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ABSTRACT
Laser control of open quantum systems (OQS) is a challenging issue as compared to its counterpart
in isolated small size molecules, basically due to very large numbers of degrees of freedom to be
accounted for. Such a control aims at appropriately optimising decoherence processes of a central
two-level system (a given vibrational mode, for instance) towards its environmental bath (includ-
ing, for instance, all other normal modes). A variety of applications could potentially be envisioned,
either to preserve the central system from decaying (long duration molecular alignment or orienta-
tion, qubit decoherence protection) or, to speed up the information flow towards the bath (efficient
charge or proton transfers in long chain organic compounds). Achieving such controls requires some
quantitative measures of decoherence in relation with memory effects in the bath response, actually
givenby thedegree of non-Markovianity. Characteristic decoherence rates of a Spin-Bosonmodel are
calculatedusing aNakajima–Zwanzig typemaster equationwith convergedhierarchical equations of
motion expansion for thememory kernel. It is shown that, by adequately tuning the two-level transi-
tion frequency through a controlled Stark shift produced by an external laser field, non-Markovianity
can be enhanced in a continuous way leading to a first attempt towards the control of OQS.

1. Introduction

The theory of open quantum systems (OQS) deals with
non-unitary dynamics among quantum states of a sub-
system coupled with some unobservable degrees of free-
dom in their surroundings [1–3]. This is actually a very
common situation since no physical system can truly be
considered as isolated. The additional degrees of free-
dom that make up the environment can take many phys-
ical forms such as phonons in solids, photons in cav-
ities, charge fluctuations or molecular vibrations. They
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are responsible for a wide variety of basic processes and,
in particular, thermalisation, energy and charge trans-
fers, decoherence. As a consequence, the scope of OQS
encompasses several disciplines of both fundamental and
technological importance, from struggling against deco-
herence in superconducting qubits of quantum informa-
tion, to electronic and proton transfers in flexible pro-
teins. This is why OQS theory has attracted considerable
attention both from physics and chemistry communities.

Understanding non-equilibrium dynamics in OQS
where dissipation and coherence evolve simultaneously is
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by itself a great challenge, but even more important is the
depiction of feasible quantum control strategies to opti-
mise physical observables such as decoherence rates or
efficient and fast charge transfers over large molecules.
As an illustrative example, non-linear ultra-fast optics
experiments have shown the possibility to protect from
environmental fluctuations, on picosecond time scales,
photosynthetic organisms in molecular light harvesting
materials [4,5]. This has even led to the emergence of
a new interdisciplinary field: Quantum Biology [6]. In
this work, we are concerned by a strong laser control
scheme addressing OQS described in a standard topol-
ogy of a central system of few degrees of freedom cou-
pled to an external and much larger set of environmen-
tal modes, namely, the residual bath which damps the
dynamics. This problem could naively be approached by
a time-dependent wave function evolution incorporating
both the central system and the bath. But its feasibility
would be very soon affected with the increasing number
of degrees of freedom. It is important to have inmind that
even referring to high performance variational codes like
multiconfiguration time-dependent Hartree (MCTDH)
with multi-layer, time-adapted basis set expansions, but
only a few hundreds of such vibrational modes can rea-
sonably be taken into account [7]. Stochastic methods
would also be limited to comparable numbers of degrees
of freedom [8]. A strong field Floquet type of approach,
as has been applied to H+

2 photodissociation by André
Bandrauk and coworkers, would even be worse, as the
resulting number of close coupled equations to describe
the multiphoton excitation process would lead to com-
putationally non-tractable issues [9]. One of the goals
of OQS theory is precisely to avoid a full integration of
all the degrees of freedom by describing the dynamics
in a reduced Hilbert space, through a reduced density
matrix. More specifically, such a reduction is obtained
by tracing out the bath degrees of freedom from the full
density matrix. In some cases, the damping could be
an almost pure, memory-less dissipation. The dynamics
is then approximately described referring to Markovian
master equations in the so-called Lindblad form [10,11]
extensively used in atomic physics, quantum optics and
semiconductors. This approximation assumes an instan-
taneous recovery of the bath from the interaction with a
continuous flow of information from the central system
to its environment. But, when aiming at control OQS at
different times and length scales, or different energy and
temperature ranges, dissipation and decoherence dynam-
ics could be such that the bath response to the central
system can no longer be neglected, leading thus to non-
Markovian behaviours characterised by a back-flow of
information.

Two classes of control strategies can be devised: either
acting on the central system alone, or on both the central
system and its environmental bath. The present work is
concerned by the simplest scenario where a strong static
field produces a Stark shift affecting the eigen-energies
of a two-level central system leading to different cou-
pling schemes with the bath. A more complete scenario
would be the one which takes advantage of the non-
Markovian response of the bath to control the full sys-
tem dynamics [12]. Such an ultimate goal could presum-
ably be reached by referring to some collective modes
which guide the flow of information from the central sys-
tem to the bath in a reversible manner [13]. But we still
expect that the Stark shift affecting the central system
can be used as a first step for enhancing non-Markovian
behaviours. Obviously, a requisite of any control strat-
egy exploiting non-Markovianity is a quantitative mea-
sure of such a behaviour. Several measures characteris-
ing non-Markovianity have been proposed in the litera-
ture [14–17], among them the volume of accessible states
[16] and more recently the appearance of negative deco-
herence rates from several possible decoherence channels
[17]. The relative merits of such measures based on the
quantumdynamicalmap (with amatrix representation F)
of the reduced density matrix elements deserve interest.
More specifically, the volume of accessible states within
the Bloch sphere, given by the determinant of F, evolves
in time with a total rate �(t). The time-dependence of
�(t), as opposite to a constant value, is a signature of
memory effects. But an even more sensitive signature
would be reached through the partial decoherence rates
γ k(t) towards the different decoherence channels k of the
dynamics. Their calculation is based on, roughly speak-
ing, a logarithmic derivative of F, diagonalising ḞF−1.
These partial rates sum up to �(t) but could individu-
ally and temporarily be negative, as signatures of informa-
tion back-flow from the bath to the central system.We are
postponing their detailed analysis to a forthcoming paper.

The article is organised as follows. Section 2 is devoted
to the theory describing the dynamics of a two-level sys-
tem coupled to a bosonic bath, the so-called Spin-Boson
model. A canonical (system Hamiltonian-independent)
form for a time-local master equation is introduced,
for a generic F(t) mapping matrix. This is done by
closely following the derivation of Ref. [17]. The system-
specific reduced density matrix evolution and the result-
ing physical F(t) is calculated by numerically solving a
Nakajima–Zwanzig type of evolution using hierarchical
equations of motion (HEOM) up to convergence, for
the memory kernel [18–22]. The results are discussed in
Section 3 in terms of the time evolution of an observable
taken as the volumeof states decayingwith�(t). Themost
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important observation is the enhancement of the non-
Markovian behaviour when the two-level system inter-
nal transition frequency is off-resonance with respect to
the maximum of the spectral density measuring the fre-
quency distribution of the system–bath couplings. The
control knob is then the external field strength inducing
the Stark shift that monitors the system transition fre-
quency (fromon- to off-resonance). At this stage, the con-
trol targets the optimisation of decoherence rates in order
to slow down the overall decay, which by itself opens
important applications in protecting quantum informa-
tion lost or obtaining long-lived alignment-orientation
in molecular dynamics (although not described by a
Spin-Boson Hamiltonian), for instance. Future perspec-
tives on other control goals aiming at adequately design-
ing collective modes in the bath could open the way
for efficient charge or proton transfer processes in large
molecular systems. These are mentioned in the conclu-
sion, Section 4.

2. Theory andmethod

2.1. Canonical master equation

In many situations, in particular in liquid and solid state
physics, memory effects due to the non-Markovian char-
acter of the dynamics have to be taken into account
[23,24]. At this point, a natural question about a given
experimental system is to which extent the relaxation
effects lead to non-Markovian dynamics. In the past few
years, the problem of how to measure non-Markovianity
has sparked remarkable interest, starting with Refs.
[14,15,25,25]. Number of quantitative measures have
been proposed since these initial attempts [16,17,23,26–
28,28,29]. In addition to the theoretical studies, recent
experimental works [30,31] have shown that it is by now
possible to engineer OQS and to drive it from theMarko-
vian to the non-Markovian regimes. However, the mea-
sures recently proposed in the literature are well suited
to theoretical or abstract situations, where for example
the dynamics can be solved analytically. Very few papers
have explored more complicated model systems where
the time evolution of the OQS can only be achieved
numerically [32–34]. A benchmark example in this cat-
egory is the Spin-Boson model which will be analysed in
this paper. We will consider for this model system a spe-
cific measure of non-Markovianity, namely the volume of
accessible state space [17,35]. The goal of this paragraph
is to briefly summarise the computation of this measure.
The reader is referred to the original papers for technical
details.

The dynamics of a Markovian OQS is typically ruled
by a quantum dynamical semi-group [1]. The most

general representation of such semi-group is given by
the Lindblad–Kossakowski equation [10,11]which can be
expressed as

d
dt

ρS(t ) = LρS(t ), (1)

where ρS(t) is the density matrix of the central system
under study andL a generator in Lindblad form. This lat-
ter can be written as

LρS(t ) = −i[H(t ), ρS(t )]

+
∑
i

γi

[
AiρSA†

i − 1
2
{A†

i Ai, ρS}
]

, (2)

H being the Hamiltonian of the system, the coefficients
γ i � 0 the relaxation rates and the Ai the time-
independent Lindblad operators. Hereafter, we assume
that ρS(t) is a density matrix of a finite-dimensional
Hilbert space, typically of dimension two for a spin sys-
tem. In this case, the dynamics is characterised by three
relaxation rates, γ i.

This formalism can be generalised to a time-localmas-
ter equationwhere the generatorLdepends on timewhile
preserving its general form:

LρS(t ) = −i[H(t ), ρS(t )]

+
∑
i

γi(t )[Ai(t )ρSA†
i (t )

−1
2
{A†

i (t )Ai(t ), ρS}]. (3)

We stress here that both the relaxation rates γ i and the
Lindblad operators Ai(t) may now depend on time. The
process remainsMarkovian if the rates are positive for any
time t, and presumably becomes non-Markovian other-
wise [17].

Recent studies have investigated the issue of the
description of the dynamics of non-Markovian systems
which can be given either by a non-local master equation
with memory kernel obtained, e.g. from the Nakajima–
Zwanzig technique [1], or by a local in time equation
[17,36].We give here a simple argument showing that any
time evolution of the density matrix of the system can be
ruled by a time-local equation. We introduce the quan-
tum dynamical map F(t) of the system which satisfies:

ρS(t ) = F(t )ρS(0), t ≥ 0. (4)

Differentiating Equation (4) with respect to time leads to

ρ̇S(t ) = Ḟ(t )ρS(0). (5)



4 R. PUTHUMPALLY-JOSEPH ET AL.

If we assume that the dynamical map is not singular at
time t, i.e. that the determinant of the corresponding
matrix is different from 0, then the inverse F−1 of F can
be defined and Equation (5) can be rewritten as follows:

ρ̇S = L(t )ρS(t ) = ḞF−1ρS(t ), (6)

which is a master equation local in time. The non-
Markovian character of the dynamics is then associated
with the values of the relaxation rates of the generator L.

F(t) is also referred to when mapping the density
matrix on its corresponding Bloch ball using Pauli matri-
ces together with the identity as an orthogonal basis set.
The time evolution of the volume of this Bloch ball V(t),
namely the volume of accessible states, is given by the
determinant of F(t):

V (t ) = det[F(t )] , (7)

which constitutes another signature of non-Markovian
dynamics [16]. More precisely, the dynamics is said to be
non-Markovian if

dV (t )
dt

> 0 (8)

for a given time t. In this work, we will merely focus
on this signature, leaving the calculation of partial relax-
ation rates and their possible negativity for a forthcoming
paper.

2.2. Hierarchical equations ofmotion

We consider a Spin-BosonHamiltonian currently used to
model a lot of processes such as electron or proton trans-
fer, excitation energy transfer and qubit in a surrounding

Ĥ = ĤS + ĤB + ĤSB + Ĥren (9a)

= ωd
0

2�
σ̂z +W σ̂x + 1

2

N∑
j

p̂2j + ω2
j

(
q̂ j −

c j
ω2

j
σ̂z

)2

, (9b)

where

ĤS = ωd
0

2�
σ̂z +W σ̂x (10)

and

ĤB + ĤSB + Ĥren = 1
2

∑
j

p̂2j + ω2
j

(
q̂ j −

c j
ω2

j
σ̂z

)2

.

(11)

{σ̂α} are Pauli matrices (σ̂z = |1〉d d〈1| − |2〉d d〈2| and
σ̂x = |1〉d d〈2| + |2〉d d〈1|) written in a zeroth order, so
called diabatic basis labelled d. W is the central system
inter-state coupling in a diabatic representation and the
vibrational modes are written in mass weighted coordi-
nates. Adopting an adiabatic representation for the cen-
tral system, by diagonalising the system Hamiltonian ĤS
results into the central system transition frequency ω0 =
2

√
ωd
0
2
/4+W 2, which is hereafter taken as the single parame-

ter defining the central system. The system–bath coupling
takes the form

ĤSB = −
∑
j

c jq̂ jσ̂z = −Q̂σ̂z = −Q̂Ŝ , (12)

where Q̂ = ∑
j c jq̂ j is a collective bath coordinate which

couples to the system Hamiltonian by inducing fluctua-
tions of the energy gap and Ŝ is the generic central sys-
tem coordinates. Ĥren = σ̂z (c j/

√
2ω j)

2 is the renormali-
sation energy shifting the system energies. The key tool in
dissipative dynamics is the reduced density matrix which
is the partial trace of the full density matrix over the bath
degrees of freedom.

ρS(t ) = TrB [ρ(t )] . (13)

Quantum information is exchanged between the system
and the environment causing energy relaxation and deco-
herence.

Well-known projection techniques leading to non-
Markovian master equations either time non-local in the
Nakajima-Zwanzig approach [37,38] or time local in the
Hashitsumae–Shibata–Takahashi formalism [39,40] pro-
vide effective equations for the relevant central system
part

∂tρS(t ) = Leff (t )ρS(t ) +
∫ t

0
dt ′K(t, t ′)ρS(t ′) , (14)

where

Leff (t )ρS(t ) = −i[ĤS(t ) + Ĥren, ρS(t )]. (15)

At the initial time (t = 0), the following factorisation is
assumed:

ρ(0) = ρS(0)ρeq , (16)

where ρeq is the density matrix of the bath at equilibrium.
The exact reduced density matrix can in principle

be obtained from the Feynman–Vernon influence func-
tional [41] and has been implemented in some simple
cases [42,43]. However, the evaluation of the memory
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kernel K(t, t ′), in practical applications, remain cum-
bersome for complex systems. For more numerical effi-
ciency, different strategies belonging to two main classes,
projection techniques or hierarchy equations of motions,
have addressed differential equations of motion. HEOM
originally proposed by Tanimura and Kubo [18,19,44] is
a powerful method providing a non-perturbative calcu-
lation of ρS(t) in Markovian or non-Markovian baths.
Details about the derivation of the HEOM equations can
be found in the original papers and in different reviews
[45,45]. It is born from the path integral method in the
case of a harmonic bath allowing for analytical treatment
of the influence functional, in particular the derivation
of a hierarchy of time-local coupled equations when the
correlation function of the collective bath mode can be
expanded as a sum of exponential functions. The correla-
tion function of the collective coordinate is a Boltzmann
average over the equilibrium bath ensemble defined by

C(t ) = TrB[Q̂(t )Q̂(0)ρB] , (17)

where Q̂(t ) = eiĤBt/�Q̂e−iĤBt/� is the Heisenberg repre-
sentation of the bath coordinate and ρB the bath den-
sity matrix. The fluctuation-dissipation theorem relates
the correlation function to a spectral density J (ω) [2]

C(t, t0) = 1
π

∫ ∞

−∞

e−iω(t−t0)

1 − e−β�ω
J (ω)dω , (18)

where β = 1/kBT and kB the Boltzmann factor.
Different schemes have been proposed to decompose

the spectral density [46] which is nothing but a frequency
distribution of the system–bath coupling. We discuss the
operational equations in the case where the spectral den-
sity is expanded as a sum of Lorentzian functions with
Ohmic behaviour at low frequencies [47,48]

J (ω) =
M∑
l=1

ω�l[
(ω − ωl )2 + �2

l

] [
(ω + ωl )2 + �2

l

] ,

(19)

�l being the coupling amplitude of the central system to
the lth labelled collective-bathmode. Referring toCauchy
residues theorem, the correlation function takes the form
of an exponential series involving both the poles ofJ (ω)

and those of the Bose function through Matsubara fre-
quencies [49] with complex αk and ζ k

C(t ) =
K∑
k

αkeiζkt . (20)

The complex conjugate correlation function can be writ-
ten by using the same ζ k but different expansion coeffi-
cients α̃k [48]

C∗(t ) =
K∑
k

α̃keiζkt , (21)

whereK being the total number of dissipativemodes. The
reduced system density matrix is then the first element of
a chain of auxiliary density matrices ρn(t ). The evolution
is driven by time-local coupled equations:

ρ̇n = −i[ĤS, ρn(t )]

+ i
∑
k

nkζkρn(t ) − i

[
Ŝ,

∑
k

ρn+
k
(t )

]

− i
∑
k

nk
(
αkŜρn−

k
− α̃kρn−

k
Ŝ
)

. (22)

The hierarchy is built with L levels. Each level corre-
sponds to a given sum of the occupation numbers nk,
L = ∑K

k nk of theK dissipationmodes. Level L= 0 corre-
sponds to the systemmatrix ρ(t ) = ρ0(t )with the vector
0 = {0, 0, . . . , 0}, i.e. all nk’s are zero. Each densitymatrix
of level L is coupled to matrices of level L ± 1. This very
efficient algorithm only uses a single correlation func-
tion to describe the system–bath interaction. Moreover,
the structure is well suited for implementation on parallel
computers [50]. In the following, Equation (14) has been
approximately solved at a given level of hierarchy L cor-
responding to 2L perturbation order, by an appropriate
truncation of Equation (22)

2.3. Themodel

As has been discussed in the previous paragraph, the cen-
tral part of the Spin-Boson system is basically modelled
by a single parameter two-level system, namely its inter-
nal transition frequency ω0 defining the energy gap �ω0
between states |1〉 and |2〉. Note that in some cases, this
could result from the diagonalisation of a primary so-
called diabatic two levels |1〉d and |2〉d directly interact-
ing through a potential coupling W. The bosonic bath is
described in terms ofN harmonic oscillators of frequency
ωj (j = 1, 2, …N). As for the coupling of the central sys-
tem to the bath, it is taken into account referring to a
spectral density,J (ω). It is worthwhile noting that, in the
absence of an external field, the individual levels making
up the central system are only indirectly coupled through
their environmental bath. By analogy with a standard
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Table . Parameters of the spectral density.

�l (a.u.) ωl (a.u.) �l (a.u.)

.× − .× − .× −

.× − .× − .× −

Fano model of two discrete levels facing and interact-
ing with a continuum, one can refer to J (ω) as a fre-
quency representation of an energy-dependent discrete-
continuum coupling scheme appropriately averaged on
the density of levels of the discretised continuum. The
dynamics using a full Fourier transform of the spectral
density also implies an anti-symmetrical form for J (ω),
that is

J (−ω) = −J (ω) . (23)

Among the different functional forms that have been
devised in the literature, we are hereafter referring to the
so-called ohmic function, given by Equation (19), retain-
ing but only two Lorentzians (M = 2), enough to provide
a well-structured form for this spectral density within the
parameter range suggested in Ref. [47].

The corresponding couplings and frequencies are
gathered in Table 1, whereas the resulting spectral den-
sity and the corresponding correlation function, at room
temperature 300 K are illustrated in Figure 1(a) and 1(b),
respectively.

Two important arguments advocate for this specific
choice of J (ω):

(1) A highly structured J (ω) is in favour of enhanced
memory effects in the bath response. In analogy with
the Fano picture, such structures in J (ω) could be
attributed to some Feshbach resonances locally modify-
ing the density of states. Actually they are supporting
collective modes of the bath, and due to their possibly

long enough lifetimes proportional to �−1
l could tem-

porarily trap the dynamics, leading to memory effects
signatures.

(2) The central system transition frequency ω0 can
be tuned in such an amount that it matches either one
of the two maxima of the spectral density (case referred
to as on-resonance) or, as an extreme situation, the
minimum between the two peaks (case referred to as
off-resonance). The off-resonance case is expected to
induce most important memory effects, as has already
been pointed out in the literature [32 ]. This could
be rationalised in terms of the back-flow of informa-
tion from the bath to the central system mediated by
the two neighbouring resonances. The specific two well-
separated peaks structure of the spectral density offers
a control flexibility by tuning the central transition fre-
quency from on- to off-resonant cases. More specifi-
cally, this could be achieved through an external laser
field acting on the energy splitting of the central sys-
tem via its transition dipole producing a controlled Stark
shift.

2.4. HEOM convergence

With the parameters that have finally been retained
together with a bath temperature of T = 300 K, the
overall dynamics is completely determined through the
correlation function displayed in Figure 1(b). It is inter-
esting to note that C(t ) shows about three damped oscil-
lators of period 20 fs, with almost negligible values for
times exceeding 100 fs, showing that memory effects can
develop on ultra-fast time scales. As has been explained
in the previous theory section, this correlation func-
tion enters the memory kernel of the Nakajima–Zwanzig
equation, which is further expanded in terms of succes-
sive HEOM levels (L = 1, 2,…). Our purpose is now to
check the numerical convergence of the dynamical calcu-
lations as a function of increasing level of this hierarchy.

Figure . (a) Spectral density for the parameters given in Table . The dashed curves are the two anti-symmetrised Lorentzian components
ofJ (ω) given as solid curve. (b) Correlation function associated withJ (ω).
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Figure . Dynamics of the system calculated at different HEOM levels L. Panel (a) shows the state-space volume V(t), (b) depicts the
diagonal element (ρS) and (c) the off-diagonal element |(ρS)| of the reduced density matrix ρS.

For doing this, we retain two observables on the reduced
density matrix ρS, namely, its diagonal and off-diagonal
terms (ρS)11, (ρS)12 and the volume of the accessible
measuring the decoherence of the central system. The
calculations are carried out fixing ω0 = 4.0 × 10−3 a.u.
which corresponds to an off-resonance case close to the
minimum between the two peaks of the spectral density
displayed in Figure 1(a).

Figure 2 gathers the results as a function of time, start-
ing from a diabatic initial state where the whole popula-
tion is in the central system ground state (ρS)

d
11(0) = 1

in the diabatic representation, all other matrix elements
of ρS(0) being zero. The corresponding adiabatic picture,
resulting from the diagonalisation of ĤS, consists in tak-
ing all matrix elements (ρS)ij(0) = 0.5. At HEOM L = 1
level, often referred in the literature to be as converged for
these rather low coupling regime (corresponding to the
values of�l listed in Table 1), we obtain a non-monotonic
decay of the volume with, at least, two clearly identified
bumps occurring at t= 30 and 60 fs. Such bumps would
be considered as convincing signatures of memory effects
leading to non-Markovian behaviour. However, increas-
ing HEOM level up to L = 4 has as a consequence to par-
tially wash out these bumps, fortunately still maintaining
a non-monotonic decay especially observable for times
longer than 20 fs. Finally, convergence is assumed to be
satisfactory, as HEOM L = 5 level gives almost the same
results (see Figure 2) with reminiscences of the L = 1
level bumps slightly shifted at times t = 30 fs and t =
70 fs. Concerning the diagonal and off-diagonal matrix

elements of ρS(t) displayed in panels (b) and (c) of
Figure 2, the converged calculations differ from the L =
1 level one by erasing the shoulder at 30 fs. It is worth-
while noting that since Tr[ρS(t)] = 1, we have accord-
ingly checked that (ρS)22 = 1 − (ρS)11, at any time t. Off-
diagonal elements asymptotically go to zero for the con-
verged calculations. As a conclusion, for the forthcoming
part of this work, we assume that L= 4 is theHEOM level
for which convergence is reached both for on- and off-
resonance cases.

3. Results and discussion

The volume of the accessible states is decreasing as a func-
tion of time according to a time-dependent total decay
rate �(t), following an exponential law:

V (t ) = det|F | = V (0) exp
[
− 2

�

∫ t

0
�(t ′)dt ′

]
(24)

as has previously been discussed [17]. As opposite to
a situation where the total decay rate is a constant,
the above-mentioned law (Equation (24)) induces a
non-monotonic behaviour that could characterise non-
Markovian dynamics. As has already been mentioned in
the literature, a characteristic non-Markovian behaviour
with a back-flow of information from the bath to the
central system can be observed for temporarily negative
values �(t). Referring to converged calculations carried
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Figure . Dynamics of the system for on-resonant case: Panel (a) shows the spectral density together with the position of the central
system transition frequencyω; Panels (b and c) display the off-diagonal element (ρS) of the reduced density matrix and its trace Tr[ρ2

S ]
and Panel (d) depicts the state-space volume V(t).

at HEOM L = 4 level, we now examine two system–
bath coupling situations, namely on- and off-resonant
cases.

3.1. On-resonant case

The central system internal transition frequency ω0 is
tuned such as to match the first peak maximum of the
spectral density, that is ω0 = 1 × 10−3 a.u. as indi-
cated in Figure 3(a). The results concerning the dynam-
ical description of the reduced density matrix ρS(t) are
depicted as the trace Tr[ρ2

S ] in panel (c) and the real

and imaginary parts of the off-diagonal elements (ρS)12
in panel (b). The state-space volume is displayed in
panel (d). We checked that the two curves resulting from
Equation (7) as the determinant of F, or from Equa-
tion (24) as the decaying law with �(t), are perfectly
superimposed. The initial values are 1 for Tr[ρ2

S (0)]
and the volume V(0), and 0.5 for the off-diagonal ele-
ments (ρS)12(0). Basically, two decoherence time scales
are observed. The first, of about 200 fs, concerns the
decay of Tr[ρ2

S ] and (ρS)12 both showing rather mono-
tonic behaviour, with a shoulder at about 100 fs and
a small amplitude oscillation for the imaginary part of
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Figure . Same as in Figure  but for the off-resonant case.

(ρS)12 at about 20 fs. Tr[ρ2
S ] finally reaches its asymptotic

value of 0.5. The second time scale, much shorter, charac-
terises the dynamics of the volume of the accessible states
which is decaying almost monotonously within about
20 fs (panel (d)). This is not only a signature of a fast
dynamical evolution (typically a vibrational period), but
also of a presumably Markovian, or close to Markovian
behaviour.

For this resonant case, our conclusion is that the
volume of accessible states space is not by itself a
probe sensitive enough to detect a clear non-Markovian
behaviour.

3.2. Off-resonant case

The central system internal transition frequency ω0 in
now tuned off-resonance around the minimum of the
spectral density ω0 = 4 × 10−3 a.u. (see Figure 4(a)). As
resulting from the discussion of the model, this situation
is expected to support better marked non-Markovianity.
As in the on-resonant case, two decoherence time scales
are also observed here. The long one, characterising
Tr[ρ2

S ] and (ρS)12, is still about 200 fs. The difference
being that both dynamics are not monotonic and the
asymptotic value of Tr[ρ2

S ] is now much larger (more
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than 0.8) showing a better preservation of the central sys-
tem, and evenmore interestingly, an increasing behaviour
starting from about 100 fs (Figure 4(c,b)) and support-
ing a back-flow of information from the bath. As for the
observable taken as the signature of non-Markovianity,
the volume of accessible states V(t) is displayed in panel
(d), with the second characteristic shorter time scale.
Contrary to the on-resonant case, a clear non-monotonic
behaviour is obtained with a small bump at t = 30 fs, the
overall complete decay occurring at 60 fs. In other words,
the characteristic decoherence time has been slowed
down from 20 to 60 fs.

For this off-resonant case, our conclusion is that, as
expected, the non-Markovianity is better marked on the
volume total decay rate.

Finally, the control strategy, as suggested previously,
is to adequately tune the central system internal transi-
tion frequency from on- to off-resonant cases, in order
to increase the non-Markovian behaviour. This can be
achieved using a strong external laser field inducing a
Stark shift between the levels of the central system.

4. Conclusion and outlook

Different laser control scenarios could be looked forwhen
dealing with OQS with the potentiality to be applied to a
broad range of processes from biology (proton transfer in
large proteins), to chemistry (charge transfers in donor–
acceptor systems) and physics (molecular alignment-
orientation, quantum information). Such scenarios can
roughly be classified into two groups according to the
situation where the control field is acting on the central
two-level system alone (by modifying its internal char-
acteristic transition frequency) or on the whole system
including the bath (by modifying appropriate collective
modes responsible for the above-mentioned physical pro-
cesses). In the present work, we are only referring to the
simplest control scenario of the first class with a control
field just producing a Stark shift on the dressed levels of
the central system with a consequence on its coupling
scheme with the bath. To the best of our knowledge, this
is one of the very first attempts toward control in such
complex systems.

The model in consideration is a standard Spin-
Boson Hamiltonian with a double-peaked spectral den-
sity function. The calculations are carried by solving
a Nakajima-Zwanzig type master equation with a con-
verged HEOM level for the memory kernel. More pre-
cisely, for the chosen parameters of the mode and a bath
at the equilibrium room temperature, fully converged
calculations need not less than level 4 for the HEOM

hierarchy. The external field intensity is continuously var-
ied to tune the transition frequency of the central sys-
tem from on- to off-resonant situations, that are reached
when this frequency matches respectively the maximum
or minimum of the spectral density. The observable
measuring the overall decoherence of the two-level sys-
tem towards the bath taken into account is the time-
dependent decay of the accessible statesmapping the cen-
tral system reduced density matrix. A non-monotonic
behaviour is considered as a possible signature of non-
Markovianity. We numerically show and rationalise that
the on-resonant case corresponds to basically memory-
less, fast dynamics, whereas the off-resonant configura-
tion may bring into play better marked memory effects
and longer decoherence times.

As a word of conclusion, a simple control can be
exerted merely by an appropriate tuning of the transi-
tion frequency to enhance non-Markovian bath response.
The resulting longer decoherence times may advanta-
geously be exploited to enhance the efficiency and long
period robustness of molecular alignment-orientation or
qubits information preservation. Moreover, very chal-
lenging perspectives are now opening with more sophis-
ticated control strategies aiming at optimising and coher-
ently interfering bath collective modes through appro-
priate combinations of the eigen-channels of the deco-
herence dynamics [51–56]. Ultimately, fast and efficient
charge or proton transfers in long protein chains could be
considered. We are actively pursuing our investigations
along these lines.
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