Improving fungal disease forecasts in winter wheat: A critical role of intraday variations of meteorological conditions in the development of Septoria leaf blotch

Moussa El Jarroudia, Louis Kouadiob, Mustapha El Jarroudic, Jürgen Junkd, Clive Bocke, Abdoul Aziz Dioufa, Philippe Delfossee,

⁎

a Department of Environmental Sciences and Management, University of Liege, Arlon Campus Environnement, 185 Avenue de Longwy, Arlon, 6700, Belgium
b International Centre for Applied Climate Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia
c Laboratory of Mathematics and Applications, Department of Mathematics, Université Abdelmalek Essaâdi, B.P. 416, Tangier, Morocco
d Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422 Belvaux, Luxembourg
e USDA-ARS-SEFTNRL, 21 Dunbar Road, Byron, GA 31008, United States

ARTICLE INFO

Keywords:
Temporal variability
Fourier transform method
Disease monitoring
Septoria leaf blotch
Weather

ABSTRACT

Meteorological conditions are important factors in the development of fungal diseases in winter wheat and are the main inputs of the decision support systems used to forecast disease and thus determine timing for efficacious fungicide application. This study uses the Fourier transform method (FTM) to characterize temporal patterns of meteorological conditions between two neighbouring experimental sites used in a regional fungal disease monitoring and forecasting experiment in Luxembourg. Three meteorological variables (air temperature, relative humidity, and precipitation) were included, all conducive to infection of wheat by Zymoseptoria tritici cause of Septoria leaf blotch (STB) in winter wheat, from 2006 to 2009. The intraday, diurnal, dekadal and intra-seasonal variations of the meteorological variables were assessed using FTM, and the impact of existing contrasts between sites on the development of STB was analyzed. Although STB severities varied between sites and years (P ≤ 0.0003), the results indicated that the two sites presented the same patterns of meteorological conditions when compared at larger temporal scales (diurnal to intra-seasonal scales, with time periods > 11 h). However, the intraday variations of all the variables were well discriminated between the sites and were highly correlated to STB severities. Our findings highlight and confirm the importance of intraday meteorological variation in the development of STB in winter wheat fields. Furthermore, the FTM approach has potential for identifying microclimatic conditions prevailing at given sites and could help in improving the prediction of disease forecast models used in regional warning systems.

1. Introduction

Integrated disease management based on decision support systems and disease forecasting models has become important more recently due to the increased need for sustainable practices in agriculture (Moreau and Maraite, 2000; Verreet et al., 2000; Audsley et al., 2005; Langvad and Noe, 2006). Reliable and timely information on plant fungal diseases epidemics are crucial for optimizing the use of fungicides while ensuring economic benefits (Fones and Gurr, 2015).

Plant disease epidemics of fungal origin result from the interaction between the pathogens, presence of susceptible hosts, and favourable meteorological conditions. Meteorological variables are most often the data used as inputs of disease forecasting models for fungal diseases of winter wheat (Triticum aestivum L.). Among the meteorological conditions, air temperature (T), relative humidity (RH), and precipitation (namely rainfall, R), are by far the most important. Numerous studies (e.g., Shaw and Royle, 1993; Eyal, 1999; Gladders et al., 2001; Lovell et al., 2004) have highlighted the effects of T, RH, and R on infection and progress of Septoria leaf blotch (STB, caused by Zymoseptoria tritici (Desm.) Quaedvlieg & Crous) in winter wheat. For the development of STB, T determines the rate at which fungal development and spore dispersal processes occur (Eyal, 1999; Gladders et al., 2001). A prolonged period of T below −2 °C has adverse effects on the fungus resulting in low survival and thus reduces inoculum to infect the wheat crop (Shaw and Royle, 1993). This, in turn, leads to a late or very slow development of the epidemic in the following spring even if weather conditions are optimal.
conditions are favourable (Lovell et al., 2004; El Jarroudi et al., 2009; Beyer et al., 2012). RH can affect the rate of plant disease epidemic development because micro-organisms generally grow (spore germination and infection) only when there is sufficient moisture (RH ≥ 60%) (Moreau and Maraire, 1999; El Jarroudi et al., 2009; Suffert et al., 2011). Rainfall is a key requirement for the development of STB as it allows for the swelling of pycnidia and aids the dispersal of spores in splash to the upper leaves of wheat plant (Shaw and Royle, 1993; Lovell et al., 1997; Gladders et al., 2001).

For disease risk assessments at the regional scale, the meteorological data used as main inputs for forecasting models originate from meteorological networks with automatic weather stations (AWS) (Gladders et al., 2001; Magarey et al., 2001; El Jarroudi et al., 2009; Te Beest et al., 2009; Beyer et al., 2012; Junk et al., 2016). Most often, these forecast models are based solely on the meteorological data from the nearest AWS or interpolated from a set of neighbouring sites. Interpolation procedures such as the nearest neighbour method, kriging, co-kriging, or inverse weighted-distance method are typically performed (Lam, 1983; Hartkamp et al., 1999; DeGaetano and Belcher, 2007). Although these schemes are used widely, they do suffer from some potential sources of error, e.g., difficulty in capturing small scale variation, failure to account for topographical features, etc. Furthermore, the choice of location for an AWS within a field or the distance between AWS locations are both factors that hamper accurate forecasting of fungal diseases at regional scales (Jones et al., 2012). Thus, to develop reliable disease forecasting models that can be applied efficiently in operational disease monitoring (i.e. embedded in a decision support system and applied at sub-regional and regional scales), a detailed analysis of weather data, both spatially and temporally, is of great importance (Henshall et al., 2016; Donatelli et al., 2017). Indeed, the difference in weather conditions between neighbouring wheat fields (5–15 km, straight line) is often not perceptible, yet crucial in disease forecast models.

Fourier transform methods (FTMs) constitute one of the most widely used operations to obtain a spectral representation of a time series of discrete data samples (Chatfield, 1996; Blommfield, 2000; Brillinger, 2002; Craigmille and Guttrop, 2011; Mikosch and Zhao, 2014). Although they have been used for several and various purposes (e.g. Estrada-Pena et al., 2014; Mikosch and Zhao, 2014), their application for weather data analysis and plant disease development has yet to be fully investigated. In this study we investigate the causes of difference in STB expression across neighbouring locations based on the analysis of weather patterns at various temporal scales. First, a comprehensive theoretical framework of linear spectral analyses based on FTM, along with a conceptual framework, was devised. Then the approach was applied to a case study of two neighbouring sites included in a regional fungal disease monitoring and forecasting experiment.

2. Materials and methods

2.1. Theoretical framework of the Fourier transform method

FTM principles have been discussed extensively (e.g., Jones, 1964; Bergland, 1969; Chatfield, 1996; Blommfield, 2000). Only some general principles were summarized in the following paragraphs.

A filtered series \(Y_t \) is a weighted sum of the time series (the discrete data samples) \(X_t \), defined as,

\[
Y_t = \sum_{k=-\infty}^{+\infty} a_k X_{t-k},
\]

where the basis numbers \(a_k \) verify \(\sum_{k=-\infty}^{+\infty} a_k = 1 \). The sequence \(a = (a_k)_{k \in \mathbb{Z}} \) is called a linear filter. The Fourier transform of the filtered series, \(F_Y(\lambda) \), is the product of the Fourier transform of the filter \(a \) and the Fourier transform of the original time series \(X_t \), that is (Chatfield, 1996; Blommfield, 2000),

\[
F_Y(\lambda) = F_a(\lambda) \cdot F_X(\lambda),
\]

where \(\lambda \) is the frequency, and \(F_a(\lambda) \) is the Fourier transform of the filter \(a \) given as,

\[
F_a(\lambda) = \sum_{k=-\infty}^{+\infty} a_k e^{-\imath \lambda k}
\]

and \(F_X(\lambda) \) is the Fourier transform (or discrete-time Fourier transform) of the time series \(X_t \) given for a finite duration sequence of length \(n \) by

\[
F_X(\lambda) = \sum_{t=0}^{n-1} X_t e^{-\imath \lambda t},
\]

where \(\imath = \sqrt{-1} \). For \(\lambda = \frac{2\pi k}{n}, k = 0, 1, ..., n-1 \), we obtain the discrete Fourier transform applied to the discrete-time series \(X_t \) through

\[
\hat{X}(k) = F_X(\frac{2\pi k}{n}) = \sum_{t=0}^{n-1} X_t e^{-\imath \frac{2\pi k t}{n}},
\]

with the corresponding inverse discrete Fourier transform

\[
X_t = \frac{1}{n} \sum_{k=0}^{n-1} \hat{X}(k) e^{\imath \frac{2\pi k t}{n}},
\]

where \(\hat{X}(k) \) represents the frequency domain function and \(X_t \) the time domain function. Using this pair of formulae, we can move back and forth between a time representation of data \((X_t)_{t=0 \ldots n-1} \) and its frequency domain representation \((\hat{X})_{k=0 \ldots n-1} \). That is, the discrete Fourier transform is invertible. Also, it is possible to modify the frequency spectrum in order to change the time representation, i.e. to allow the filtering.

The Fourier transform of the linear filter \(a \) (denoted \(B \)) is called the transfer function of the linear filter. The transfer function \(B \) describes how the amplitude (corresponding to the standard deviation) is transferred from \(X_t \) to \(Y_t \), and the quantity \(\|B\|^2 \) describes how the energy (variance) is transferred from the original series \(X_t \) to the filtered series \(Y_t \). For a simple moving average filter \(q \) defined through \(a = (a_k)_{k \in \mathbb{Z}}, \) with

\[
a_k = \begin{cases}
\frac{1}{2q+1} & \text{if } k \in \{-q, ..., +q\}, \\
0 & \text{otherwise},
\end{cases}
\]

we have

\[
B(\lambda) = \frac{1}{2q+1} + \sum_{k=0}^{2q} e^{-\imath \lambda k} = \frac{1}{2q+1} - e^{\imath \lambda (2q+1)} + \sum_{k=0}^{2q} e^{-\imath \lambda k} \quad \text{and} \quad |B(\lambda)|^2 = \left(\frac{1}{2q+1} \right)^2 \frac{\sin^2 \left(\frac{(2q+1)\lambda}{2} \right)}{\sin^2 \left(\frac{\lambda}{2} \right)}
\]

2.2. Conceptual approach of the FTM

The conceptual approach uses a mathematical function called KZ transformation (Zurbenko, 1986; Hogrefe et al., 2000) which is based on a linear filter \(q \). This linear filter is a simple moving average iterated \(k \) times. The function KZ is identified as a function of the variables \(X, q, k \), where \(X \) is a given meteorological variable, \(q \) is the linear filter associated to the moving average, and \(k \) refers to the iterations (in our study \(k \) varies between 1 and 3). KZ can be expressed in terms of the Fourier transform involving a series of equations with a sampling interval (or time frequency) 1/2 \(\Delta t \) (indeed the time scale is a minimum of 2 h, thus 1/2 \(\Delta t = 1 \) h). To find the power transfer function for the KZ(q, k)-function, the rule of sequential filtering is applied, that is,

\[
|B|^2 = \left(\sum_{k=0}^{q} e^{-\imath \lambda k} \right)^2 \frac{\sin^2 \left(\frac{(2q+1)\lambda}{2} \right)}{\sin^2 \left(\frac{\lambda}{2} \right)}
\]

Based on the KZ-function and the filter \(q \), a given meteorological variable is decomposed in a series of filtered data. For each
the Fourier transform of the iteration value at time t; Z_t is the iteration value at time t; $W_t(q = 1)$; for small changes and $W_t(q = 6)$; that is, for T, R and R_H.

$T_{13} = KZ(T, q = 1, k = 3)$; $R_{H13} = KZ(R_H, q = 1, k = 3)$; $R_{13} = KZ(R, q = 1, k = 3)$

$T_{63} = KZ(T, q = 6, k = 3)$; $R_{H63} = KZ(R_H, q = 6, k = 3)$; $R_{63} = KZ(R, q = 6, k = 3)$

$T_{120} = KZ(T, q = 120, k = 3)$; $R_{H120} = KZ(R_H, q = 120, k = 3)$; $R_{120} = KZ(R, q = 120, k = 3)$

Depending on the value of the linear filter, the amplitude of the analysed parameter can be viewed within day (intraday), between days (diurnal), within a decade (dekadal) or within the season (intra-seasonal). The value of the filter is low (i.e., $q = 1$) for small changes and increases gradually as the variation becomes important. The choice of temporal windows was based on Horne and Baliunas (1986) and Gilliam et al. (2006).

Thus, we define the intraday variation, W_{ID}, as the tendency of each meteorological variable in the day (< 11 h) from a moving average filter $q = 1$, given by,

$$W_{ID} = X_t - W_t(q = 1).$$

The intraday variation for T, R, and R_H is calculated as:

$$T_{ID} = T - T_{13}, R_{HID} = R_H - R_{H13}, R_{ID} = R - R_{13},$$

The diurnal variation, W_{DU}, refers to the tendency of each meteorological variable between 11 and 48 h which follows in general the set of intraday variations. It is given by,

$$W_{DU} = W_t(q = 1) - W_t(q = 6);$$

The dekadal variation, W_{DK}, is the tendency of each meteorological variable between 48 h to 40 days. W_{DK} is given by,

(1) $W_{DK} = W_t(q = 6) - W_t(q = 120);$

The intra-seasonal variation, W_{IS}, represents the tendency over a long period (> 40 days) and it is given by (moving average with filter $q = 120$),

$$W_{IS} = W_t(q = 120);$$

2.3. Study sites, disease infection simulation, field experiments and disease severity assessment

To characterize the patterns of T, R_H, and R, the FTM was performed using data from two sites, one located at Christnach (49°47’N, 6°16’E,
elevation 313 m) and the second at Everlange (49°46′ N, 5°57′ E, elevation 309 m). Both sites are located in the Gutland region which is a region of lower elevation consisting of hills and broad valleys (Luxembourg has two topographic regions; the second being the Oesling region). The distance (straight line) between the sites is approximately 15 km. Hourly meteorological data covering the 2006–2009 growing seasons for winter wheat were used (Table 1). They were retrieved from a web-based database (www.agrimeteo.lu) and processed using an automatic data processing chain for quality check and gap filling (Junk et al., 2008).

STB incidence and severity were monitored during the 2006–2009 cropping seasons. Wheat varieties with the same susceptibility to STB were grown at the two sites (Table 1). The trials were designed in a randomized block with four replicates (one replicate plot = 12 m²). Each replicate block consisted of fungicide treated and non-treated (control) plots, but only assessments from control plots were used in this study. The assessments of STB severity were made weekly from growth stage (GS) 29/30 to GS 85/87 (Zadoks et al., 1974) on the same 10 plants. Care was taken to minimize errors in disease estimates by training raters using standard area diagrams and disease assessment software and ensuring the same raters assessed the same experiments in each season (El Jarroudi et al., 2014).

Along with field observations, the STB development at the selected sites was also simulated using the disease forecast model PROCULTURE (Moreau and Maraite, 2000). The ability of the PROCULTURE model to reliably predict STB occurrences at the two sites has been successfully demonstrated (see El Jarroudi et al., 2009). In PROCULTURE, specific meteorological conditions must be met for infection to occur: during a 2-h rainfall event, the rainfall in the first hour must be at least 0.1 mm, followed by a second hour of rainfall with at least 0.5 mm. In addition to the rainfall, RH must be higher than 60% during the 16 h following the rain event, and T must remain above 4 °C for 24 h (Moreau and Maraite, 1999; El Jarroudi et al., 2009).

2.4. Data analysis

Observed meteorological data from the 1 May–30 June period were filtered based on the conceptual FTM approach defined previously. The 1 May–30 June period includes the critical period for STB infections in wheat at the two study sites, i.e. the period spanning the development of the three upper leaves L1-L3 (L1 being the flag leaf) when STB infections are most likely to result in yield reduction (El Jarroudi et al., 2012; El Jarroudi et al., 2015). Indeed, these upper leaves are the main contributors to grain filling, and therefore to grain yield, in wheat. STB development conditions on these leaves were compared over the same period. We assumed that spores of *Z. tritici* are present in sufficient numbers to infect leaves at both sites and that any difference in STB development was due solely to the meteorological conditions. Contrasts between sites at the different temporal scales (i.e., intraday, diurnal, dekadal and intra-seasonal, as defined above) were assessed through

<table>
<thead>
<tr>
<th>Site</th>
<th>Year</th>
<th>GS45</th>
<th>GS59</th>
<th>GS69</th>
<th>GS75</th>
<th>GS85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christnach</td>
<td>2006</td>
<td>29 May</td>
<td>12 June</td>
<td>19 June</td>
<td>26 June</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>14 May</td>
<td>21 May</td>
<td>29 May</td>
<td>11 June</td>
<td>18 June</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>26 May</td>
<td>02 June</td>
<td>09 June</td>
<td>30 June</td>
<td>07 July</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>25 May</td>
<td>02 June</td>
<td>15 June</td>
<td>22 June</td>
<td>29 June</td>
</tr>
<tr>
<td>Everlange</td>
<td>2006</td>
<td>29 May</td>
<td>06 June</td>
<td>12 June</td>
<td>26 June</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>14 May</td>
<td>21 May</td>
<td>29 May</td>
<td>11 June</td>
<td>18 June</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>26 May</td>
<td>02 June</td>
<td>09 June</td>
<td>30 June</td>
<td>07 July</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>25 May</td>
<td>02 June</td>
<td>15 June</td>
<td>22 June</td>
<td>29 June</td>
</tr>
</tbody>
</table>

a GS: Zadoks’ growth stage (Zadoks et al., 1974).

b Not applicable.
correlation analyses using their non-filtered and filtered meteorological data. Additionally, the average STB severity on L1-L3 during GS 75 to GS 85/87 stages were compared between sites over the study period to determine whether there were any difference in disease severity. The progress of STB on the three upper leaves was assessed based on the variations of the meteorological variables at these different temporal scales. All analyses were performed in R (R Development Core Team, 2014) and MS Excel (Microsoft, Redmond, WA).

3. Results

3.1. Septoria leaf blotch severity at the study sites

The average severity of STB during GS 75 to GS 85/87 over the study period for the two sites is presented in Fig. 1. The two way ANOVA carried out on the average disease severity by site and year indicated a statistically significant difference between sites [F(1,24) = 40.24, P < 0.0001] and between years [F(3,24) = 9.19, P = 0.0003], as well as a significant interaction between the two effects [F(3,24) = 15.31, P < 0.0001]. Normality checks and Levene's test were carried out and the assumptions were met. Tukey's HSD post hoc tests were carried out. For the years 2006 and 2008, the average STB severity at Everlange was significantly different to that of Christnach (P = 0.0008 and < 0.0001, respectively). For 2007 and 2009 no statistical difference was found.

The temporal development of the wheat plant is indicated by the dates at which each growth stage was attained (Table 2). There was a range in STB severity among sites and years during the critical period for STB development on L1-L3 (Fig. 2). Overall, there was a trend for an increase in STB on L1-L3 throughout the season each year, with marked differences between sites for the same leaf in all years, except in 2007. The differences were particularly striking during June. For example, on 19 June 2006, the severity of STB was 13% on L3 at Christnach, while it was 74% at Everlange (Fig. 2). In 2007 and 2009, the difference in STB severity on all leaves was less pronounced (< 10%), except on L3 in 2009. It should be noted that other foliar diseases including wheat leaf rust and powdery mildew were observed at the selected sites during the study period (El Jarroudi et al., 2012). Indeed, during GS 77 and GS 87 the average severity of wheat leaf rust on the three upper leaves over the 4-year period ranged from 4 to 15% at Everlange (with most severe rust in 2008 and 2009) and 1–22% at Christnach (with most severe rust in 2007). The average severity of powdery mildew was less than 5% at both sites during the same period.

3.2. Temporal patterns of air temperature, relative humidity and rainfall

The FTM approach was used to distinguish the patterns of meteorological conditions between the two sites over the study period. Non-filtered data for T and RH were highly correlated (r ≥ 0.726, P < 0.0001; Table 3). However, non-filtered data for R showed a range in correlation (r = 0.165 to 0.957, P < 0.0001) between sites over the 4-year study period. With filters applied, the intraday variation for T, RH and R were contrasted between the two sites. The correlations (r) ranged from 0.430 to 0.553 (P < 0.0001), 0.08 (P = 0.7632) to 0.418 (P < 0.0001), and −0.049 (P = 0.0819) to 0.480 (P < 0.0001), for T, RH and R respectively (Table 3). At the diurnal to intra-seasonal scales association among meteorological variables between the two sites remained strong for both T and RH (r ≥ 0.683, P < 0.0001; Table 3). However for R, weak associations between the two sites were observed at the intra-seasonal scale in 2007 and 2008 (r = 0.335 and −0.210, respectively; P < 0.0001 for both correlations), and strong associations were mostly found for diurnal to intra-seasonal scales in 2006 and 2009 (Table 3). A graphical trend analysis of the meteorological variables was performed. An example of the variations at the different temporal scales over the period May-June 2006 is shown in Fig. 3A–L. The trends presented here for 2006 did not differ greatly from the same period in the remaining years (Supplementary Figs. S1–S3). The trend and amplitude in T in 2006 were pronounced at the intraday scale (Fig. 3A) and diurnal scales (Fig. 3D), with values at Everlange higher in most cases (particularly at the intraday scale). There was a clear difference in patterns of RH between sites at the intraday scale (Fig. 3B). Overall, the trends at the diurnal and dekadal scales were similar (Fig. 3E and H), although there were some discernible differences in amplitude at the intra-seasonal scales (Fig. 3K). Noticeable differences in trend and amplitude in R at all temporal scales were found between Christnach and Everlange (Fig. 3C, F, I and L). The amplitudes recorded for R over larger temporal scales (dekadal to intra-seasonal) might be explained by the time required for rain-bearing cloud to move from one site to the other, or by localised, small-scale convective events (summer storms). Overall, these findings provide insight into the contrast in meteorological patterns at different scales between the two sites, which are only 15 km apart; for each of the meteorological variables this was noticeable at small temporal scales, namely at the intraday scale.

3.3. Relationships between STB development and the meteorological patterns

The number of infection days predicted by PROCULTURE during the

<table>
<thead>
<tr>
<th>Year</th>
<th>Variable</th>
<th>Before filtering</th>
<th>After filtering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intraday scale (< 11 h)</td>
<td>Diurnal scale (11–48 h)</td>
</tr>
<tr>
<td>2006</td>
<td>Air temperature</td>
<td>0.949</td>
<td>0.453</td>
</tr>
<tr>
<td></td>
<td>Relative humidity</td>
<td>0.881</td>
<td>0.370</td>
</tr>
<tr>
<td></td>
<td>Rainfall</td>
<td>0.543</td>
<td>0.273</td>
</tr>
<tr>
<td>2007</td>
<td>Air temperature</td>
<td>0.954</td>
<td>0.537</td>
</tr>
<tr>
<td></td>
<td>Relative humidity</td>
<td>0.781</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Rainfall</td>
<td>0.502</td>
<td>0.299</td>
</tr>
<tr>
<td>2008</td>
<td>Air temperature</td>
<td>0.956</td>
<td>0.430</td>
</tr>
<tr>
<td></td>
<td>Relative humidity</td>
<td>0.925</td>
<td>0.308</td>
</tr>
<tr>
<td></td>
<td>Rainfall</td>
<td>0.165</td>
<td>−0.049</td>
</tr>
<tr>
<td>2009</td>
<td>Air temperature</td>
<td>0.976</td>
<td>0.553</td>
</tr>
<tr>
<td></td>
<td>Relative humidity</td>
<td>0.726</td>
<td>0.418</td>
</tr>
<tr>
<td></td>
<td>Rainfall</td>
<td>0.957</td>
<td>0.480</td>
</tr>
</tbody>
</table>

Note: P < 0.0001 in all cases except in a and b where P = 0.7 and 0.08, respectively.
period critical for infection with *Z. tritici* indicates that there was a relatively high number of days at Everlange in 2006, 2007 and 2009 (Table 4), although the STB severity observed at Everlange was higher compared to that at Christnach in all years, except 2007 (Fig. 2). For the period May-June 2006, a detailed analysis of *Z. tritici* favourable infection periods and intraday variations in meteorological variables indicates that on 15 June 2006 *Z. tritici* favourable infection periods were recorded at Everlange but not at Christnach (Fig. 4). The amplitudes in T and RH at the intraday scale were very pronounced at Everlange, while at Christnach only variations in temperature were pronounced. Thus, while the comparison based on non-filtered data resulted in similar meteorological pattern between sites (and would
have not explained the differences relating to infection conditions), the combined effects of intraday variation of T and RH provide valuable information and a better basis for understanding differences between sites. Similar differences in conditions were observed in the different cropping seasons (for example, in years 2007 and 2008, Supplementary Figs. S4 and S5, respectively).

Furthermore, an analysis of PROCULTURE outputs shows a difference between the two sites and the existence of an offset for the infection periods. An example is given in Fig. 5 for illustration purpose. In this case, at Everlange, L5 was infected on 1 April, whereas L4 and L3 were infected on 1 May, and L2 and L1 on 7 June. However, at Christnach, although L5-L3 were infected during the same period as at Everlange, L2 and L1 were infected almost one week earlier (end of May).

For instance, if the meteorological conditions T = 4 °C, RH = 90%, and R = 0.1 mm were recorded at 2 p.m. at Everlange, and T = 3 °C, RH = 92%, and R = 0 mm were recorded at the same time at Christnach, PROCULTURE would indicate the start of an infection period only at Everlange (with subsequent STB development being more severe at this site); whilst the comparison of meteorological conditions would give a good correlation between the two sites and thus suggest similar development of STB. In such cases the spectral decomposition analysis of T, RH and R would reveal the difference between sites at the intraday scale rather than at the diurnal scale over the period considered, thereby providing the insight needed to differentiate disease development at the two sites.

4. Discussion

Developing an adequate disease forecasting model requires detailed analysis of available weather data in relation to disease development. The density of the weather stations in the field, as well as the applicable area represented by each of the weather stations are critical features in determining the accuracy of the interpolated values for each variable. Given the potential adverse impacts of fungal diseases and the environmental concerns of fungicides, sophisticated forecasting models are needed to minimise and improve the timing of control measures (Te Beest et al., 2009; Lucas, 2011; Shijenber, 2013; Small et al., 2015). In operational warning systems for plant diseases at regional scale, a close examination of stations that exhibit quite similar patterns of weather conditions, but have crops with contrasting disease development despite cultivars with the same susceptibility, deserves special attention as a basis for the improvement of the forecasting systems.

We investigated the application of the Fourier transform method for frequency domain analysis of three meteorological variables (T, RH and R) between two relatively close sites which are part of the framework of an operational warning system for fungal diseases of winter wheat in Luxembourg (El Jarroudi et al., 2015). Findings indicate that there was a contrast in intraday variations between the two sites for all the meteorological variables. But when compared at diurnal, dekadal and intra-seasonal scales, the sites behaved quite similarly. The difference between sites at the intraday temporal scale can be explained, partly, by the type of rain, its persistence and its distribution in space and time, especially during the stem elongation phase of winter wheat (GS 30 to GS 39) where convective events (e.g. summer storms) are frequent in Luxembourg. Mahtour et al. (2011) noted that radar technology provided better estimates of rainfall occurrence over a continuous space than AWS, but deriving absolute precipitation values from radar data is still challenging. The topography, direction of prevailing winds or distance from large bodies of water, not evaluated in detail in this study, may also explain the amplitude fluctuations of the meteorological variables studied between the sites (Kuuseoks et al., 1997; Magarey et al., 2001).

The analysis of the variations of meteorological conditions at different temporal scales and STB progress on the three upper leaves in winter wheat was based on the assumption that at both sites spore availability and dispersal were the same in a given year. Fungal disease epidemic progress from small to larger scales may vary greatly within and between sites. The impact of Z. tritici spore dispersal at the study sites was not investigated here. Although modelling spore dispersal at different spatial scales remains challenging (namely because of the complexity of inoculum dispersal processes, the difficulty of collecting empirical dispersal data at relevant spatial scales, and the mathematical complexity of inoculum dispersal processes, the difficulty of collecting empirical dispersal data at relevant spatial scales, and the mathematical...
complexity of atmospheric dispersion models; Shaw, 1994a,b; Brown and Hovmøller, 2002; Filipe and Maule, 2004; Garrett et al., 2011), warning systems like those employed in Luxembourg for fungal disease monitoring would benefit from such integrated FTM approaches and spore dispersal modelling. This remains an area open for further research.

Fourier-transformed data/methods have been used in many epidemiological studies, including the description of plant pathogen population progress throughout cropping seasons (e.g. Shaw, 1994b), building outperforming data sets for characterizing the abiotic niches of parasitic organisms (e.g. Estrada-Pena et al., 2014), or as automation method for fungal spore detection (e.g. Hahn, 2002). In our case study STB was selected and studied in relation to filtered patterns of T, RH and R. A similar FTM approach can be used with other meteorological data and for other economically important fungal pathogens for explaining the spatial variations in disease. For reliable monitoring of fungal diseases at regional scales, the spatial distribution and representativeness of weather data is crucial. FTM might be a suitable approach to determine the minimum distance between fixed stations by analysing the intraday amplitudes of the primary meteorological variables. Determining this distance will enable informed decisions to be made regarding the number and positioning of weather stations, in turn allowing a better differentiation between sites and thereby ensuring an accurate, site-specific disease forecast model. The FTM approach has potential for specifying the microclimate conditions prevailing at given sites and could help improve the prediction accuracy of disease forecast models involved in regional warning systems and decision support systems.

Acknowledgments

The research was funded by the Ministry of Higher Education and Research of the Grand-Duchy of Luxembourg and the Administration des Services Techniques de l’Agriculture through the MACRY and
SENTINELLE projects.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.fcr.2017.07.012.

References