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Discriminant analysis

X = {x1, . . . , xN} of dimension p,
splitted into K groups, each having nk observations

Goal : Classify new data x

πk prior probability
Np(µk ,Σk) conditional distribution

Quadratic discriminant analysis (QDA) :

max
k

(
−(x − µk)TΘk(x − µk) + log(detΘk) + 2 log πk

)
where Θk := Σ−1

k

Linear discriminant analysis (LDA) :
Homoscedasticity : Θk = Θ ∀k
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Discriminant analysis

In practice, the parameters µk ,Θk or Θ are often estimated by

the sample means x̄k

the inverse of the sample covariance matrices Σ̂k

the inverse of the sample pooled covariance matrix Σ̂pool = 1
N−K

∑K
k=1 nkΣ̂k
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Example - Phoneme dataset
Hastie et al., 2009

K = 2 phonemes: aa (like in barn) or ao (like in more)
p = 256: log intensity of the sound across 256 frequencies
N = 1717 records of a male voice

Correct classification performance

s-LDA s-QDA
77.7 62.4

Σ̂−1
k inaccurate when p/nk is large, not computable when p > nk

Σ̂−1
pool inaccurate when p/N is large, not computable when p > N
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Objectives

Propose a family of discriminant methods that, unlike the classical approach, are

1 computable and accurate in high dimension

2 cover the path between LDA and QDA

3 robust against cellwise outliers
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1. Computable in high dimension
Graphical Lasso QDA (Xu et al., 2014)

Step 1 : Compute the sample means x̄k and covariance matrices Σ̂k

Step 2 : Graphical Lasso (Friedman et al, 2008) to estimate Θ1, . . . ,ΘK :

arg max
Θk

nk log det(Θk)− nktr
(
ΘkΣ̂k

)
− λ1

∑
i 6=j

|θk,ij |

Step 3 : Plug x̄1, . . . , x̄K and Θ̂1, . . . , Θ̂K into the quadratic rule

Note : Use pooled covariance matrix for Graphical Lasso LDA.
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QDA does not exploit similarities

LDA ignores the group specificities
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2. Covering path between LDA and QDA
Joint Graphical Lasso DA (Price et al., 2015)

Step 1 : Compute the sample means x̄k and covariance matrices Σ̂k

Step 2 : Joint Graphical Lasso (Danaher et al, 2014) to estimate Θ1, . . . ,ΘK :

max
Θ1,...,ΘK

K∑
k=1

nk log det(Θk)− nktr(ΘkΣ̂k)− λ1

K∑
k=1

∑
i 6=j

|θk,ij | − λ2

∑
k<k′

∑
i,j

|θk,ij − θk′,ij |,

Step 3 : Plug x̄1, . . . , x̄K and Θ̂1, . . . , Θ̂K into the quadratic discriminant rule
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Lack of robustness
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3. Robustness against cellwise outliers
Robust Joint Graphical Lasso DA

Step 1 : Compute robust mean mk and covariance matrice Sk estimates

Step 2 : Joint Graphical Lasso to estimate Θ1, . . . ,ΘK

max
Θ1,...,ΘK

K∑
k=1

nk log det(Θk)− nktr(ΘkSk) −λ1

K∑
k=1

∑
i 6=j

|θk,ij | − λ2

∑
k<k′

∑
i,j

|θk,ij − θk′,ij |,

Step 3 : Plug m1, . . . ,mK and Θ̂1, . . . , Θ̂K into the quadratic discriminant rule.
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Rowwise and cellwise contamination

mk : vector of marginal medians
Sk : cellwise robust covariance matrices
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Cellwise robust covariance estimators

Sk =


s11 . . . s1i . . . s1p

...
...

...
si1 . . . sij . . . sip
...

...
...

sp1 . . . spj . . . spp



sij = ŝcale(X i ) ŝcale(X j) ĉorr(X i ,X j)

ŝcale(.) : Qn-estimator (Rousseeuw and Croux,93)

ĉorr(., .) : Kendall’s correlation

ĉorrK(X i ,X j) =
2

n(n − 1)

∑
l<m

sign
(

(x il − x im)(x jl − x jm)
)
.

(see Croux and Öllerer, 2015; Tarr et al., 2016)
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Simulation study

Setting
K = 10 groups
nk = 30
p = 30
M = 1000 training and test sets

Classification Performance

Average percentage of correct classification

Estimation accuracy

Average Kullback-Leibler distance :

KL(Θ̂1, . . . , Θ̂K ;Θ1, . . . ,ΘK ) =

(
K∑

k=1

− log det(Θ̂kΘ
−1
k ) + tr(Θ̂kΘ

−1
k )

)
− Kp.
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Uncontaminated scheme

Non-robust estimators s-LDA s-QDA GL-LDA GL-QDA JGL-DA

p = 30 CC 77.7 NA 80.5 83.0 83.5
KL 30.29 NA 21.87 40.41 5.03

Robust estimators r-LDA r-QDA rGL-LDA rGL-QDA rJGL-DA

p = 30 CC 76.1 59.7 77.4 79.7 80.1
KL 22.86 139.18 22.98 44.57 11.02
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Contaminated scheme: 5% of cellwise contamination
Correct classification percentages, p = 30
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Example - Phoneme dataset

K = 2
p = 256
N = 1717

Correct classification performance

s-LDA s-QDA GL-LDA GL-QDA JGL-DA
77.7 62.4 81.4 74.9 78.4

r-LDA r-QDA rGL-LDA rGL-QDA rJGL-DA
81.1 74.7 81.7 76.0 76.7

Ntrain = 1030, Ntest = 687, averaged over 10 splits
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Conclusion

The proposed discriminant methods :

1 are computable in high dimension

2 cover the path between LDA and QDA

3 are robust against cellwise outliers

4 detect rowwise and cellwise outliers

Code publicly available

http://feb.kuleuven.be/ines.wilms/software
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