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Goal and motivation

What ? Is it possible to build accurate yet lightweight
random forests without building the whole model
first ?

Why ? Random forests are heavy models memory-wise :
∝ Number of nodes in a tree is (at worst)
linear with the size of the data ;
∝ number of required trees grows with the
problem complexity.

What for ? I Big data ;
I small memory devices ;
I better interpretability, less overfitting, faster
prediction, . . .

How ?
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GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.

I Splits in decision nodes are optimized locally.
I Nodes are taken from a candidate list.
I The best node is added . . .
I . . . together with its weight.
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GIF algorithm — Additive model

The model prediction ŷ (t)(x) at step t for instance x is given by :

ŷ (t)(x) = ŷ (t−1)(x) + λwtzt(x) = w0 + λ

t∑
τ=1

wτzτ (x) (1)

where

w0 is some initial bias.
wτ is the weight of node j
(1 ≤ τ ≤ t).
λ is the learning rate.

zτ (x) =

{
1, if x reaches node τ
0, otherwise

(1 ≤ τ ≤ t)
i.e. node τ indicator function

For classification, the sum of weights represents the class
probability vector (i.e. the weights are multidimensional).
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GIF algorithm — Additive model
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GIF algorithm — Illustration (regression)
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GIF algorithm — Illustration (regression)

ŷ x( ) = w0 +λw9z9 (x)+λw6z6 (x)
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ŷ x( ) = w0 +λw9z9 (x)+λw6z6 (x)

Goal GIF algorithm Results Conclusion 6 / 16



GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.

I Splits in decision nodes are optimized locally.
I Nodes are taken from a candidate list.
I The best node is added . . .
I . . . together with its weight.

Candidate list
Each time a node is added to the model, the learning instances
reaching that node are split according to a local criterion. The
resulting children are placed in the candidate list.
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GIF algorithm — Node selection
The best node j∗, together with its optimal weight w∗j , are the ones
that minimize some loss L over the training set (xi , yi )Ni=1 :

(j∗,w∗j ) = argmin
j∈Ct ,w∈RK

N∑
i=1

L
(
yi , ŷ

(t−1)(xi ) + wzj(xi )
)

(3)

where Ct is the subsample of candidates.
This problem is solved in two steps
1. for a candidate j , compute the best weight w∗j :

w∗j = argmin
w∈RK

N∑
i=1

L
(
yi , ŷ

(t−1)(xi ) + wzj(xi )
)

(4)

2. select the best candidate with exhaustive search :

j∗ = argmin
j∈Ct

N∑
i=1

L
(
yi , ŷ

(t−1)(xi ) + w∗j zj(xi )
)

(5)
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GIF algorithm — Boostrapping

Candidate list
Since all root nodes see all the learning examples, they would
produce the same loss reduction. To increase diversity, we grow T
stumps and use the leaves to form the initial candidate list.

Initial bias
The initial bias w0 is the best constant that fits the training set

w0 = argmin
y∈RK

N∑
i=1

L(yi , y) (6)
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Results — Experimental setting

1. Grow a forest of a thousand fully-developed Extremely
randomized trees (ET100%) and count the number of nodes M.

2. Compare how different methods fare (in average over ten runs)
under a constraint of 1% and 10% of that budget.

GIFx% grow the forest of a thousand trees until the
node budget is met with the GIF algorithm.

RANDx% grow a forest of a thousand trees randomly.
ETx% grow only 10x fully-developed trees.

We used the following values for the hyper-parameters :

Number of trees : 1000
Candidate window size : 1

Learning rate : 10−1.5

Splitting algorithm : Extremely
randomized trees (ET)
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Results — Candidate window size
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Results — Regression
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Results — Binary classification

0.00.51.01.52.0

Mnist 8vs9

 Madelon 

  Musk2  

  Hastie  

 Twonorm 

 Ringnorm 

1% budget

0.0 0.5 1.0 1.5 2.0

10% budget

ETx% GIFx% RANDx%

Relative average misclassification rate to ET100%.
Goal GIF algorithm Results Conclusion 14 / 16



Results — Multi-class problems
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Conclusion and future works

Performances
I GIF allows for lightweight yet accurate forests.
I Global optimization usually helps.
I Surprisingly, optimizing the shapes hurts.

TODOs
I Handle multiclass problems better.
I In depth comparison with Boosting methods.
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GIF algorithm

1: Input : D = (xi , yi )
N
i=1, the learning set with xi ∈ RP and yi ∈ RK ; A, the

tree learning algorithm ; L, the loss function ; B, the node budget ; T , the
number of trees ; CW , the candidate window size ; λ, the learning rate.

2: Output : An ensemble S of B tree nodes with their corresponding weights.
3: Algorithm :
4: S = ∅ ; C = ∅ ; t = 1
5: ŷ (0)(.) = argminy∈RK

∑N
i=1 L(yi , y)

6: Grow T stumps with A on D and add the left and right successors of all
stumps to C .

7: repeat
8: Ct is a subset of size min{CW , |C |} of C chosen uniformly at random.
9: Compute :

(j∗,w∗j ) = argmin
j∈Ct ,w∈RK

N∑
i=1

L
(
yi , ŷ

(t−1)(xi ) + wzj(xi )
)

10: S = S ∪ {(j∗,w∗j )} ; C = C \ {j∗} ;
y (t)(.) = y (t−1)(.) + λw∗j zj∗(.)

11: Split j∗ using A to obtain children jl and jr
12: C = C ∪ {jl , jr} ; t = t + 1
13: until budget B is met
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GIF algorithm — Regularization

Node split
Although the weight are optimized globally, the splitting elements
of a node are still determined locally.

Learning rate
A learning rate λ was introduced to prevent overfitting :

y (t)(.) = y (t−1)(.) + λw∗j zj∗(.) (7)

Candidate window
Only a uniformly drawn subset of candidates are examined at each
iterations.

I This also serves to speed up computations
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Result — Error rates droupout with iteration
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Result — Cumulative node distribution
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Datasets

Table: Characteristics of the datasets. N is the learning sample size, TS
stands for testing set, and p is the number of features.

Dataset N |TS | p # classes
Friedman1 300 2000 10 -
Abalone 2506 1671 10 -
CT slice 2000 51500 385 -
Hwang F5 2000 11600 2 -
Cadata 12384 8256 8 -
Ringnorm 300 7100 20 2
Twonorm 300 7100 10 2
Hastie 2000 10000 10 2
Musk2 2000 4598 166 2
Madelon 2200 2200 500 2
Mnist8vs9 11800 1983 784 2
Waveform 3500 1500 40 3
Vowel 495 495 10 11
Mnist 50000 10000 784 10
Letter 16000 4000 8 26
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