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Un petit peu d’histoire

Un petit peu d histoire.

La Gréce Antique : berceau du paradigme mathématique.
o Paradoxe de Russel.
o Les mathématiques sont-elles consistantes ?

o « Wir miissen wissen, wir werden wissen ».
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Premier théoréme de Godel

@ Premier théoréeme d’incomplétude de Gdodel
@ Deuxiéme théoréme d’incomplétude de Godel

© L'Hydre de Lerne

O Combien

o Topologie
o Nombres Q de Chaitin
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Premier théoréme de Godel

Définition : Arithmétique de Peano P

o Un langage £o = {0, S, +, x,~}.
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Premier théoréme de Godel

Définition : Arithmétique de Peano P
o Un langage £o = {0, S, +, x, ~}.
o Sept axiomes.

o Le schéma d’induction.

Définition : Robinson

L'arithmétique de Robinson P, est Peano sans le schéma
d’induction.
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Premier théoréme de Godel

Définition
Nous définissons par induction sur le terme t un entier noté
#t appelle le numéro de Godel du terme t, par les

conditions suivantes :

Renaud Hoyoux, septembre 2011
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Premier théoréme de Godel

Définition
Nous définissons par induction sur le terme t un entier noté
#t appelle le numéro de Godel du terme t, par les

conditions suivantes :
o Sit = cm, alors #t = a3(m,0,0);
o Si t = vy, alors #t = a3(n,0,1);

o Sit="f(t1,t,...,1t,), alors

#t = QS(Q(#tla #tZa Q) 7#tn)7 #fa 2)

Renaud Hoyoux, septembre 2011
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Premier théoréme de Godel

Proposition

Soit T une théorie récursive; alors I'ensemble Dem(T) =
{(#F,#+#d), ol d est une démonstration de F dans T} est
primitif récursif.
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Premier théoréme de Godel

Proposition

Soit T une théorie récursive; alors I'ensemble Dem(T) =
{(#F,#+#d), ol d est une démonstration de F dans T} est
primitif récursif.

Dé&finition
T est décidable si I'ensemble des numéros de Godel des

théorémes de T est récursif. Sinon, on dit que T est indé-
cidable.
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Théoréme

Si T est une théorie consistante contenant Py ; alors T est
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Premier théoréme de Godel

Théoréme

Si T est une théorie consistante contenant Py ; alors T est
indécidable

Démonstration par |'absurde.

On exhibe une formule G telle que
Si T+ G[#(G[w])] alors T i G[##(G[w])].
Si T+ —=G[#(G[w])] alors T F G[#(G[w])]. O
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Premier théoréme de Godel

Théoréme

Si T est une théorie consistante contenant Py ; alors T est
indécidable
Démonstration par |'absurde.

On exhibe une formule G telle que

Si T+ G[#(G[w])] alors T 7 G[#(G[wo])]-
Si T+ —=G[#(G[w])] alors T F G[#(G[w])]. O
Corollaire

Si T est une théorie compléte et récursive alors elle est dé-

cidable
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Premier théoréme de Godel

Premier théoréme d’'incomplétude de Godel

Soit T une théorie récursive et consistante contenant Py,
alors T n'est pas compléte.
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Deuxiéme théoréme de Gddel

@ Premier théoréme d'incomplétude de Godel
@ Deuxiéme théoréme d’'incomplétude de Gédel
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O Combien
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Deuxiéme théoréme de Gddel

Soit Wr[#F] la formule IvyDemy[#F, v].
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Deuxiéme théoréme de Gddel

Soit Wr[#F] la formule IvyDemy[#F, v].
Internalisation de la logique.
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Deuxiéme théoréme de Gddel

Soit Wr[#F] la formule IvyDemy[#F, v].
Internalisation de la logique.

Exemples
P —=Cons(T; #F) & Wr[#-F]
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Deuxiéme théoréme de Gddel

Theorem
Soit T une théorie récursive consistante dans un langage fini

L(T).

Alors il existe un systéme de formules
H =< HU; {Hr}rERela {Hf}fEFonm {HC}CEC >

telles que pour tout modéle M de P satisfaisant Cons(T),
‘H représente un modéle U de T

Renaud Hoyoux, septembre 2011
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Deuxiéme théoréme d’'incomplétude de Godel

Soit T une théorie consistante, récursive et contenant P.
Alors T ne démontre pas Cons(T).
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Deuxiéme théoréme d’'incomplétude de Godel
Soit T une théorie consistante, récursive et contenant P.
Alors T ne démontre pas Cons(T).

Démonstration.

Internalisation du premier théoréme.
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Deuxiéme théoréme de Gddel

Deuxiéme théoréme d’'incomplétude de Godel
Soit T une théorie consistante, récursive et contenant P.
Alors T ne démontre pas Cons(T).

Démonstration.

Internalisation du premier théoréme.
Ona Tt/ —¢lal.
De plus, T I Cons(T) = —¢|a].
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Deuxiéme théoréme de Gddel

Corollaire
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Deuxiéme théoréme de Gddel

Corollaire

Si 0 = 1 est indémontrable dans T alors "0 = 1 est indé-
montrable dans T" est indémontrable dans T.
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Exemple d’énoncés indémontrables

@ Premier théoréme d'incomplétude de Godel
@ Deuxiéme théoréme d’incomplétude de Godel
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O Combien
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Exemple
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Exemple d’énoncés indémontrables

Definition

Une hydre est un arbre fini.
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Definition

Une hydre est un arbre fini.

Téte

Téte

Téte

Téte
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Exemple

Exemple de reproduction
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Exemple de reproduction
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Exemple d’énoncés indémontrables

Exemple de reproduction - suite
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Exemple d’énoncés indémontrables

Héraclés a-t-il une chance de vaincre I'Hydre ?
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Exemple d’énoncés indémontrables

Héraclés a-t-il une chance de vaincre I'Hydre ?

Theorem

Toute stratégie est une stratégie gagnante (pour Héraclés).
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Exemple d’énoncés indémontrables

ydre peut étre associée a un ordinal.
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Exemple d’énoncés indémontrables

Toute Hydre peut étre associée a un ordinal.

Théoréme

On a que pour toute stratégie S, toute hydre et tout n € N,

L’ordinal de I'hydre décroit strictement.

Les théorémes d'incomplétude Renaud Hoyoux, septembre 2011

22 /30



Exemple d’énoncés indémontrables

Theorem

L assertion "Toute stratégie récursive est une stratégie ga-
gnante" est un énoncé indémontrable dans P.
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Exemple d’énoncés indémontrables

Theorem

L assertion "Toute stratégie récursive est une stratégie ga-
gnante" est un énoncé indémontrable dans P.

Par I'absurde, "Toute stratégie récursive est une stratégie
gagnante" est un énoncé démontrable.
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Exemple d’énoncés indémontrables

Theorem

L assertion "Toute stratégie récursive est une stratégie ga-
gnante" est un énoncé indémontrable dans P.

Par I'absurde, "Toute stratégie récursive est une stratégie
gagnante" est un énoncé démontrable.

Il existe une stratégie récursive 7 telle que "La stratégie 7 est
gagnante" est indémontrable dans P.

Renaud Hoyoux, septembre 2011
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Exemple d’énoncés indémontrables

Theorem

L assertion "Toute stratégie récursive est une stratégie ga-
gnante" est un énoncé indémontrable dans P.

Par I'absurde, "Toute stratégie récursive est une stratégie
gagnante" est un énoncé démontrable.

Il existe une stratégie récursive 7 telle que "La stratégie 7 est
gagnante" est indémontrable dans P.

Stratégie du plus court chemin.
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Combien d’énoncés indémontrables ?

@ Premier théoréme d'incomplétude de Godel
@ Deuxiéme théoréme d’incomplétude de Godel

© L'Hydre de Lerne

O Combien

o Topologie
o Nombres Q de Chaitin
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Combien d’énoncés indémontrables ?

Définition
Pour tout ensemble A C X* non récursivement énumérable
et définissable dans T, on pose

I(A) = {uluc A, TF"ueA"}.
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Combien d’énoncés indémontrables ?

Définition

o Une topologie 7 satisfait la condition de Calude pour une
relation d’équivalence = sur X™ si pour tout ouvert non
vide O, I'ensemble {y|ly € X*,O N [y]= = 0} est fini.
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Combien d’énoncés indémontrables ?

Définition

o Une topologie 7 satisfait la condition de Calude pour une
relation d’équivalence = sur X™ si pour tout ouvert non
vide O, I'ensemble {y|ly € X*,O N [y]= = 0} est fini.

Théoréme

Soit = une relation d'équivalence récursive sur X* et soit
A C X* un ensemble qui est définissable dans T, union de
classes d'équivalence de = et non récursivement énumeérable.
Alors I'ensemble /(A) est dense pour toute topologie 7 sur
X* qui satisfait la condition de Calude pour =.
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démontrables ?

0.0001000000010000101001110111000011111010...

FORTUITA EVENIUNT VE MATHEMATICAE
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Combien d’énoncés indémontrables ?

Théoréme d’'incomplétude de Chaitin

Soit une théorie T telle que Th(T) est récursivement énu-
mérable. Si chaque assertion de la forme

"le n® bit de Q est 0",

"le n® bit de Q est 1",

peut étre représentée dans T alors T nous permet de déter-
miner les valeurs d'au plus un nombre fini de bits de Q
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Combien d’énoncés indémontrables ?

Encore mieux ?

Soit P(n) I'énoncé « Le n® bit de Q est égal 3 0. »
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Combien d’énoncés indémontrables ?

Encore mieux?
Soit P(n) I'énoncé « Le n® bit de Q est égal 3 0. »

Théoréme

La suite (P(n))nen est une suite d’énoncés indémontrables.
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Merci pour votre attention.
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