

1

Contrôle non destructif champ complet Techniques et Applications

Dr. Marc GEORGES Centre Spatial de Liège – Université de Liège

CMOI-FLUVISU 2017 Le Mans, 20 Mars 2017

Le Contrôle Non Destructif (CND)

- Ensemble de techniques visant à évaluer les propriétés de
 - Matériaux
 - Composants
 - Systèmes/Structures
- Sans les endommager !
- Terminologie
 - Essais Non Destructifs (END=CND)
 - Inspection /Contrôle de la « santé matière » (détection de défauts)
 - Non Destructive Testing (comportement structures)
 - Non Destructive Evaluation (propriétés matériaux)
 - Non Destructive Inspection (détection de défauts)
- Associations:
 - COFREND (France)
 - ASNT (USA)
 - Normes/Formations

Le Contrôle Non Destructif (CND)

- Techniques
 - Test visuel (VT)
 - Radiographie X (RT)
 - Liquides pénétrants (PT)
 - Magnétoscopie (MT)
 - Courant de Foucault (Eddy Current) (ET)
 - Ultrasons (UT)
 -
 - Thermographie infrarouge (IRT)
 - Techniques Laser / Laser Testing
 - Interférométrie holographique
 - Interférométrie speckle
 - Shearographie
- Dans ce cours
 - Techniques laser (interférométriques)
 - Thermographie IR
 - Corrélation numérique

Plan de l'exposé

- Les techniques interférométriques
 - L'interférométrie holographique analogique
 - L'interférométrie de speckle
 - L'interférométrie holographique numérique
 - La shearographie
 - Principes et applications en CND
- La thermographie infrarouge active
 - La thermographie infrarouge
 - Techniques de thermographie infrarouges actives
 - Application en CND
- Corrélation numérique d'images
- Combinaison

Les techniques interférométriques

Holographie

• Holographie – 1 : Principe d'écriture

Holographie

Holographie – 2 : Types d'hologrammes

Supports d'enregistrement

Plaques argentiques (AgBr)

© Yves Gentet

Cristaux photoréfractifs inorganiques © ICMCB, Bordeaux

 $\Delta n(\xi,\eta)$

 $\Delta \alpha(\xi,\eta)$

 $\Delta n(\xi,\eta)$

Plaques ou rouleaux photo-thermoplastiques

© Newport

 $\Delta h(\xi,\eta)$

Polymères photoréfractifs

© Opt. Science Center, Tucson AZ

Holographie

• Lecture = Diffraction par réseau

 $\begin{aligned} de & U_{o}(\xi,\eta) = A_{o}(\xi,\eta) \exp(i\phi_{o}(\xi,\eta)) \\ & U_{R}(\xi,\eta) = A_{R}(\xi,\eta) \exp(i\phi_{R}(\xi,\eta)) \\ & I(\xi,\eta) = U_{R}.U_{R}^{*} + U_{o}.U_{o}^{*} + U_{R}.U_{o}^{*} + U_{o}.U_{R}^{*} \\ & T(\xi,\eta) \div I(\xi,\eta) = |U_{R}|^{2} + |U_{o}|^{2} + U_{R}.U_{o}^{*} + U_{o}.U_{R}^{*} \end{aligned}$

 $U_{o}^{*}(\xi,\eta)$

Holographie

Interférométrie holographique

• Interprétation des déplacements

Le point P de coordonnées r se déplace en P' de coordonnées r', selon un vecteur déplacement L

L'interférométrie holographique en lumière diffuse permet la mesure du déphasage donné par la projection du déplacement L sur le vecteur sensibilité S défini par

 $S = k_2 - k_1$ Au cas où $L \ll R, r, r'$

• Différents cas

$$\Delta \phi(x, y) = S(x, y) \cdot L(x, y)$$

Mesures Hors-Plan

Hologramme

 k_2

Source

Observation

Maximas d'intensité pour

$$\Delta \phi = N 2\pi$$

Distance entre 2 franges $L_{N+1} - L_N = \frac{\lambda}{2}$

- Mesures 3 composantes de déplacement

3 mesures différentes avec 3 vecteurs sensibilité différents

Résolution du système en L

 $\Delta \phi_a = S_a . L$ $\Delta \phi_b = S_b . L$ $\Delta \phi_c = S_c . L$

12

• Extraction de la différence de phase

$$I(x, y) = I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\Delta \phi(x, y)) \Big]$$

$\begin{aligned} \textbf{Technique du décalage de phase} \\ I_k(x, y) &= I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\Delta \phi(x, y) + (k - 1) \times 90^\circ) \Big] \\ &\int I_1(x, y) = I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\Delta \phi(x, y)) \Big] \\ I_2(x, y) &= I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\Delta \phi(x, y) + 90^\circ) \Big] \end{aligned}$

 $\begin{bmatrix} I_3(x, y) = I_{moyen}(x, y) \left[1 + m(x, y) \cos(\Delta \phi(x, y) + 180^\circ) \right] \\ I_4(x, y) = I_{moyen}(x, y) \left[1 + m(x, y) \cos(\Delta \phi(x, y) + 270^\circ) \right] \end{bmatrix}$

$$\Delta \phi(x, y) = \tan^{-1} \left[\frac{I_4(x, y) - I_2(x, y)}{I_1(x, y) - I_3(x, y)} \right]$$

Le décalage de phase permet d'obtenir des résolutions inférieures à la frange

$$\lambda_{10} \rightarrow \lambda_{50}$$

 $\Delta\phi(x,y) \mod 2\pi$

Après déroulage de phase (phase unwrapping)

Interféromètre holographique photoréfractif

- Système commercial basé sur des cristaux photoréfractifs
- Développé au CSL

- Applications en métrologie du champ de déplacement
 - Mesures de déformations thermo-mécaniques sur diverses structures composites spatiales
 - Comparaison avec simulations par éléments finis

• Champ de déplacement 3D

• Détection de défauts

• Cas des vibrations : le temps moyenné

$$\vec{L}(t) = \vec{A}\sin(\omega t)$$
 $\Delta \phi = \frac{4\pi |\vec{A}|}{\lambda}\sin(\omega t) = \varphi_A \sin(\omega t)$

 $I(t) = I_{R}(t) + I_{O}(t) + 2\sqrt{I_{R}(t) I_{O}(t)} \cos[\phi_{R} - \phi_{O} + \varphi_{A}\sin(\omega t)]$

Durée enregistrement T >> période vibration $2\pi/\omega$

$$I_{av} = \frac{1}{T} \int_0^T I(t) dt$$
$$I_{av} = I_R + I_O + 2\sqrt{I_R I_O} \cos(\psi) J_0(\varphi_A)$$

- Cas des vibrations : le régime stroboscopique
 - Déflecteur acousto-optique synchronisé sur fréquence d'excitation
 - Ouverture au maximum du déplacement objet
 - Déplacement entre position moyenne (repos) et positions maximum
 - Duty cycle : 0.15 0.2
 - Compromis entre contraste des franges et intensité image

Principe - 1 Speckle : Granularité Laser lentille Semi-miroir Rugosité objet R $\geq \lambda$ $\sigma \div \lambda \frac{f}{D}$ Dimensions des grains de speckle $Sp(\xi,\eta)$

• Principe - 2

 $t=t_{1}: Sp(x, y) = I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\phi(x, y)) \Big]$ $t=t_{2}: Sp'(x, y) = I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\phi'(x, y)) \Big]$

$$\phi(x, y) = \phi_R(x, y) - \phi_O(x, y)$$
$$\phi'(x, y) = \phi_R(x, y) - \phi'_O(x, y)$$

$$I(x, y) = \left| Sp_1 - Sp_2 \right| (x, y) \div \sin\left[\frac{\Delta \phi(x, y)}{2} \right]$$

$$\Delta \phi(x, y) = \phi'_o(x, y) - \phi_o(x, y)$$
$$\phi'(x, y) = \phi(x, y) + \Delta \phi(x, y)$$

Décalage de phase

$$t = t_{1}: \quad \phi(x, y) = \tan^{-1} \left[\frac{Sp_{4}(x, y) - Sp_{2}(x, y)}{Sp_{1}(x, y) - Sp_{3}(x, y)} \right]$$
$$t = t_{2}: \quad \phi'(x, y) = \tan^{-1} \left[\frac{Sp'_{4}(x, y) - Sp'_{2}(x, y)}{Sp'_{1}(x, y) - Sp'_{3}(x, y)} \right]$$

- Configurations possibles :
 - Hors-plan
 - Dans-le-plan
 - Mesures vecteur déplacement (3-4 points d'illumination)
- Applications : idem interférométrie holographique
- Avantages par rapport à l'holographie
 - Plus rapide à l'acquisition
 - Temps de réponse peut être très court
 - Beaucoup de longueurs d'onde utilisables
 - On peut choisir les états de référence
- Désavantages :
 - Images bruitées (speckle)
 - Résolution d'enregistrement plus faible que l'holographie analogique

Applications en CND

Original

Copie

Détection de défauts

Vibration Temps Moyenné

Interférométres de speckle industriels

• Systèmes commerciaux existants

© DANTEC

© DANTEC

Mesures 3D vibratoires Laser impulsionnel

© DANTEC

www.dantecdynamics.com www.steinbichler.de www.gom-france.com

• Principe de base : propagation de la lumière de l'objet vers le capteur

Intégrale de diffraction de Fresnel (approximation paraxiale)

$$U_{O}(x, y, d_{0}) = \frac{\exp(ikd_{0})}{i\lambda d_{0}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U_{O}(\xi, \eta, 0) \exp\left\{\frac{i\pi}{\lambda d_{0}} \left[\left(x - \xi\right)^{2} + \left(y - \eta\right)^{2}\right]\right\} d\xi d\eta$$

• Enregistrement (sans lentille entre objet et capteur)

$$U(\xi,\eta) = (U_R(\xi,\eta) + U_O(\xi,\eta)) \cdot (U_R^*(\xi,\eta) + U_O^*(\xi,\eta))$$

 $\eta)\big).\big(U_R^*(\xi,\eta)+U_O^*(\xi,\eta)\big) \qquad I(\xi,\eta)=I_R+I_O+2\sqrt{I_RI_O}\,\cos(\phi_R-\phi_O)$

 $U^*_o(\xi,\eta)$

 $U_{\alpha}(\xi,n)$

26

• Reconstruction - 2

$$U_{o}(m,n) = \frac{i}{\lambda d} \exp\left(-i\frac{2\pi}{\lambda}d\right) \exp\left[-i\frac{\pi}{\lambda d}\left(\frac{m^{2}}{M^{2}\Delta\xi^{2}} + \frac{n^{2}}{N^{2}\Delta\eta^{2}}\right)\right]$$
$$\times \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} I(k,l) U_{R}(k,l) \exp\left[-i\frac{\pi}{\lambda d}(k^{2}\Delta\xi^{2} + l^{2}\Delta\eta^{2})\right] \exp\left[i2\pi(\frac{km}{M} + \frac{ln}{N})\right]$$

• Reconstruction – 3 : quelques points importants

Angle entre objet et référence – Dimension des objets

Séparation des ordres de diffraction

- Pour pouvoir résoudre l'hologramme, l'angle β doit être correctement choisi
- Angle trop grand = franges trop serrées
- Franges plus résolues (théorême de Shannon)

$$\beta \le 2 \arcsin\left(\frac{\lambda}{4\Delta}\right)$$

$$S_{\max} = \frac{d\lambda}{2\Delta}$$
d: distance of the second s

 λ : longueur d'onde Δ : dimension pixel

d: distance de reconstruction

- Angle trop petit : superposition des ordres
- Cas de l'holographie in-line

• Reconstruction – 4 : Filtrage des ordres inutiles

 $I(\xi,\eta) = I_{R}(\xi,\eta) + I_{O}(\xi,\eta)$ $+2\sqrt{I_{R}(\xi,\eta)I_{O}(\xi,\eta)}\cos(\phi_{R}(\xi,\eta) - \phi_{O}(\xi,\eta))$

Suppression des basses fréquences (Kreis et Jüptner – 1997) $I'(\xi,\eta) = I(\xi,\eta) - \langle I(\xi,\eta) \rangle$

Suppression du halo (Skotheim – 2003)

$$I''(\xi,\eta) = I'(\xi,\eta) - I_R(\xi,\eta) - I_O(\xi,\eta)$$

Décalage de phase (De Nicola, 2002)

 $U'_{R}(\xi,\eta)I'(\xi,\eta) = U_{R}(\xi,\eta)I_{1}(\xi,\eta) + U_{R}(\xi,\eta)I_{2}(\xi,\eta)e^{-i\pi/2} = 4|U_{R}(\xi,\eta)|^{2}U_{O}(\xi,\eta) + U_{R}(\xi,\eta)I_{3}(\xi,\eta)e^{-i\pi} + U_{R}(\xi,\eta)I_{4}(\xi,\eta)e^{-i3\pi/2} = 4|U_{R}(\xi,\eta)|^{2}U_{O}(\xi,\eta)$

 $I_{1}(\xi,\eta) = I_{moyen}(\xi,\eta) \Big[1 + m(\xi,\eta) \cos(\Delta\phi(\xi,\eta)) \Big]$ $I_{2}(\xi,\eta) = I_{moyen}(\xi,\eta) \Big[1 + m(\xi,\eta) \cos(\Delta\phi(x,y) + \pi/2) \Big]$ $I_{3}(\xi,\eta) = I_{moyen}(\xi,\eta) \Big[1 + m(\xi,\eta) \cos(\Delta\phi(x,y) + \pi) \Big]$ $I_{4}(\xi,\eta) = I_{moyen}(\xi,\eta) \Big[1 + m(\xi,\eta) \cos(\Delta\phi(x,y) + 3\pi/2) \Big]$

• Reconstruction - 5

$$U_{o}(m,n) = \frac{i}{\lambda d} \exp\left(-i\frac{2\pi}{\lambda}d\right) \exp\left[-i\frac{\pi}{\lambda d}\left(\frac{m^{2}}{M^{2}\Delta\xi^{2}} + \frac{n^{2}}{N^{2}\Delta\eta^{2}}\right)\right]$$
$$\times \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} I(k,l) U_{R}(k,l) \exp\left[-i\frac{\pi}{\lambda d}(k^{2}\Delta\xi^{2} + l^{2}\Delta\eta^{2})\right] \exp\left[i2\pi(\frac{km}{M} + \frac{ln}{N})\right]$$

Amplitude

$$A(m,n) = \sqrt{\left(\operatorname{Re}\left(U_{o}(m,n)\right)\right)^{2} + \left(\operatorname{Im}\left(U_{o}(m,n)\right)\right)^{2}}$$

Phase

$$\phi(m,n) = \tan^{-1} \left[\frac{\operatorname{Im}(U_o(m,n))}{\operatorname{Re}(U_o(m,n))} \right]$$

• Interférométrie holographique numérique

Phase de l'hologramme à l'état 1

Phase de l'hologramme à l'état 2

 $\Delta \phi(x, \mathbf{y}) = \phi_1(x, \mathbf{y}) - \phi_2(x, \mathbf{y})$

- Applications commerciales
- Microscope holographique numérique

Déformations - mouvements de MEMS

© Lynceetec

Fluctuations membrane de globule rouge

Holographie numérique infrarouge

• Motivation

Holographie numérique infrarouge

- Besoins de l'Agence Spatiale Européenne
 - Déformations champ complet de réflecteurs asphériques
 - Test en ambiance vide thermique simulée
 - Large réflecteurs: jusqu'à 4 m de diamètre
 - Gamme de mesure: 1 μm 250 μm

Holographie numérique infrarouge

Etudes en laboratoire

Implémentation dans test sous vide

Principe lacksquare

M2

X

M1

x : direction du cisaillement optique (shear) Δx : amplitude du cisaillement

$$Sh(x, y) = I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\phi_{0,M1}(x, y) - \phi_{0,M2}(x, y)) \Big]$$

$$I_{moyen}(x, y) = I_{0,M1}(x, y) + I_{0,M2}(x, y)$$

$$\phi_{0,M1}(x, y) - \phi_{0,M2}(x, y) = \frac{\partial \phi_{0}(x, y)}{\partial x} \Delta x$$

• Principe 2

$$t=t_{1}: \quad Sh(x, y) = I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\phi_{O,M1}(x, y) - \phi_{O,M2}(x, y)) \Big]$$

avec
$$\phi_{0,M1}(x,y) - \phi_{0,M2}(x,y) = \frac{\partial \phi_0(x,y)}{\partial x} \Delta x$$
 (1)

$$t=t_2: \quad Sh'(x, y) = I_{moyen}(x, y) \Big[1 + m(x, y) \cos(\phi'_{O,M1}(x, y) - \phi'_{O,M2}(x, y)) \Big]$$

avec
$$\phi'_{O,M1}(x,y) - \phi'_{O,M2}(x,y) = \frac{\partial \phi'_O(x,y)}{\partial x} \Delta x$$
 (2)

$$\left|Sh(x,y) - Sh'(x,y)\right| \div \sin(\Delta\varphi(x,y)) = \sin((1) - (2)) = \sin(\frac{\partial(\phi_0(x,y) - \phi'_0(x,y))}{\partial x}\Delta x)$$

Or on sait que $\phi_0(x, y) - \phi'_0(x, y) = \frac{4\pi}{\lambda} L_{\perp}(x, y)$ **Donc** $\Delta \phi(x, y) = \frac{4\pi}{\lambda} \frac{\partial L_{\perp}(x, y)}{\partial x} \Delta x$

Shearographie vs. Interférométrie de speckle

Interférométrie de speckle

$$\Delta \varphi(x, y) = \frac{4\pi}{\lambda} L_{\perp}(x, y)$$

Interférométrie de speckle différentielle (shearographie)

$$\Delta \varphi(x, y) = \frac{4\pi}{\lambda} \frac{\partial L_{\perp}(x, y)}{\partial x} \Delta x$$

Huai M. Shang et al., Appl. Opt. 39, 2638-2645 (2000);

- Avantages et applications
 - Avantages :
 - Technique auto-référencée : pas de faisceau référence extérieur
 - Peu sensible aux perturbations de l'environnement
 - Application principale : détection de défauts

Excitation thermique

Dépression

La thermographie infrarouge

Thermographie : mesure de la température
 – Loi de Planck d'émission du « corps noir »

• Thermographie : « mesure » de la température

- Thermographie IR ou Imagerie thermique
 - Différentes gammes infrarouges
 - Différentes technologies de capteurs

Туре	Detector Material	Spectral range	Maximum pixel numbers	Maximum frame rate	NETD @ 30°C
Uncooled Microbolometer FPA	a-Si VOx	8 14 µm	1024 x 768 640 x 480 384 x 288	30 Hz 60 Hz 60 Hz	85 mK 50 mK 40 mK
Cooled IR-Photodiode FPA	HgCdTe (MCT)	8 10 µm	640 x 512 384 x 288	120 Hz 300 Hz	20 mK
Cooled QWIP FPA	AlGaAs/ GaAs	8 9 μm (small band)	1024 x 1024 640 x 512 384 x 288	120 Hz 120 Hz 260 Hz	35 mK 25 mK 25 mK

www.flir.com www.jenoptik.de www.infratec.de www.xenics.com www.telops.com

. . . .

- Application au Contrôle Non Destructif: Thermographie « active »
- Une source extérieure apporte de la chaleur pour révéler les défauts

Thermographie optique (Chauffage par lampe)

- Chauffage impulsionnel (Flash lamps)
- Chauffage par pas
- Chauffage modulé

Une sollicitation externe permet aux défauts de générer de la chaleur

Vibrothermographie

Thermographie par induction

Thermographie optique Lock-In (OLT)

Busse G., Wu D. and Karpen W., J. Appl. Phys. 71, 3962 (1992)

phase de l'onde thermique

- z: profondeur
- μ : profondeur de pénétration
- $\omega = 1/\tau$: fréquence angulaire de modulation de la lampe

Profondeur de pénétration dépend de la fréquence

: diffusivité thermique α du matériau

Thermographie optique Lock-In (OLT) : Interpretation

$u = \sqrt{2\alpha} - \sqrt{\alpha}$			f = 1 Hz	f=0.01Hz
$\mu = \sqrt{\omega} \sqrt{\pi f}$	Materiau	$\alpha(10^{-7} m^2/s)$	$\mu(mm)$	$\mu(mm)$
	Air	200	2.52	25.2
Carbon Fiber	CFRP	1.7	0.23	2.3
Reinforced Polymer	CFRP ⊥	1.3	0.2	2
Glass Fiber	GFRP	37	1.09	10.9
Reinforced Polymer	GFRP ⊥	4.2	0.37	3.7
	Aluminium	620	4.44	44.4

Faible profondeur pénétration μ

Défaut peu profond

Basse fréquence f

 $\langle \Box \rangle$

Grande profondeur pénétration μ

Défaut profond

Thermographie optique Lock-In (OLT) : Principe 2

Amplitude

Capa11

Capa16

Cana Cana Cana Capa Cana

Capa3 Capa2 Capal

Phase

• Thermographie optique Lock-In (OLT) : Résultats

• Optical Pulse Thermography (OPT) : Principle

 α : diffusivité thermique

• Pulse Phase Thermography (PPT)

Maldague X. and Marinetti S., J. Appl. Phys. **79**, 2694 (1996)

Figure 19: Amplitude image of the PPT analysis

Figure 18: Phase image of the PPT analysis

© Infratec GmbH

f=0.0125 Hz

• Vibrothermographie

Thermographie vs. Holo/Shearographie

• Etude comparée sur échantillons de référence avec défauts

53

- Principe de corrélation
 - Suivi du mouvement de taches au cours du temps
 - Taches irrégulières (mouchetis)
 - Généralement peintes sur objet

Corrélation croisée de sous-images

Applications – 1 caméra : Mesure déplacements dans le plan
 – Corrélation de speckle (Digital Speckle Photography – DSP)

Corrélation classique (sur base de mouchetis)

Speckle :

de qqs dizaines de μm à 100-150 μm

Classique :

Gamme de mesure de déplacements dépend du volume observé ggs dizaines de µm à ggs cm

> (parfois jusqu'à rupture Test Destructifs !)

Applications – 2 caméras : Mesure de forme (triangulation)

• Applications – 2 caméras : Mesure de forme (triangulation)

www.dantecdyanmics.com www.correlatedsolutions.com

Handheld

High speed (vibrations)

Micro

Résumé

• Techniques vs. Applications

	Holographie Speckle	Shearographie	Thermographie	Corrélation image 1 caméra	Corrélation image 2 caméras
Mesure déplacements	Χ (dépend de λ)	X (intégration)		X	X
Modes vibration	X	X			X
Détection de défauts	X	X	X		
Température			X		
Forme (coordonnées 3D)	X (variation de $λ$)		X		X

- Techniques complémentaires : intérêt de la combinaison
 - Utilisées en parallèle
 - Techniques hybrides

Combinaison

- Exemple 1:
 - Corrélation numérique
 - Thermographie IR

Systèmes parallèles

Hybride : Corrélation numérique IR

LMT Cachan, 2012

Combinaison

- Exemple 2: Interférométrie de speckle infrarouge
 - Interférométrie speckle
 - Thermographie IR

Merci pour votre attention !

mgeorges@ulg.ac.be

www.csl.ulg.ac.be