Globally Induced Forest: A Prepruning Compression Scheme

Jean-Michel Begon, Arnaud Joly, Pierre Geurts

Systems and Modeling, Dept. of EE and CS, University of Liege, Belgium

ICML 2017

Goal and motivation

- What? Is it possible to build accurate yet lightweight random forests without building the whole model first?
- Why? Random forests are heavy models memory-wise:
 - Number of nodes in a tree is (at worst)
 linear with the size of the data;
 - number of required trees grows with the problem complexity.

What for?

- Big data;
- small memory devices;
- better interpretability, less overfitting, faster prediction, . . .

How?

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing decision nodes sequentially until a node budget constraint is met.

- Splits in decision nodes are optimized locally.
- Nodes are taken from a candidate list.
- The best node is added . . .
- ... together with its weight.

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing decision nodes sequentially until a node budget constraint is met.

- Splits in decision nodes are optimized locally.
- Nodes are taken from a candidate list.
- The best node is added . . .
- ... together with its weight.

GIF algorithm — Additive model

The model prediction $\hat{y}^{(t)}(x)$ at step t for instance x is given by :

$$\hat{y}^{(t)}(x) = \hat{y}^{(t-1)}(x) + \lambda w_t z_t(x) = w_0 + \lambda \sum_{\tau=1}^t w_\tau z_\tau(x)$$
 (1)

where

 w_0 is some initial bias.

 w_{τ} is the weight of node j $(1 \leq \tau \leq t)$.

 λ is the learning rate.

$$\mathbf{z}_{\tau}(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x} \text{ reaches node } \tau \\ 0, & \text{otherwise} \end{cases}$$
$$(1 \le \tau \le t)$$

i.e. node au indicator function

For classification, the sum of weights represents the class probability vector (*i.e.* the weights are multidimensional).

GIF algorithm — Additive model

$$\hat{y}(x) = w_0 + \lambda(1.4 + 1.2) + \lambda(-0.7 + -1.9) \tag{2}$$

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing decision nodes sequentially until a node budget constraint is met.

- Splits in decision nodes are optimized locally.
- Nodes are taken from a candidate list.
- The best node is added . . .
- ... together with its weight.

- Node belonging to the model
- Hypothetical unpruned trees
- Candidate node

$$\hat{y}(x) = w_0 + \lambda w_9 z_9(x)$$

- Node belonging to the model
- Hypothetical unpruned trees
- Candidate node
- Randomly preselected candidate node

$$\hat{y}(x) = w_0 + \lambda w_9 z_9(x)$$

- Node belonging to the model
- () Hypothetical unpruned trees
- Candidate node
- Randomly preselected candidate node

 $\hat{y}(x) = w_0 + \lambda w_9 z_9(x)$

- Node belonging to the model
- () Hypothetical unpruned trees
- Candidate node
- Randomly preselected candidate node

- Node belonging to the model
- Hypothetical unpruned trees
- Candidate node

$$\hat{y}(x) = w_0 + \lambda w_9 z_9(x) + \lambda w_6 z_6(x)$$

- Node belonging to the model
- Hypothetical unpruned trees
- Candidate node

$$\hat{y}(x) = w_0 + \lambda w_9 z_9(x) + \lambda w_6 z_6(x)$$

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing decision nodes sequentially until a node budget constraint is met.

- Splits in decision nodes are optimized locally.
- Nodes are taken from a candidate list.
- The best node is added . . .
- ... together with its weight.

Candidate list

Each time a node is added to the model, the learning instances reaching that node are split according to a local criterion. The resulting children are placed in the candidate list.

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing decision nodes sequentially until a node budget constraint is met.

- Splits in decision nodes are optimized locally.
- Nodes are taken from a candidate list.
- The best node is added . . .
- ... together with its weight.

GIF algorithm — Node selection

The best node j^* , together with its optimal weight w_j^* , are the ones that minimize some loss L over the training set $(x_i, y_i)_{i=1}^N$:

$$(j^*, w_j^*) = \underset{j \in C_t, w \in \mathbb{R}^K}{\min} \sum_{i=1}^N L\left(y_i, \hat{y}^{(t-1)}(x_i) + wz_j(x_i)\right)$$
(3)

where C_t is the subsample of candidates.

This problem is solved in two steps

1. for a candidate j, compute the best weight w_j^* :

$$w_j^* = \arg\min_{w \in \mathbb{R}^K} \sum_{i=1}^N L\left(y_i, \hat{y}^{(t-1)}(x_i) + wz_j(x_i)\right) \tag{4}$$

2. select the best candidate with exhaustive search:

$$j^* = \arg\min_{j \in C_t} \sum_{i=1}^N L\left(y_i, \hat{y}^{(t-1)}(x_i) + w_j^* z_j(x_i)\right)$$
 (5)

GIF algorithm — Boostrapping

Candidate list

Since all root nodes see all the learning examples, they would produce the same loss reduction. To increase diversity, we grow ${\it T}$ stumps and use the leaves to form the initial candidate list.

Initial bias

The initial bias w_0 is the best constant that fits the training set

$$w_0 = \arg\min_{y \in \mathbb{R}^K} \sum_{i=1}^N L(y_i, y)$$
 (6)

Results — Experimental setting

- 1. Grow a forest of a thousand fully-developed Extremely randomized trees ($ET_{100\%}$) and count the number of nodes M.
- 2. Compare how different methods fare (in average over ten runs) under a constraint of 1% and 10% of that budget.

 $\mathsf{GIF}_{\mathsf{x}\%}$ grow the forest of a thousand trees until the node budget is met with the GIF algorithm.

RAND_{x%} grow a forest of a thousand trees randomly. ET_{x%} grow only 10x fully-developed trees.

We used the following values for the hyper-parameters :

Number of trees: 1000 Learning rate: $10^{-1.5}$

Candidate window size: 1 Splitting algorithm: Extremely

randomized trees (ET)

Results — Candidate window size

Results — Regression

Relative average mean square error to $ET_{100\%}$.

Results — Binary classification

Relative average misclassification rate to $\mathsf{ET}_{100\%}$.

Results — Multi-class problems

Relative average misclassification rate to $\mathsf{ET}_{100\%}.$

Conclusion and future works

Performances

- ▶ GIF allows for lightweight yet accurate forests.
- Global optimization usually helps.
- Surprisingly, optimizing the shapes hurts.

TODOs

- Handle multiclass problems better.
- ▶ In depth comparison with Boosting methods.

GIF algorithm

- 1: **Input**: $D = (x_i, y_i)_{i=1}^N$, the learning set with $x_i \in \mathbb{R}^P$ and $y_i \in \mathbb{R}^K$; \mathcal{A} , the tree learning algorithm; L, the loss function; B, the node budget; T, the number of trees; CW, the candidate window size; λ , the learning rate.
- 2: **Output**: An ensemble *S* of *B* tree nodes with their corresponding weights.
- 3: Algorithm:
- 4: $S = \emptyset$; $C = \emptyset$; t = 1
- 5: $\hat{y}^{(0)}(.) = \arg\min_{y \in \mathbb{R}^K} \sum_{i=1}^N L(y_i, y)$
- 6: Grow T stumps with $\mathcal A$ on D and add the left and right successors of all stumps to C.
- 7: repeat
- 8: C_t is a subset of size min $\{CW, |C|\}$ of C chosen uniformly at random.
- 9: Compute : $(j^*, w_j^*) = \underset{j \in C_t, w \in \mathbb{R}^K}{\arg\min} \sum_{i=1}^N L\left(y_i, \hat{y}^{(t-1)}(x_i) + wz_j(x_i)\right)$
- 10: $S = S \cup \{(j^*, w_j^*)\}; C = C \setminus \{j^*\};$ $y^{(t)}(.) = y^{(t-1)}(.) + \lambda w_j^* z_{j^*}(.)$
- 11: Split j^* using A to obtain children j_l and j_r
- 12: $C = C \cup \{j_l, j_r\}; t = t + 1$
- 13: until budget B is met

GIF algorithm — Regularization

Node split

Although the weight are optimized globally, the splitting elements of a node are still determined locally.

Learning rate

A learning rate λ was introduced to prevent overfitting :

$$y^{(t)}(.) = y^{(t-1)}(.) + \lambda w_j^* z_{j^*}(.)$$
 (7)

Candidate window

Only a uniformly drawn subset of candidates are examined at each iterations.

▶ This also serves to speed up computations

Result — Error rates droupout with iteration

Friedman1 : average test set error with respect to the budget B ($CW = +\infty$, $m = \sqrt{10}$, T = 1000).

Result — Cumulative node distribution

Friedman1 : cumulative node distribution with respect to the size-ranks ($CW = \infty$, m= $\sqrt{10}$, T = 1000, B = 10%)

Datasets

Table: Characteristics of the datasets. N is the learning sample size, TS stands for testing set, and p is the number of features.

Dataset	N	TS	р	# classes
Friedman1	300	2000	10	-
Abalone	2506	1671	10	-
CT slice	2000	51500	385	-
Hwang F5	2000	11600	2	-
Cadata	12384	8256	8	-
Ringnorm	300	7100	20	2
Twonorm	300	7100	10	2
Hastie	2000	10000	10	2
Musk2	2000	4598	166	2
Madelon	2200	2200	500	2
Mnist8vs9	11800	1983	784	2
Waveform	3500	1500	40	3
Vowel	495	495	10	11
Mnist	50000	10000	784	10
Letter	16000	4000	8	26