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Un petit peu d'histoire

Un petit peu d'histoire.

La Grèce Antique : berceau du paradigme mathématique.

Paradoxe de Russel.

Les mathématiques sont-elles consistantes ?

� Wir müssen wissen, wir werden wissen �.
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Premier théorème de Gödel

1 Premier théorème d'incomplétude de Gödel

2 Deuxième théorème d'incomplétude de Gödel

3 L'Hydre de Lerne

4 Combien
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Premier théorème de Gödel

Qu'est ce que l'arithmétique ?

Dé�nition : Arithmétique de Peano P

Un langage L0 = {0, S ,+,×,'}.

Sept axiomes.

Le schéma d'induction.

Dé�nition : Robinson

L'arithmétique de Robinson P0 est Peano sans le schéma
d'induction.
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Premier théorème de Gödel

Arithmétisation de la syntaxe

Dé�nition

Nous dé�nissons par induction sur le terme t un entier noté
#t appellé le numéro de Gödel du terme t, par les
conditions suivantes :

Si t = cm, alors #t = α3(m, 0, 0);

Si t = vn, alors #t = α3(n, 0, 1);

Si t = f (t1, t2, . . . , tn), alors
#t = α3(Ω(#t1,#t2, . . . ,#tn),#f , 2).
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Premier théorème de Gödel

Proposition

Soit T une théorie récursive ; alors l'ensemble Dem(T) =
{(#F ,##d), où d est une démonstration de F dans T} est
primitif récursif.

Dé�nition

T est décidable si l'ensemble des numéros de Gödel des
théorèmes de T est récursif. Sinon, on dit que T est indé-
cidable.
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Premier théorème de Gödel

Théorème

Si T est une théorie consistante contenant P0 ; alors T est
indécidable

Démonstration par l'absurde.

On exhibe une formule G telle que
Si T ` G [#(G [v0])] alors T 6` G [#(G [v0])].
Si T ` ¬G [#(G [v0])] alors T ` G [#(G [v0])].

Corollaire

Si T est une théorie complète et récursive alors elle est dé-
cidable
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Premier théorème de Gödel

Premier théorème d'incomplétude de Gödel

Soit T une théorie récursive et consistante contenant P0,
alors T n'est pas complète.
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Deuxième théorème de Gödel

1 Premier théorème d'incomplétude de Gödel

2 Deuxième théorème d'incomplétude de Gödel

3 L'Hydre de Lerne

4 Combien

Topologie

Nombres Ω de Chaitin
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Deuxième théorème de Gödel

Soit WT [#F ] la formule ∃v1DemT [#F , v1].

Internalisation de la logique.

Exemples

P ` ¬Cons(T ; #F )⇔WT [#¬F ]
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Deuxième théorème de Gödel

Theorem

Soit T une théorie récursive consistante dans un langage �ni
L(T ).
Alors il existe un système de formules

H =< HU , {Hr}r∈Rel , {Hf }f ∈Fonc , {Hc}c∈C >

telles que pour tout modèle M de P satisfaisant Cons(T ),
H représente un modèle U de T
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Deuxième théorème de Gödel

Deuxième théorème d'incomplétude de Gödel

Soit T une théorie consistante, récursive et contenant P .
Alors T ne démontre pas Cons(T ).

Démonstration.

Internalisation du premier théorème.
On a T 6` ¬ε[a].
De plus, T ` Cons(T )⇒ ¬ε[a].
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Deuxième théorème de Gödel

Corollaire

Si 0 = 1 est indémontrable dans T alors "0 = 1 est indé-
montrable dans T" est indémontrable dans T .

13 / 30
Les théorèmes d'incomplétude Renaud Hoyoux, septembre 2011

N



Deuxième théorème de Gödel

Corollaire

Si 0 = 1 est indémontrable dans T alors "0 = 1 est indé-
montrable dans T" est indémontrable dans T .

13 / 30
Les théorèmes d'incomplétude Renaud Hoyoux, septembre 2011

N



Exemple d'énoncés indémontrables

1 Premier théorème d'incomplétude de Gödel

2 Deuxième théorème d'incomplétude de Gödel

3 L'Hydre de Lerne

4 Combien
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Nombres Ω de Chaitin
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Exemple d'énoncés indémontrables

Héraclès contre l'Hydre.

15 / 30
Les théorèmes d'incomplétude Renaud Hoyoux, septembre 2011

N



Exemple d'énoncés indémontrables

De�nition

Une hydre est un arbre �ni.

Tête
•

Corps
•

•

•
Tête
• •

•
Tête
•

Tête
•
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Exemple d'énoncés indémontrables

Exemple de reproduction

•

•

•

•

• •

•

•

•
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Exemple d'énoncés indémontrables

Exemple de reproduction

•

•

•

•
k
• •

•

•

•

|
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Exemple d'énoncés indémontrables

Exemple de reproduction

•

•
i
•

j
•

k
• •

•

•
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|
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Exemple d'énoncés indémontrables

Exemple de reproduction - suite

•

•
i
•

j
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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Exemple d'énoncés indémontrables

Héraclès a-t-il une chance de vaincre l'Hydre ?

Theorem

Toute stratégie est une stratégie gagnante (pour Héraclès).
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Exemple d'énoncés indémontrables

Toute Hydre peut être associée à un ordinal.

Théorème

On a que pour toute stratégie S, toute hydre et tout n ∈ N,

L'ordinal de l'hydre décroit strictement.
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Exemple d'énoncés indémontrables

Theorem

L'assertion "Toute stratégie récursive est une stratégie ga-
gnante" est un énoncé indémontrable dans P .

Par l'absurde, "Toute stratégie récursive est une stratégie
gagnante" est un énoncé démontrable.
Il existe une stratégie récursive τ telle que "La stratégie τ est
gagnante" est indémontrable dans P .
Stratégie du plus court chemin.

23 / 30
Les théorèmes d'incomplétude Renaud Hoyoux, septembre 2011

N



Exemple d'énoncés indémontrables

Theorem

L'assertion "Toute stratégie récursive est une stratégie ga-
gnante" est un énoncé indémontrable dans P .

Par l'absurde, "Toute stratégie récursive est une stratégie
gagnante" est un énoncé démontrable.

Il existe une stratégie récursive τ telle que "La stratégie τ est
gagnante" est indémontrable dans P .
Stratégie du plus court chemin.

23 / 30
Les théorèmes d'incomplétude Renaud Hoyoux, septembre 2011

N



Exemple d'énoncés indémontrables

Theorem

L'assertion "Toute stratégie récursive est une stratégie ga-
gnante" est un énoncé indémontrable dans P .

Par l'absurde, "Toute stratégie récursive est une stratégie
gagnante" est un énoncé démontrable.
Il existe une stratégie récursive τ telle que "La stratégie τ est
gagnante" est indémontrable dans P .

Stratégie du plus court chemin.

23 / 30
Les théorèmes d'incomplétude Renaud Hoyoux, septembre 2011

N



Exemple d'énoncés indémontrables

Theorem

L'assertion "Toute stratégie récursive est une stratégie ga-
gnante" est un énoncé indémontrable dans P .

Par l'absurde, "Toute stratégie récursive est une stratégie
gagnante" est un énoncé démontrable.
Il existe une stratégie récursive τ telle que "La stratégie τ est
gagnante" est indémontrable dans P .
Stratégie du plus court chemin.

23 / 30
Les théorèmes d'incomplétude Renaud Hoyoux, septembre 2011

N



Combien d'énoncés indémontrables ?

1 Premier théorème d'incomplétude de Gödel

2 Deuxième théorème d'incomplétude de Gödel

3 L'Hydre de Lerne

4 Combien

Topologie

Nombres Ω de Chaitin
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Combien d'énoncés indémontrables ?

Dé�nition

Pour tout ensemble A ⊂ X ∗ non récursivement énumérable
et dé�nissable dans T , on pose

I (A) = {u|u ∈ A, T 0 ”u ∈ A”}.
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Combien d'énoncés indémontrables ?

Dé�nition

Une topologie τ satisfait la condition de Calude pour une

relation d'équivalence ≡ sur X ∗ si pour tout ouvert non
vide O, l'ensemble {y |y ∈ X ∗,O ∩ [y ]≡ = ∅} est �ni.

Théorème

Soit ≡ une relation d'équivalence récursive sur X ∗ et soit
A ⊂ X ∗ un ensemble qui est dé�nissable dans T, union de
classes d'équivalence de ≡ et non récursivement énumérable.
Alors l'ensemble I (A) est dense pour toute topologie τ sur
X ∗ qui satisfait la condition de Calude pour ≡.
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Combien d'énoncés indémontrables ?

Les nombres Ω.
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Combien d'énoncés indémontrables ?

Théorème d'incomplétude de Chaitin

Soit une théorie T telle que Th(T ) est récursivement énu-
mérable. Si chaque assertion de la forme

"le ne bit de ΩU est 0",

"le ne bit de ΩU est 1",

peut être représentée dans T alors T nous permet de déter-
miner les valeurs d'au plus un nombre �ni de bits de ΩU
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Combien d'énoncés indémontrables ?

Encore mieux ?

Soit P(n) l'énoncé � Le ne bit de Ω est égal à 0. �

Théorème

La suite (P(n))n∈N est une suite d'énoncés indémontrables.
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Fin

Merci pour votre attention.
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