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Discriminant analysis

X = {x1,...,xy} of dimension p,
splitted into K groups, each having nj, observations

Goal : Classify new data x

Ty prior probability
Ny (pti, i) conditional distribution
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Discriminant analysis

X = {x1,...,xy} of dimension p,
splitted into K groups, each having nj, observations

Goal : Classify new data x J

Ty prior probability
Ny (pti, i) conditional distribution

Quadratic discriminant analysis (QDA) :
max (—(x— 1) O (x — py) + log(det ©) + 2log )
where @ := E;l

Linear discriminant analysis (LDA) :
Homoscedasticity : @, =©  Vk

Cellwise robust regularized discriminant analysis 2



Discriminant analysis

In practice, the parameters i, @, or © are often estimated by

the sample means x
the inverse of the sample covariance matrices X,

. . LS K S
the inverse of the sample pooled covariance matrix 3,001 = ﬁ Zk:l Ny
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Example - Phoneme dataset
Hastie et al., 2009

K = 2 phonemes: aa (like in barn) or ao (like in more)

p = 256: log intensity of the sound across 256 frequencies
N = 1717 records of a male voice

Correct classification performance

s-LDA  s-QDA
.7 62.4
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Example - Phoneme dataset
Hastie et al., 2009

K = 2 phonemes: aa (like in barn) or ao (like in more)
p = 256: log intensity of the sound across 256 frequencies
N = 1717 records of a male voice

Correct classification performance

s-LDA  s-QDA
.7 62.4

2;1 inaccurate when p/ny is large, not computable when p > ny

x f);olol inaccurate when p/N is large, not computable when p > N
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Objectives

Propose a family of discriminant methods that, unlike the classical approach, are

@ computable and accurate in high dimension
@ cover the path between LDA and QDA
@ robust against cellwise outliers
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1. Computable in high dimension
Graphical Lasso QDA (Xu et al., 2014)

Step 1 : Compute the sample means X, and covariance matrices f)k

Step 2 : Graphical Lasso (Friedman et al, 2008) to estimate ®,..., @Ok:

arg max log det(®) — nitr <®k§k> -\ Z O,ij
* i

Step 3 : Plug x1,...,Xk and @1,...7(:)K into the quadratic rule

Note : Use pooled covariance matrix for Graphical Lasso LDA.
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QDA does not exploit similarities
x LDA ignores the group specificities

[m]
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2. Covering path between LDA and QDA

Joint Graphical Lasso DA (Price et al., 2015)

Step 1 : Compute the sample means X, and covariance matrices 3y

Step 2 : Joint Graphical Lasso (Danaher et al, 2014) to estimate @1, ..., Ok:

oM, Z ni log det(©) — metr(©4 =) — At ZZ |Ok.ii| — X2 Z Z 1Ok,ij — Our i,

k=1 i#j k<k’ i,j

Step 3 : Plug X1,...,Xk and (:)1, .. .,@K into the quadratic discriminant rule
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x Lack of robustness

[m]
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3. Robustness against cellwise outliers
Robust Joint Graphical Lasso DA

Step 1 : Compute robust mean my and covariance matrice Sy estimates

Step 2 : Joint Graphical Lasso to estimate ©®q,..., @k

K K
oML ; ni log det(®x) — mitr(©xSyx) —X\i ZZ |Ok.ii| — X2 Z Z |0k,ii — Ok il

k=1 i#j k<k’ i,j

Step 3 : Plug my, ..., myg and (:)1, e @K into the quadratic discriminant rule.
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Rowwise and cellwise contamination
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Rowwise and cellwise contamination

Rowwise Cellwise
[ | | [ |
o « ||
5 HEN NN S | | ||
= )
2 > . H Bl
2 s N
8 O 3 || || —
O || || ||
||

Variables Variables

Cellwise robust regularized discriminant analysis

11



Rowwise and cellwise contamination
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my : vector of marginal medians
S : cellwise robust covariance matrices
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Cellwise robust covariance estimators

S11 ... S1i ... Sip
Sk: Si1 Sij .. Sip
Spt .- Spj - Spp

s; = scale(X') scale(X’) corr(X', X)

scale(.) : Qp-estimator (Rousseeuw and Croux,93)
cort(.,.) : Kendall's correlation

corrK(X X n(n—l Zggn( — X! )(x’—x ))

I<m

(see Croux and Ollerer, 2015; Tarr et al., 2016)
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Simulation study

Setting
K = 10 groups
ng = 30
p=230

M = 1000 training and test sets

Classification Performance

Average percentage of correct classification

Estimation accuracy
Average Kullback-Leibler distance :

K

KL(®1,...,0x;O1,...,0k) = (Z —log det(©,O; ) + tr(©,0; ")

k=1
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Uncontaminated scheme

Non-robust estimators | s-LDA  s-QDA  GL-LDA  GL-QDA  JGL-DA
p=30 CC 77.7 NA 80.5 83.0 83.5
KL 30.29 NA 21.87 40.41 5.03

Robust estimators r-LDA r-QDA  rGL-LDA rGL-QDA rJGL-DA
p=30 CC 76.1 59.7 77.4 79.7 80.1
KL 22.86 139.18 22.98 44 57 11.02
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Contaminated scheme: 5% of cellwise contamination

Correct classification percentages, p = 30
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Example - Phoneme dataset

K=2
p =256
N = 1717

Correct classification performance

s-LDA  s-QDA  GL-LDA GL-QDA  JGL-DA
7.7 62.4 81.4 74.9 78.4

r-LDA  r-QDA  rGL-LDA rGL-QDA  rJGL-DA
81.1 74.7 81.7 76.0 76.7

Nirain = 1030, Neest = 687, averaged over 10 splits
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Conclusion

The proposed discriminant methods :
@ are computable in high dimension
@ cover the path between LDA and QDA
@ are robust against cellwise outliers
© detect rowwise and cellwise outliers

Code publicly available

http://feb.kuleuven.be/ines.wilms/software
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