (case bks < A). Thus, an 487 

increase in ks leads to an increase in the water depths, Eq. (19). As the increase is higher 488 

for higher water depths, there is an increase in the amplitude of the wave (in terms of 489 

water depths). Besides, an increase in ks leads to a decrease in the wave celerities, Eq. 490 

(20). As the decrease is lower for higher water depths, there is a decrease in the time 491 

interval t80% – t0. Both effects result in a steepening of the warning wave. 492 

Above a certain value of ks, the water depth in the initial condition becomes 493 

lower than ks. As a result, the initial condition (A0, h0, c0) becomes independent of the 494 

value of ks. The amplitude of the warning wave thus increases even more, but the time 495 

interval t80% – t0 starts increasing, which leads to a decrease of the wave steepness after 496 

passing a maximum (infinite in this case because the characteristic curve originating 497 

from t80% intersects the front before x = L and thus leads to a shock). 498 



 

24 

 

For a second value of ks, the water depth for Qp also becomes lower than ks. As a 499 

result, the whole warning wave becomes independent of ks. 500 

In the results of the detailed 2D model, there are two main differences. First, the 501 

diffusion that appears for high gradients smoothens the steepness of the wave. Second, 502 

the irregularity of the riverbed leads to a high dispersion of the water depths within a 503 

given cross section, so that the threshold effects are not as distinctive as in the analytical 504 

model results (not all water depths in a cross section are lower or higher than ks). 505 

Alternate release scenarios 506 

The characteristics of the warning wave (such as Qp and tmin) should be related to 507 

safety criteria for the people to be alerted. The stability of people partly immerged in 508 

water is commonly assessed based on the product of the flow velocity and the water 509 

depth (Martinez et al. 2016). Accepted thresholds for this product are around 0.4m²/s for 510 

children and 0.6m²/s for adults (AR&R guidelines, Cox et al. 2010). The comparison of 511 

these criteria with the function Q(A) of the analytical model shows that the warning 512 

wave in the reference scenario is safe for children (Fig. 10). 513 

Here, we tested an alternate design of the warning wave, in which safety is 514 

ensured for adults but not for children. This corresponds to Qp = 16m³/s. As shown in 515 

Tab. 4, the rising time T1 increases by +90% (which is larger than the increase in Qp 516 

+60%) compared to the reference scenario. The comparison between the continuous 517 

analytical model and the detailed 2D model (differences are less than 240s) further 518 

confirms the validity of the analytical model. 519 

The influence of the minimum time interval tmin on the value of T2 is 520 

straightforward in the analytical model: since the warning wave has no influence on the 521 
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second wave and vice-versa, any increase in tmin results in the same increase in T2. 522 

This behavior is also observed in the detailed 2D model. 523 

We also tested alternate release scenarios, in which the amplitude Qf of the 524 

second wave is higher than in the case study. As it may correspond for instance to a 525 

flood release scenario, we set the value of Qf to the annual flood discharge Qf = 526 

150m³/s. The time interval T1 is not affected. Tab. 5 shows how the value of T2 527 

changes when Qp and Qf are varied. Compared to the reference scenario, a substantial 528 

increase in Qf (+92%) results in a comparatively low increase in T2 (+18%). Moreover, 529 

an increase in Qp decreases the value of T2. In all these scenarios, the differences 530 

between the continuous analytical model and the detailed 2D model are again less than 531 

240s. 532 

Conclusion 533 

In this paper, we have presented a case study in which the inverse problem of the 534 

determination of a dam release to generate a predefined warning wave in a mountain 535 

stream is solved based on a two-model approach. The derivation of an analytical 536 

kinematic model has been justified based on dimensionless numbers that characterize 537 

the flow. This analytical model succeeds in summarizing the wealth of information 538 

provided by a detailed 2D fully dynamic model and leads to results which do not only 539 

display and explain the main trends in the behavior of the flow but also give correct 540 

orders of magnitudes. In particular, the comparison between the analytical model and 541 

the detailed 2D model highlights the effect of the irregularities in the riverbed, the 542 

change in slope, the shape of the hydrograph and the characteristic size of the roughness 543 

of the riverbed. These insights are of valuable importance for a deep understanding of 544 

the flow process and for confirming the relevance of the results obtained from detailed 545 
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flow simulations. 546 

The analytical kinematic model has been derived (Eqs. (11) to (15)) so as to 547 

accommodate more general release hydrographs and other friction models than those 548 

analyzed in the presented case study. As a result, the analytical model can also apply to 549 

other configurations in which an input hydrograph requires optimization with respect to 550 

downstream flow characteristics (warning waves, sediment flushing …). 551 

Appendices 552 

Derivation of the space-time coordinates at which the shock first develops (xF,0, 553 

tF,0) 554 

The expression of tF,0 in Eq. (13) is obtained as follows. Both the numerator and 555 

denominator of Eq. (11) tend to 0 for  tending to 0. The indetermination is solved 556 

thanks to l’Hospital’s theorem, which applies for continuous functions: 557 
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  (30) 558 

The last line in Eq. (30) is obtained from the following relation: 559 
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27 

 

The result in Eq. (30) contains also an indetermination, which is again solved thanks to 561 

l’Hospital’s theorem and Eq. (31): 562 
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  (32) 563 

The combination of Eq. (30) and (32) gives Eq. (13). 564 

The derivation of the expression of xF,0 in Eq. (14) follows the same procedure 565 

as for the expression of tF,0. 566 

Condition under which a shock is located at the front of the wave 567 

To establish the condition under which the assumption of Fig. 5 (i.e. a shock 568 

located at the front of the wave) applies, we derive the expression of the set of points at 569 

which two subsequent characteristic curves collide and compare them to the expressions 570 

of Eqs. (11) and (12). Let (xC, tC) be a point of the characteristic curve originating from 571 

(0, τ). The space and time coordinates xC and tC verify: 572 

   RC Ctcx      (33) 573 

If (xC, tC) corresponds to a shock, then this point can be reached by two 574 

neighbouring characteristic lines originating from x = 0 at two subsequent times, i.e. 575 

dxC/dτ = dtC/dτ = 0. The derivation of (33) with respect to τ then gives: 576 
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And, therefore: 578 



 

28 

 

 
 

 

2

d d

d d
R

R
C

R R

tQ Q

c Q

c

Q t

x







   (35) 579 

For τ = 0, (xC, tC) corresponds to (xF,0, tF,0), which further confirms that this point 580 

is the point at which a shock first develops. For τ > 0, the assumption that no shock 581 

occurs behind the wave front holds as long as: 582 

        C F C Fx x t t        (36) 583 

According to (12) and (35), or, equivalently, to (11) and (34), this corresponds 584 

to: 585 
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  (37) 586 

For a given value of the parameter τ, the dimensionless value of the left-hand 587 

side only depends on the shape of the hydrograph which is prescribed as a boundary 588 

condition, i.e. on the shape of the function QR(t). On the contrary, for a given value of τ, 589 

the right-hand side only depends on the shape of the friction formula which applies in 590 

the river, i.e. on the shape of the function Q(A), since AR(τ) = A[QR(τ)], cR(τ) = 591 

d[QR(τ)]/dA and (dcR/dQ)t = τ = (dcR/dQ)Q = QR(τ). 592 

The right-hand side of Eq. (37) is positive because the function Q(A) and its first 593 

two derivatives are positive. For Aτ tending to A0, or, equivalently, for Qτ tending to Q0, 594 

we have, according to l’Hospital’s theorem: 595 
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     (38) 596 

Thus, the right-hand side of Eq. (37) tends to 1/2 for Aτ tending to A0, regardless of the 597 

function Q(A). If the function Q(A) and its first two derivatives are monotonic and if 598 

d³Q/dA³ is negative, then 1/2 is the minimum of the right-hand side of Eq. (37). 599 

Otherwise, the right-hand side may have another minimum for Aτ > A0, and the 600 

following conclusions would not necessarily apply for any value of A or Q. 601 

For the left-hand side of Eq. (37), let QR(t) – Q0 be a power law of the kind QR(t) 602 

– Q0 = κ tn. The left-hand side then equals n/(n+1) and Eq. (37) reads: 603 
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  (39) 604 

From Eq. (35), it is clear that a linear hydrograph (n = 1), as well as hydrographs 605 

rising less than proportionally to time (n < 1) fulfil the condition of a single shock 606 

located at the wave front. On the other hand, for hydrographs rising more than 607 

proportionally to time (n > 1), shocks can develop upstream of the wave front and 608 

influence its subsequent path. 609 

Notation 610 

The following variables are used in this paper: 611 

(…)0 Variable in the initial state (A0, c0, h0, Q0) 612 

(…)80% Variable in the state when 80% of the amplitude of the warning wave is reached 613 

(A80%, c80%, h80%, Q80%, t80%) 614 

(…)C Variable at a shock (tC, xC) 615 
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(…)F Variable at the front of the warning wave (tF, xF) 616 

(…)F,0 Variable at the front of the warning wave when the first shock occurs (tF,0, xF,0) 617 

(…)F,p Variable at the front of the warning wave when its path becomes linear (tF,p, xF,p) 618 

(…)F,m Mean value of a variable at the front of the warning wave along its nonlinear 619 

path (vF,m) 620 

(…)f Variable in the final state (Af, cf, hf, Qf) 621 

(…)p Variable in the uniform flow established after the arrival of the warning wave 622 

(Ap, cp, hp, Qp) 623 

(…)p
– Variable just before Qp is reached (Qp

–, tp
–) 624 

(…)p
+ Variable just after Qp is left (Qp

+, tp
+) 625 

(…)R Variable at the upstream dam (AR, cR, hR, QR) 626 

(…)s Value for which the 1D Barr-Bathurst formula is discontinuous (As, Qs) 627 

A Cross-section 628 

b Section width 629 

c Wave celerity 630 

F Froude number 631 

Gmax Highest acceptable value for the gradient of the limnigraphs 632 

g Gravity acceleration 633 

h Water depth (hp, h0),  634 

k Kinematic wave number 635 

ks Characteristic size of the roughness elements of the riverbed 636 

L Length of the bypassed reach 637 

P Wetted perimeter 638 

Q Discharge 639 

S0 Mean slope of the river 640 
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t Time 641 

n Exponent 642 

v Propagation velocity of a discontinuity 643 

x Distance to the upstream dam 644 

α Coefficient in the 1D Barr-Bathurst formula 645 

 Coefficient in the smoothed Barr-Bathurst formula 646 

Γ Boundary of the integration domain which is used to derive the analytical model 647 

γ Slope of the hydrograph at the upstream dam 648 

ΔT1 Rising time of the warning wave at the upstream dam 649 

ΔT2 Duration of the plateau after the warning wave at the upstream dam 650 

κ Coefficient 651 

λ Friction coefficient 652 

τ Time 653 

Ω Integration domain which is used to derive the analytical model 654 
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 708 

 Detailed 2D model Analytical model 

Hydraulic model Dynamic wave Kinematic wave 

Friction formula Barr-Bathurst Barr-Bathurst 

Dimensions 2D 1D 

Slope Distributed Uniform value 

Roughness Reach A-B: ks = 0.15m 

Reach B-C: ks = 0.40m 

ks = 0.4m 

Upstream boundary condition Hydrograph Hydrograph 

Downstream boundary condition Free surface level None 

Tab. 1. Characteristics of the two models. 709 
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 Analytical model 
Detailed 2D 

model 
 Approximate Complete 

ΔT1 1823s 1979s 1920s 

ΔT2  2900s 2700s 

Tab. 2. Results given by the analytical model and the detailed 2D model. All values of 712 

ΔT2 assume that ΔT1 = 1920s. 713 
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Design result 

Analytical model Detailed 2D 

model Initial model Continuous model 

T1 1979s 2120s 1920s 

T2 2900s 2807s 2700s 

Tab. 3. Comparison of the results given by the continuous model applied to the case 715 

study with the results obtained previously. 716 
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Scenario Q0 Qp Analytical model Detailed 2D model 

Reference scenario 4m³/s 10m³/s 2120s 1920s 

Alternate scenario 1 4m³/s 16m³/s 3519s 3660s 

Tab. 4. Computed values of T1 for different values of Qp. 718 
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Scenario Qp Qf Analytical model Detailed 2D model 

Reference scenario 10m³/s 78m³/s 2747s + tmin 2640s + tmin 

Alternate scenario 1 16m³/s 78m³/s 1532s + tmin 1320s + tmin 

Alternate scenario 2 10m³/s 150m³/s 3273s + tmin 3120s + tmin 

Alternate scenario 3 16m³/s 150m³/s 1971s + tmin 1800s + tmin 

Tab. 5. Computed values of T2 for different values of Qp
 and Qf. 720 
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Fig. 1. Sketch of the overall configuration in plane view (zoom: computed flow 722 

regime). Specific points are: A – upstream end; B – change in mean slope; C – 723 

downstream end. 724 

Fig. 2. Streamwise profile of the riverbed along the river centerline. Specific points are: 725 

A – upstream end; B – change in mean slope; C – downstream end.  726 

Fig. 3. Unknown parameters characterizing the release hydrograph at the upstream dam: 727 

ΔT1 and ΔT2. 728 

Fig. 4. Time-constraints prescribed on the warning wave: (a) on the limnigraphs; (b) on 729 

the hydrographs. These constraints apply for all sections along the bypassed reach. 730 

Fig. 5. Integration domain Ω for the definition of the position (xF, tF) of the wave front. 731 

Fig. 6. (a) Hydrograph at the upstream boundary condition; (b) Resulting wave’s front 732 

propagation along the river (–) and approximation (- -). 733 

Fig. 7. Determination of the rising time of the release at the upstream dam based on the 734 

detailed 2D model (points) and the analytical model (lines): (a) paths of the front and 735 

the characteristic line associated with h = h80% in the (x, t) plane; (b) change in water 736 

depth induced by the warning wave Δh = h80% – h0; (c) time interval over which the 737 

change in water depth takes place Δt = t80% – t0; (d) corresponding gradient. The square 738 

symbol in Fig. 7(a) represents the point where the kinematic wave front becomes a 739 

shock. 740 

Fig. 8. Determination of the duration of the plateau of the release at the upstream dam: 741 

(a) paths of the discharges Qp
– and Qp

+ in the (x, t) plane based on the detailed 2D 742 
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model (points) and the analytical model (lines); (b) hydrographs at some locations as 743 

given by the detailed 2D model. 744 

Fig. 9. Sensitivity of the maximum gradient of the warning wave with respect to the 745 

characteristic size of the roughness elements ks. 746 

Fig. 10. Comparison of the Barr-Bathurst formula with safety criteria for children and 747 

adults partly immerged in water (AR&R guidelines, Cox et al. 2010). 748 
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