
Globally Induced Forest: A Prepruning
Compression Scheme

Jean-Michel Begon, Arnaud Joly, Pierre Geurts

Systems and Modeling, Dept. of EE and CS, University of Liege, Belgium

ICML 2017

Goal and motivation

What ? Is it possible to build accurate yet lightweight
random forests without building the whole model
first ?

Why ? Random forests are heavy models memory-wise :
∝ Number of nodes in a tree is (at worst)
linear with the size of the data ;
∝ number of required trees grows with the
problem complexity.

What for ? I Big data ;
I small memory devices ;
I better interpretability, less overfitting, faster
prediction, . . .

How ?

Goal GIF algorithm Results Conclusion 1 / 16

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.

I Splits in decision nodes are optimized locally.
I Nodes are taken from a candidate list.
I The best node is added . . .
I . . . together with its weight.

Goal GIF algorithm Results Conclusion 2 / 16

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.

I Splits in decision nodes are optimized locally.
I Nodes are taken from a candidate list.
I The best node is added . . .
I . . . together with its weight.

Goal GIF algorithm Results Conclusion 2 / 16

GIF algorithm — Additive model

The model prediction ŷ (t)(x) at step t for instance x is given by :

ŷ (t)(x) = ŷ (t−1)(x) + λwtzt(x) = w0 + λ

t∑
τ=1

wτzτ (x) (1)

where

w0 is some initial bias.
wτ is the weight of node j
(1 ≤ τ ≤ t).
λ is the learning rate.

zτ (x) =

{
1, if x reaches node τ
0, otherwise

(1 ≤ τ ≤ t)
i.e. node τ indicator function

For classification, the sum of weights represents the class
probability vector (i.e. the weights are multidimensional).

Goal GIF algorithm Results Conclusion 3 / 16

GIF algorithm — Additive model

0.0	

2.8	
 -­‐0.7	

0.3	
 2.8	
 -­‐1.9	
 5.0	

0.0	

-­‐1.4	
 0.3	

-­‐1.7	
 1.2	

x	
 x	

ŷ(x) = w0 + λ(1.4+ 1.2) + λ(−0.7+−1.9) (2)

Goal GIF algorithm Results Conclusion 4 / 16

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.

I Splits in decision nodes are optimized locally.
I Nodes are taken from a candidate list.
I The best node is added . . .
I . . . together with its weight.

Goal GIF algorithm Results Conclusion 5 / 16

GIF algorithm — Illustration (regression)

4	

1	

5	

10	
 11	
 12	
 13	

6	

2	

7	

14	
 15	
 16	
 17	

8	

3	

18	
 19	
 20	
 21	

Node	
 belonging	
 to	
 the	
 model	

Candidate	
 node	

Hypothe=cal	
 unpruned	
 trees	

9	

ŷ x() = w0 +λw9z9 (x)

Goal GIF algorithm Results Conclusion 6 / 16

GIF algorithm — Illustration (regression)

4	

1	

5	

10	
 11	
 12	
 13	

6	

2	

7	

14	
 15	
 16	
 17	

8	

3	

18	
 19	
 20	
 21	

Node	
 belonging	
 to	
 the	
 model	

Candidate	
 node	

Hypothe=cal	
 unpruned	
 trees	

9	

Randomly	
 preselected	

candidate	
 node	

ŷ x() = w0 +λw9z9 (x)

Goal GIF algorithm Results Conclusion 6 / 16

GIF algorithm — Illustration (regression)

4	

1	

5	

10	
 11	
 12	
 13	

6	

2	

7	

14	
 15	
 16	
 17	

8	

3	

18	
 19	
 20	
 21	

Node	
 belonging	
 to	
 the	
 model	

Candidate	
 node	

Hypothe=cal	
 unpruned	
 trees	

9	

Δerr	
 2.6	
 1.5	

0.9	

Randomly	
 preselected	

candidate	
 node	

ŷ x() = w0 +λw9z9 (x)

Goal GIF algorithm Results Conclusion 6 / 16

GIF algorithm — Illustration (regression)

4	

1	

5	

10	
 11	
 12	
 13	

6	

2	

7	

14	
 15	
 16	
 17	

8	

3	

18	
 19	
 20	
 21	

Node	
 belonging	
 to	
 the	
 model	

Candidate	
 node	

Hypothe=cal	
 unpruned	
 trees	

9	

Δerr	
 2.6	
 1.5	

0.9	

Randomly	
 preselected	

candidate	
 node	

Chosen	
 node	

ŷ x() = w0 +λw9z9 (x)

Goal GIF algorithm Results Conclusion 6 / 16

GIF algorithm — Illustration (regression)

ŷ x() = w0 +λw9z9 (x)+λw6z6 (x)

4	

1	

5	

10	
 11	
 12	
 13	

2	

7	

14	
 15	
 16	
 17	

8	

3	

18	
 19	
 20	
 21	

Node	
 belonging	
 to	
 the	
 model	

Candidate	
 node	

Hypothe=cal	
 unpruned	
 trees	

9	
 6	

Goal GIF algorithm Results Conclusion 6 / 16

GIF algorithm — Illustration (regression)

4	

1	

5	

10	
 11	
 12	
 13	

2	

7	

14	
 15	
 16	
 17	

8	

3	

18	
 19	
 20	
 21	

Node	
 belonging	
 to	
 the	
 model	

Candidate	
 node	

Hypothe=cal	
 unpruned	
 trees	

9	
 6	

ŷ x() = w0 +λw9z9 (x)+λw6z6 (x)

Goal GIF algorithm Results Conclusion 6 / 16

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.

I Splits in decision nodes are optimized locally.
I Nodes are taken from a candidate list.
I The best node is added . . .
I . . . together with its weight.

Candidate list
Each time a node is added to the model, the learning instances
reaching that node are split according to a local criterion. The
resulting children are placed in the candidate list.

Goal GIF algorithm Results Conclusion 7 / 16

GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.

I Splits in decision nodes are optimized locally.
I Nodes are taken from a candidate list.
I The best node is added . . .
I . . . together with its weight.

Goal GIF algorithm Results Conclusion 8 / 16

GIF algorithm — Node selection
The best node j∗, together with its optimal weight w∗j , are the ones
that minimize some loss L over the training set (xi , yi)Ni=1 :

(j∗,w∗j) = argmin
j∈Ct ,w∈RK

N∑
i=1

L
(
yi , ŷ

(t−1)(xi) + wzj(xi)
)

(3)

where Ct is the subsample of candidates.
This problem is solved in two steps
1. for a candidate j , compute the best weight w∗j :

w∗j = argmin
w∈RK

N∑
i=1

L
(
yi , ŷ

(t−1)(xi) + wzj(xi)
)

(4)

2. select the best candidate with exhaustive search :

j∗ = argmin
j∈Ct

N∑
i=1

L
(
yi , ŷ

(t−1)(xi) + w∗j zj(xi)
)

(5)

Goal GIF algorithm Results Conclusion 9 / 16

GIF algorithm — Boostrapping

Candidate list
Since all root nodes see all the learning examples, they would
produce the same loss reduction. To increase diversity, we grow T
stumps and use the leaves to form the initial candidate list.

Initial bias
The initial bias w0 is the best constant that fits the training set

w0 = argmin
y∈RK

N∑
i=1

L(yi , y) (6)

Goal GIF algorithm Results Conclusion 10 / 16

Results — Experimental setting

1. Grow a forest of a thousand fully-developed Extremely
randomized trees (ET100%) and count the number of nodes M.

2. Compare how different methods fare (in average over ten runs)
under a constraint of 1% and 10% of that budget.

GIFx% grow the forest of a thousand trees until the
node budget is met with the GIF algorithm.

RANDx% grow a forest of a thousand trees randomly.
ETx% grow only 10x fully-developed trees.

We used the following values for the hyper-parameters :

Number of trees : 1000
Candidate window size : 1

Learning rate : 10−1.5

Splitting algorithm : Extremely
randomized trees (ET)

Goal GIF algorithm Results Conclusion 11 / 16

Results — Candidate window size

0 2 4 6 8 10 12 14 16
2.3

2.7

3.1

Friedman1

0 20 40 60 80 100 120 140 160
18.0

21.5

25.0

CT slice

0 1 2 3 4 5 6 7 8
3.32

3.39

3.46

Twonorm

0 50 100 150
Fitting time [s]

3.10

3.25

3.40

Musk2

Candidate window size

1 10 100 1000

E
rr

o
r

Goal GIF algorithm Results Conclusion 12 / 16

Results — Regression

0.00.51.01.52.0

 Cadata

Friedman1

 Hwang F5

 Abalone

 CT Slice

1% budget

0.0 0.5 1.0 1.5 2.0

10% budget

ETx% GIFx% RANDx%

Relative average mean square error to ET100%.
Goal GIF algorithm Results Conclusion 13 / 16

Results — Binary classification

0.00.51.01.52.0

Mnist 8vs9

 Madelon

 Musk2

 Hastie

 Twonorm

 Ringnorm

1% budget

0.0 0.5 1.0 1.5 2.0

10% budget

ETx% GIFx% RANDx%

Relative average misclassification rate to ET100%.
Goal GIF algorithm Results Conclusion 14 / 16

Results — Multi-class problems

012345

 Waveform

 Mnist

 Vowel

 Letter

1% budget

0 1 2 3 4 5

10% budget

ETx% GIFx% RANDx%

Relative average misclassification rate to ET100%.
Goal GIF algorithm Results Conclusion 15 / 16

Conclusion and future works

Performances
I GIF allows for lightweight yet accurate forests.
I Global optimization usually helps.
I Surprisingly, optimizing the shapes hurts.

TODOs
I Handle multiclass problems better.
I In depth comparison with Boosting methods.

Goal GIF algorithm Results Conclusion 16 / 16

GIF algorithm

1: Input : D = (xi , yi)
N
i=1, the learning set with xi ∈ RP and yi ∈ RK ; A, the

tree learning algorithm ; L, the loss function ; B, the node budget ; T , the
number of trees ; CW , the candidate window size ; λ, the learning rate.

2: Output : An ensemble S of B tree nodes with their corresponding weights.
3: Algorithm :
4: S = ∅ ; C = ∅ ; t = 1
5: ŷ (0)(.) = argminy∈RK

∑N
i=1 L(yi , y)

6: Grow T stumps with A on D and add the left and right successors of all
stumps to C .

7: repeat
8: Ct is a subset of size min{CW , |C |} of C chosen uniformly at random.
9: Compute :

(j∗,w∗j) = argmin
j∈Ct ,w∈RK

N∑
i=1

L
(
yi , ŷ

(t−1)(xi) + wzj(xi)
)

10: S = S ∪ {(j∗,w∗j)} ; C = C \ {j∗} ;
y (t)(.) = y (t−1)(.) + λw∗j zj∗(.)

11: Split j∗ using A to obtain children jl and jr
12: C = C ∪ {jl , jr} ; t = t + 1
13: until budget B is met

17 / 16

GIF algorithm — Regularization

Node split
Although the weight are optimized globally, the splitting elements
of a node are still determined locally.

Learning rate
A learning rate λ was introduced to prevent overfitting :

y (t)(.) = y (t−1)(.) + λw∗j zj∗(.) (7)

Candidate window
Only a uniformly drawn subset of candidates are examined at each
iterations.

I This also serves to speed up computations

18 / 16

Result — Error rates droupout with iteration

0 5000 10000 15000 20000 25000 30000 35000
Budget

5

10

15

20

25
E
rr

o
r

Learning rate

¸=10¡3

¸=10¡1: 5

¸=1

Friedman1 : average test set error with respect to the budget B (CW = +∞,
m=

√
10, T = 1000). 19 / 16

Result — Cumulative node distribution

0 200 400 600 800 1000
Ranks

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 n

o
d
e
 r

a
ti

o
Learning rate

¸=10¡3

¸=10¡1: 5

¸=1

Friedman1 : cumulative node distribution with respect to the size-ranks
(CW = ∞, m=

√
10, T = 1000, B = 10%) 20 / 16

Datasets

Table: Characteristics of the datasets. N is the learning sample size, TS
stands for testing set, and p is the number of features.

Dataset N |TS | p # classes
Friedman1 300 2000 10 -
Abalone 2506 1671 10 -
CT slice 2000 51500 385 -
Hwang F5 2000 11600 2 -
Cadata 12384 8256 8 -
Ringnorm 300 7100 20 2
Twonorm 300 7100 10 2
Hastie 2000 10000 10 2
Musk2 2000 4598 166 2
Madelon 2200 2200 500 2
Mnist8vs9 11800 1983 784 2
Waveform 3500 1500 40 3
Vowel 495 495 10 11
Mnist 50000 10000 784 10
Letter 16000 4000 8 26

21 / 16

	Goal
	GIF algorithm
	Results
	Conclusion
	Annexe

