Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry

Yang Huang¹, Tingting Zhang¹, Jacques Crommen¹², Zhengjin Jiang¹∗
²School of Pharmacy, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, China
¹Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Liège, CHU B36, B-4000 Liège, Belgium

Introduction

Triterpenoid saponins (TSs) are the most important components of some traditional Chinese medicines (TCMs) and have exhibited valuable pharmacological properties[1-2]. Supercritical fluid chromatography (SFC), considered as a green separation technique, is a potential alternative to LC for the analysis of TSs. However, the application of SFC-MS to the analysis of TSs has not yet been reported. In the present study, rapid and efficient SFC-MS methods were developed for the first time for the separation of both TSs standards (kudinosides and ginsenosides) and TSs from natural product extracts. Moreover, a comprehensive comparison between LC-MS and SFC-MS with respect to selectivity and running time was carried out using a mixture of TSs as test sample.

Graphical abstract

Results and discussion

Effect of mobile phase additive

Fig. 1. Effect of water content in the mobile phase.

Fig. 2. Effect of the addition of formic acid to the mobile phase.

Fig. 3. Effect of the ammonium acetate concentration in the make-up solution on MS response.

Fig. 4. Effect of temperature on resolution.

Comparison of SFC and LC methods

The SFC-MS method provided separations that were about 2 × faster than LC-MS method.

Application in TCMs analysis

A series of natural products containing TSs were tested using the developed SFC-MS methods. As shown in Fig. 6A-E, kudinosides present in Ilex latifolia Thunb. samples could be identified by MS and by comparison with the retention times of the standards. Moreover, the 11 ginsenoside standards and the ginsenosides present in Panax quinquefolia L. and Panax ginseng C.A. Meyer were also examined under the selected SFC-MS conditions (Fig. 7). Several ginsenosides can be identified in Panax quinquefolia L. (F2; Rf; Rg2; Rd; NK; Re; Rc; Rb2; Rb1) and Panax ginseng C.A. Meyer (CK; Rf; Rg2; Rd; Re; Rc; Rb2; Rb1).

Conclusions

➢ Rapid and highly efficient SFC-MS methods were developed for the separation of triterpenoid saponins (TSs).
➢ Water can be considered as a suitable mobile phase additive for SFC-MS operation.
➢ The SFC-MS method developed for the separation of kudinosides shows higher resolution and shorter running time than LC-MS.
➢ The SFC-MS approach shows potential for analyzing TSs present in traditional Chinese medicines (TCMs).

Acknowledgements

We gratefully appreciate the financial support from the National Natural Science Foundation of China (Grant: 81273477 and 81303204).

References