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Goal and motivation

What? s it possible to build
random forests without building the whole model

first 7

Why 7 Random forests are heavy models memory-wise :
o Number of nodes in a tree is (at worst)
linear with the size of the data;
o number of required trees grows with the
problem complexity.

What for ? » Big data;

» small memory devices;
» better interpretability, less overfitting, faster
prediction, ...

How ?



GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.
» Splits in decision nodes are optimized locally.
» Nodes are taken from a candidate list.
» The best node is added ...
> ... together with its weight.
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GIF algorithm — Additive model

The model prediction ${t)(x) at step t for instance x is given by :

PO0) = JUV() + Aweze(x) = wo + A Y weze(x) (1)

=1
where
wp is some initial bias. 1, if x reaches node 7
. . . ZT(X) =
w, is the weight of node j 0, otherwise
(1<7<t). (1<7<d)
A is the learning rate. i.e. node 7 indicator function

For classification, the sum of weights represents the class
probability vector (i.e. the weights are multidimensional).



GIF algorithm — Additive model

9(x) = wo + A(1.4 + 1.2) + A(~0.7 + —1.9) (2)
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GIF algorithm — Illustration (regression)
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GIF algorithm — Illustration (regression)
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GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.
» Splits in decision nodes
» Nodes are taken from a
» The best node is added ...
> ... together with its weight.

Candidate list

Each time a node is added to the model, the learning instances
reaching that node are split according to a . The
resulting children are placed in the candidate list.



GIF algorithm — High level view

Build an additive model corresponding to a forest by introducing
decision nodes sequentially until a node budget constraint is met.
» Splits in decision nodes are optimized locally.
» Nodes are taken from a candidate list.
> The is added ...
> ... together



GIF algorithm — Node selection

The best node j*, together with its optimal weight w/, are the ones

that minimize some loss L over the training set (x;, yi)

N
Go) = argmin S (36,9 ) + ()

jE Ct,WERK i=1

where C; is the subsample of candidates.
This problem is solved in two steps
1. for a candidate j, compute the best weight w/

N
w/ = argmin Z L (y,-,f/(tfl)(x,-) + sz(x,-)>
WERK i=1
2. select the best candidate with exhaustive search :

N
J* = argmin Z L <y,-,)7(t71)(Xi) + WJ'*ZJ'(Xi)>
j€G o

N .
i=1

(3)

(5)



GIF algorithm — Boostrapping

Candidate list

Since all root nodes see all the learning examples, they would
produce the same loss reduction. To increase diversity, we grow T
stumps and use the leaves to form the initial candidate list.

Initial bias
The initial bias wy is the best constant that fits the training set

N

wo = argmin » _ L(y;, y) (6)
yERK Ty



Results — Experimental setting

1. Grow a forest of a thousand fully-developed Extremely
randomized trees (ET1gge,) and count the number of nodes M.
2. Compare how different methods fare (in average over ten runs)
under a constraint of 1% and 10% of that budget.
GIF o, grow the forest of a thousand trees until the
node budget is met with the GIF algorithm.
RAND, o, grow a forest of a thousand trees randomly.
ET .o, grow only 10x fully-developed trees.

We used the following values for the hyper-parameters :

Number of trees : 1000 Learning rate : 10715

Candidate window size : 1 Splitting algorithm : Extremely
randomized trees (ET)



Results — Candidate window size
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Results — Regression
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Results — Binary classification
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Results — Multi-class problems
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Conclusion and future works

Performances

» GIF allows for lightweight yet accurate forests.
> Global optimization usually helps.

» Surprisingly, optimizing the shapes hurts.

TODOs

» Handle multiclass problems better.

> In depth comparison with Boosting methods.



GIF algorithm

1:

© o N

10:

11:
12:
13:

o Ol & WY

Input : D = (X,-,y,-),!\’zl, the learning set with x; € R” and yi € RX: A, the
tree learning algorithm ; L, the loss function ; B, the node budget; T, the
number of trees; CW, the candidate window size; A, the learning rate.
Output : An ensemble S of B tree nodes with their corresponding weights.
Algorithm :
S=0;C=0;t=1
)7(0)(-) = argmin, cgk 25\1:1 L(yi,y)
Grow T stumps with A on D and add the left and right successors of all
stumps to C.
repeat

C; is a subset of size min{CW, |C\} of C chosen uniformly at random.

Compute :

(", w) = argmin Z L (v, 9 0) + wi(x) )
JEC,weRK 7
S=Su{("w)}: C=C\{j"};
YO() = YD)+ Awg 2 ()

Split J* using A to obtain children j; and j;

C=CU{jjr}:t=t+1
until budget B is met



GIF algorithm — Regularization

Node split

Although the weight are optimized globally, the splitting elements
of a node are still determined locally.

Learning rate

A learning rate \ was introduced to prevent overfitting :

yO0) =y D) + awiz- () (7)

Candidate window
Only a uniformly drawn subset of candidates are examined at each
iterations.

» This also serves to speed up computations



Result — Error rates droupout with iteration
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Result — Cumulative node distribution
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Datasets

Table: Characteristics of the datasets. NV is the learning sample size, TS
stands for testing set, and p is the number of features.

Dataset N | TS| p  # classes
Friedmanl 300 2000 10 -
Abalone 2506 1671 10 -
CT slice 2000 51500 385 -
Hwang F5 | 2000 11600 2
Cadata 12384 8256 8

Ringnorm 300 7100 20 2
Twonorm 300 7100 10 2
Hastie 2000 10000 10 2
Musk2 2000 4598 166 2
Madelon 2200 2200 500 2
Mnist8vs9 | 11800 1983 784 2
Waveform 3500 1500 40 3
Vowel 495 495 10 11
Mnist 50000 10000 784 10

26

Letter 16000 4000 8
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