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Abstract: Efficient nonlinear frequency conversion requires a phase 
matching condition to be satisfied. We analyze the dispersion of the modes 
of hyperbolic wire metamaterials and demonstrate that phase matching at 
infrared wavelengths can be achieved with a variety of constituent 
materials, such as GaAs, in which phase matching cannot easily be achieved 
by conventional means. Our finding promises access to many materials with 
attractive nonlinear properties. 
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1. Introduction 

Frequency conversion by nonlinear optical interaction is an effective means of generating 
electromagnetic radiation in spectral regions differing from the incident field [1,2]. Second-
harmonic generation (SHG), for instance, can be used to convert incident radiation at a 
fundamental frequency (FF) ω into radiation at the second-harmonic (SH) frequency 2ω [1]. 
In general, the phase of the SH wave component does not have the same spatial dependence 
as that of the FF wave. As a consequence, SH waves generated at different positions are not in 
phase and interfere destructively, strongly reducing the SHG efficiency [1]. Therefore, 
satisfying a phase-matching condition is of great importance to SHG processes, and is 
necessary for the SH waves to add in phase. For SHG, the phase-matching condition imposes 
the wave vector relation 2 2 0k kω ω− =  [1,2], where ,2kω ω  are the wave numbers of the FF and 

SH, respectively. This condition is equivalent to the refractive index relation ( ) ( )2n nω ω= . 

However, phase matching is challenging to achieve because of material dispersion. 
A common technique for achieving phase matching is birefringent phase matching [2]. By 

appropriately choosing the propagation direction in an anisotropic medium, the birefringence 
of the ordinary and the extraordinary wave cancels the phase mismatch due to dispersion. 
However, this is not possible for optically isotropic materials, and thus cubic materials such as 
GaAs, which otherwise have attractive nonlinear optical properties, have been little exploited 
for frequency conversion applications [3]. Another important technique is quasi-phase 
matching (QPM) [1,2], where efficient conversion can be achieved by periodically varying 
the sign of the nonlinearity by poling. However, this modulation of material properties is 
difficult to achieve, limiting the practical utility of this approach [4]. 

Periodicity in the linear properties of materials, for example in photonic crystals can also 
provide phase matching, by engineering the photonic bands of the structure [5–7]. Such 
structures can further enhance nonlinear conversion due to resonant and slow light effects [8]. 
However, to compensate for material dispersion photonic crystals need to be designed 
carefully. Phase matching is usually achieved near band edges, so that each photonic crystal 
design can only achieve phase matching over a limited bandwidth. For 1D photonic crystals, 
the magnitude of the refractive index modulation also limits the amount of material dispersion 
that can be compensated for [5]. 

Metamaterials, artificially engineered materials with sub-wavelength features, offer wide 
freedom to choose the structural arrangement of the constituents to yield exotic and desirable 
properties, such as negative refractive index [9], that are not available in natural materials. 
Metamaterials provide wide opportunities to achieve phase matching either by modifying 
dispersion relations [10–12], or by providing built-in quasi-phase matching [13,14]. 
Hyperbolic metamaterials, or indefinite media, a particular type of metamaterial, behave as a 
dielectric in one direction but like a metal in another [9]. As a consequence, their isofrequency 
surfaces, representing all allowed k-vectors for a given frequency, are hyperbolic rather than 
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elliptical as in natural birefringent materials. This property allows the propagation of 
arbitrarily large wavenumbers, which, in principle, offers the possibility to compensate 
dispersion of any magnitude. Indeed, some of us previously showed that multi-layered 
hyperbolic metamaterials provide a number of means to achieve phase matching thanks to 
their unusual dispersion [15]. In this paper, we explore the possibility of achieving phase 
matching in hyperbolic wire metamaterials, subwavelength structures consisting of a dilute 
array of metal wires in a dielectric background. These behave like a metal in the direction 
parallel to the wires and like a dielectric orthogonal to them. While wire media and layered 
hyperbolic media are both hyperbolic, their effective properties differ significantly: which 
permittivity components are positive or negative, and their temporal and spatial dispersion 
differ such that the conditions to realize phase matching for wire media and for layered media 
[15] are very different, as we show here. While wire media are often periodic in two 
dimensions, and can thus be seen as a special case of photonic crystals, they differ from the 
latter in that the period of wire media is much smaller than the wavelength. The unusual 
properties of these media do not emerge from Bragg resonances – in fact, periodicity is not 
strictly required and random arrays of wires with sub-wavelength separation still behave as 
hyperbolic media. As a consequence, phase matching can be achieved over wide frequency 
bands in the same structure. However, this comes at the cost of additional losses due to the 
metallic inclusions. 

Phase matching is a necessary but of course not sufficient condition to efficient second 
harmonic generation. Our aim here is to derive general rules on how far wire media can help 
achieving this necessary condition, rather than to look at specific designs and assessing their 
viability. To this effect, we require a linear calculation of modes of wire media, and can use 
existing analytic expressions of the homogenized dispersion relation to start our investigations 
[16]. Assessing the full conversion efficiency then also requires the calculation of the 
effective nonlinear properties, for example as discussed, or using microscopic modelling 
specific to particular implementations [17–20], beyond the scope of this study. We limit our 
study to the infrared part of the spectrum, where the real part of the permittivity of metals is 
large and negative and the losses are not too large [21]: in this regime, the permittivity 
orthogonal to wires is positive and non-resonant, which also restricts the number of cases to 
be considered. We apply a quadratic approximation to the nonlocal homogenization model 
[16] to analyze the frequency- and geometrical structure-dependent shape of the isofrequency 
contours of the modes in wire media. We then select all possible combinations of modes at the 
FF and SH and discuss the existence of phase matching solutions in each case. Finally, as an 
illustrative example, we consider gold wires embedded in GaAs for the mid-infrared 
frequency region. We verify the result with a full numerical simulation using a commercial 
finite element solver, showing that phase matching can be achieved without the uncertainties 
associated with the use of the effective medium approximation. This result proves that phase 
matching in wire metamaterials improves nonlinear conversion considerably, even when 
including propagation losses. 

2. Normal surfaces of wire media 

A schematic of the geometry of wire media is shown in Fig. 1(a). A periodic array of metal 
wires, each of radius r and permittivity mε , is arranged in a dielectric host of permittivity hε . 

The wires are arranged in a square lattice with period a. The medium is described in a 
Cartesian coordinate system in which the rods are oriented along z. In the long wavelength 
limit, i.e., aλ >> , wire media behave approximately like a spatially dispersive uniaxial 

material [16] with effective permittivity tensor ( )h xx yy zzε ε ε ε ε= + +xx yy zz , and 

components 
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Fig. 1. (a) Schematic of wire media; (b) isofrequency surfaces of (i) TE (ordinary) mode (ii) 
First extraordinary (TM) mode (iii) Second extraordinary mode (quasi-TEM). 

The homogenized properties lead to a dispersion relation for ordinary (TE) waves of the 
form 2 2 2

x z xxk k β ε+ = . Uniquely, because of spatial dispersion, there are two extraordinary 

modes (rather than a single one), a TM mode and a quasi-TEM mode (see Fig. 1(b)). The 

propagation constants ( )1
zk  and ( )2

zk  of these modes satisfy the characteristic equation [16] 
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where ( )2 2
c h m h V pfβ ε ε ε β= − −    depends on geometry, materials and thus frequency. 

The dispersion relations of the extraordinary modes given by Eq. (4) are implicit equations 
of xk . It is therefore difficult to use them to derive general results on the existence or not of 

phase matching solutions. To this end, a Taylor expansion of Eq. (4) to 2nd order 
around 0xk ≈  is sufficient. This corresponds to paraxial incidence, but the results derived are 

bounds and our conclusions thus cover any incidence. The approximated expression takes the 

simplified form ( ) ( )1,2 1,22 2
0z x xk c k c+ = , where 

 ( ) ( ) ( ) ( ) ( ){ }1,2 2 2 2 2 2 2
0

1
1 1 ,

2 xx c p xx c pc ε β β β ε β β β= + + − ± − − −  (5) 
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The signs of 0c  and xc  determine the shape of the isofrequency surface when 0xk ≈ . Using 

the nomenclature of Duncan et al [15], a normal surface is north–south hyperbolic (NS) if 

0 0c > , 0xc < ; east–west hyperbolic (EW) if 0 0c < , 0xc < ; elliptical if 0 0c > , 0xc > ; 

evanescent if 0 0c < , 0xc > . 

We assume that both mε  and hε  are normally dispersive. Considerable insight can be 

gained from considering limiting cases in the approximation of good conductors, for which 
1xxε ≈ . Equations (5) and (6) have two limiting cases. (i) At low frequencies, i.e., 2 2

c pβ β<< , 

the quasi-TEM mode is NS hyperbolic at 0xk ≈  and the TM mode tends to be evanescent. 

(ii) At high frequencies, i.e., 2 2
c pβ β>> , the TM mode is elliptical with a similar dispersion 

relation to the TE mode, and a mode bound to the surfaces of the wires results from the 
coupling of surface plasmon polaritons (SPP) of the wires [16]. 

Figure 2(a) is a phase diagram showing the solutions as a function of frequency and filling 
fraction for gold wires in GaAs. The material permittivities of each material are taken from 
Palik [22]. The nominal boundary separating the two limiting cases is considered to be 

 

Fig. 2. (a) Phase diagram for a GaAs and gold wire medium from Eq. (4), showing the low-
frequency (light blue) and high-frequency (dark blue) regimes versus wavelength and fill 
fraction fV, for a structure with a = 150 nm, r = 20 nm, i.e., fV = 5.6%. (b)-(d) Dispersion 
relations of modes corresponding to the points indicated in (a), which refer to the three 
different frequency regimes. (b) λ = 1.55 μm (high frequency); (c) λ = 2.3 μm (intermediate 
frequency); (d) λ = 3.1 μm (low frequency). Dotted black curve: TE mode, red curve: TM 
mode, blue curve: second TM mode which is SPP like in (b) and quasi-TEM like in (c), (d). 

2 2
c pβ β= . While well away from this boundary, i.e., in the limiting cases, the behavior is 

clear, the precise position of the boundary requires detailed calculations. Figures 2(b)-2(d) 
illustrate how the nature of the modes evolves with frequency for a given structure. Figure 
2(b) shows the isofrequency curves in the high frequency regime (ii). In this regime there is 
an SPP-like mode and an elliptical TM mode which is tangent to the TE mode at 0xk = . 

Figures 2(c) and 2(d) show the progression when shifting to lower frequencies: the elliptical 
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TM mode becomes evanescent and the quasi-TEM mode emerges; the latter is tangent to the 
TE mode at 0xk = . 

3. Phase matching in wire media 

Considering the FF to be in the low frequency regime where the TM mode is evanescent, the 
results from Section 2 limit the possibilities for hyperbolic phase matching to the four cases 
shown in Table 1 and Fig. 3. We show below that a solution to the phase matching condition 
is guaranteed to exist for cases (A) and (C), for any combination of normally dispersive 
dielectric and metal. For case (D) phase matching does not occur, while for case (B) phase 
matching is not guaranteed, and, according to our simulations does not seem to occur. 

Table 1. The four possible combinations of modes for FF and SH for SHG in wire media, 
assuming the FF is in the low-frequency regime. 

Case FF  SH 
Mode Shape  Mode Shape 

(A) Quasi-TEM NS  TE Circular 
(B) Quasi-TEM NS  Quasi-TEM NS 

(C) Quasi-TEM NS  TM Elliptical 
(D) TE Circular  Quasi-TEM NS 

Case (A), (C) and (D): In these cases, we seek general conditions under which a NS 
hyperbolic normal surface intersects with an ellipse or a circle. These are guaranteed to 
intersect if the vertical intercept of the hyperbola is smaller than that of the circle or ellipse 
(Figs. 3(a) and 3(c)). Case (D) can be eliminated because for a normal dispersive dielectric the 
minimum phase index at the SH exceeds the maximum at the FF (Fig. 3(d)). From Eq. (4), for 
case (A) and (C), the necessary and sufficient condition for phase matching is 

 ( ) ( ) ( ) ( )2 2 .xx h xx hε ω ε ω ε ω ε ω>  (7) 

This is always satisfied if the host material is normally dispersive. An ordinary-extraordinary 
phase matching solution is thus guaranteed to exist (Case (A)); an extraordinary-extraordinary 
phase matching exists if the SH TM mode is not evanescent (case (C)). This conclusion is 
drawn independently of the structure and fundamental frequency – thus within our 
approximations (namely that frequencies are in the infrared or lower, and the periodicity is 
much smaller than the wavelength) any geometry of wire array provides SHG phase matching 
for any FF/SH frequency pair – this is in stark contrast to phase matching provided by 
photonic crystals which need to be designed for a specific frequency pair. 

 

Fig. 3. Typical isofrequency contours for the four cases of FF (in red) and SH (in blue) from 
Table 1. Extraordinary and ordinary waves are indicated by solid and dashed curves, 
respectively. Phase matching solution is guaranteed to exist in cases (A) and (C). In case (B) a 
phase matching solution is not guaranteed. Phase matching is impossible in case (D). 

Case (B): The minimum of the isofrequency curves quasi-TEM modes is lower for the FF 
than for the SH (see Fig. 3(b)), and the curves flatten at high xk values due to spatial 

dispersion. The two normal surfaces can only intersect before they flatten out at large xk . 

Such a crossing was not observed in our simulations for the wavelengths and materials of 
interest. Hence, phase matching is not guaranteed in this case. 
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4. Simulation results and discussion 

To confirm the results obtained using the effective medium approach, we performed detailed 
numerical calculations of the full structure using a commercial finite element method (FEM) 
solver (COMSOL). We considered an infinitely long wire array with a square periodic lattice, 
applying Bloch-Floquet boundary conditions at the edges of the numerical domain, and 
calculated the linear modes of the structure to obtain the isofrequency curves. Figure 4(a) and 
4(b) shows results for gold wires in GaAs in the mid-infrared region (FF at λ = 3.1 μm) of the 
spectrum, corresponding to Cases (A) and (C) in Table 1. The extraordinary-extraordinary 
matching solution (circled in Fig. 4(a)) is obtained at 0/ 0.45xk k  , 0/ 3.45zk k ≈  between 

the FF TEM and SH TM. An extraordinary-ordinary matching solution (circled in Fig. 4(b)) is 
obtained at 0/ 0.62xk k  , 0/ 3.56zk k ≈  between the FF TEM and SH TE. The FEM 

simulations also provide propagation losses, and thus propagation lengths in the selected wire 
media for all modes. For FF and SH these are 45 μm and 23.5 μm respectively, which is 
substantially larger than the coherence length for GaAs which is L = 12.5 μm at FF 3.1 μm 
[2]. The FF pump thus propagates with reasonable losses over four coherence lengths, and 
since the phase matched SHG signal grows quadratically with distance we may expect a 16 
time enhancement in the lossy wire medium compared to the isotropic medium. Indeed, 
solving for SHG intensity using the slowly varying envelope approximation [1,2], taking into 
account absorption losses of both the FF and SH, and assuming the same nonlinear coefficient 
as the host medium, gives a maximum SHG after 46 μm of propagation in the wire medium, 
with an 18x enhancement in SHG intensity compared with the maximum obtained in non-
phase matched GaAs. Given the short propagation lengths, walk-off is also unlikely to be an 
issue for any pulses longer than 100 fs. Thus using a wire array in this case could result in 
considerably higher SH generation efficiency than from unstructured GaAs. This comparison 
confirms that this method of phase matching, while limited by losses, remains realistic for 
small structures. Of course, because of the large losses, wire arrays cannot be expected to 
compete with phase-matched SHG in naturally anisotropic dielectric crystals which are 
virtually lossless. Wire arrays are also unlikely to beat quasi-phase matched SHG in 
dielectrics or phase matched SHG in carefully designed photonic crystals. However, wire 
arrays can provide phase matching for materials that are not naturally anisotropic, and 
contrary to quasi phase matching and photonic crystals, the same wire structure can provide 
phase matching over a virtually unlimited frequency range, which may find use for 
applications such as ultrashort pulse characterization techniques [23] or optical signal quality 
monitoring [24]. 

 

Fig. 4. Isofrequency contours calculated by FEM (dots) compared with an effective medium 
approach (dashed curves) for gold wires in GaAs with a = 150 nm, r = 20 nm, with FF λ = 3.1 
μm. Phase matching solutions for (a) FF TEM and SH TE (b) FF TEM and SH TM are circled. 

5. Conclusion 

A systematic analysis of the possibility of SHG phase matching using the hyperbolic 
dispersion of wire media metamaterials shows that phase matching can always be achieved in 
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the mid-infrared part of the spectrum (3 μm to 10 μm). We confirm this finding by full 
numerical calculation. We surmise that phase matching of other nonlinear frequency 
conversion processes can be similarly achieved by exploiting the dispersion of wire media. 
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