

Accuracy improvement in digital holographic-based speckle correlation for three-dimensional (3D) displacement measurement

Yuchen Zhao¹, Redouane Zemmamouche², Jean-François Vandenrijt¹, Marc P. Georges^{1,*}

1. Centre Spatial de Liège – Université de Liège, Liege Science Park, Belgium

2. Université Ferhat Abbas, Sétif1, Institut d'Optique et Mécanique de Précision, Laboratoire d'Optique Appliquée, Avenue Said Boukhrissa, Sétif, Algeria, 19000

Digital Holography & 3-D Imaging 29 May - 01 June, 2017, Jeju Island, South Korea

- Introduction
 - The combination of digital holographic interferometry (DHI) and digital speckle photography (DSP)
 - Our research work: In digital holography, how to get an accurate inplane displacement result using DSP?
- Theoretical analysis: sources of error
- Experimental results
- Conclusions and discussion

The combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) Initial object **Displaced object** Holograms recording Numerical Initial Initial phase **Displaced phase** Displaced reconstruction amplitude amplitude φ_{disp} φ_{ini} $\mathsf{A}_{\mathsf{disp}}$ A_{ini} Digital Holography digital speckle photography (DSP) In-plane displacement **Digital Holography & 3-D Imaging** 29 May - 01 June, 2017, Jeju Island, South Korea

Out-of-plane displacement

In-plane displacement

Non-contact 3D displacement measurement

Digital Holography & 3-D Imaging 29 May - 01 June, 2017, Jeju Island, South Korea

Same problems have been reported in other publications.

Digital Holography & 3-D Imaging

29 May - 01 June, 2017, Jeju Island, South Korea

Sources of error leading to inaccurate in-plane measurement result:

- 1. Phase errors existing in reference wave cause extra speckle displacement
- 2. Speckle size on reconstruction plane doesn't satisfy sampling criteria

Phase errors in reference wave

Simulated recording and reconstruction process without phase error

Digital Holography & 3-D Imaging 29 May - 01 June, 2017, Jeju Island, South Korea

- Reconstructed image without phase error
- Speckle moves with the object
- Speckle displacement represents object displacement

Phase errors in reference wave

Simulated recording and reconstruction process with phase error

Digital Holography & 3-D Imaging 29 May - 01 June, 2017, Jeju Island, South Korea

- Reconstructed image with phase error
- Speckle doesn't move with the object.
- Defocused object field causes complementary speckle displacement

Speckle size and sampling criteria

Second hypothesis

Speckle size on reconstruction plane doesn't satisfy sampling criteria.

□ In **classical** DSP:

- Speckle size should be \geq 2 pixels
- If Speckle size < 2 pixels
 - \rightarrow Systematic errors: a drift toward the closest integral pixel value
 - \rightarrow Speckle size adjustment : changing aperture of imaging system

Sjodahl, M. and L. R. Benckert (1994). "Systematic and random errors in electronic speckle photography." Appl Opt 33(31): 7461-7471.

Speckle size and sampling criteria

Second hypothesis

Speckle size on reconstruction plane doesn't satisfy sampling criteria.

□ In **classical** DSP:

- Speckle size should be \geq 2 pixels
- If Speckle size < 2 pixels
 - \rightarrow Systematic errors: a drift toward the closest integral pixel value
 - \rightarrow Speckle size adjustment : changing aperture of imaging system

Sjodahl, M. and L. R. Benckert (1994). "Systematic and random errors in electronic speckle photography." Appl Opt 33(31): 7461-7471.

□ In Fresnel DH-based DSP

Speckle size should be adjusted to eliminate systematic errors! Digital Holography & 3-D Imaging 29 May - 01 June, 2017, Jeju Island, South Korea

Experimental setup

- In-line DH, Phase stepping for eliminating twin
 images
- The CCD contains 480 ×480 pixels
- Diffusing object: 5 cm
- Fresnel reconstruction with a single FFT

Digital Holography & 3-D Imaging

29 May - 01 June, 2017, Jeju Island, South Korea

Under-estimated results are obtained without considering phase errors correction.

When the phase error hasn't been corrected, the hologram is reconstructed by $U_{R, ideal}$, the measured result is **under-estimated**.

DSP measured results match the actual displacement after phase errors are corrected

When the phase error hasn't been corrected, the hologram is reconstructed by $U_{R, ideal}$, the measured result is **under-estimated**.

Results

The quadratic phase error is **corrected**, the hologram is reconstructed by $U_{R, aberrated}$, the measured result matches actual displacement

Digital Holography & 3-D Imaging

29 May - 01 June, 2017, Jeju Island, South Korea

Results

Zero-padding the hologram can change the pixel size on reconstructed plane, thus changing the speckle size in term of pixels.

Results

Zero-padding the hologram can change the pixel size on reconstructed plane, thus changing the speckle size in term of pixels.

480×480 Digital Holography & 3-D Imaging 29 May - 01 June, 2017, Jeju Island, South Korea

Inaccurate results are obtained without adjusting speckle size.

	Zero- padding case	Speckle size	Applied translation (µm)	Measured result (µm)	Applied translation (px)	Measured result (px)
Before zeropadding	480×480	155.8 µm	50	7.206±6.391	0.321	0.047±0.041 0.951±0.045
		=1 px	100	148.1±3.554	0.642	
			150	155.6±4.512	0.963	0.999±0.029
			200	162.5±8.125	1.283	1.043±0.052

• Systematic errors are observed when no zero-padding has been applied (speckle size ≤ 2px).

• The measured result in pixel tended to round the actual displacement.

Accurate results are obtained after adjusting speckle size via zero-padding.

After zeropadding	Zero- padding case	Speckle size	Applied translation (µm)	Measured result (µm)	Applied translation (px)	Measured result (px)
	1152 ×1152	155.8 µm	50	51.10±2.708	0.770	0.787±0.042
		=2.4 px	100	98.70±2.369	1.540	1.520±0.074
			150	149.1±4.622	2.310	2.296±0.069
			200	199.2±3.785	3.080	3.067±0.059

• Systematic errors are **eliminated** when speckles are **larger than 2 pixels**. Standard deviation is comparable to classical DSP.

- Intrinsic properties of Fresnel DH reconstruction contribute to inaccurate inplane displacement measurement results using DSP
 - Phase errors lead to complementary displacements.
 - Speckle size leads to systematic errors.
- The accuracy of in-plane measurement is improved after correcting sources of error, comparable to classical DSP
- Measurable range should be taken into consideration in 3D measurement
 - In-plane: several tens of speckle diameter with subpixel accuracies
 - Out-of-plane: range of interferometry (λ) and the number of fringes that can be resolved

Thank you for your attention!

Digital Holography & 3-D Imaging 29 May - 01 June, 2017, Jeju Island, South Korea <u>yuchen.zhao@ulg.ac.be</u> www.csl.ulg.ac.be

Appendix

Table 1:	Comparison	of DSP	measurement	results	under	various	zero-padding
levels							

Zero-	Speckle	Applied	Applied	Average	std	Average	\mathbf{std}
padding	size	Trans-	Trans-	\mathbf{result}	(px)	\mathbf{result}	(µm)
N	(px)	lation	lation	(px)	s_k	(µm)	Sd
	σ_x	(µm)	(px)	$\overline{k_x}$		$\overline{d_m}$	
		d_x	k_x				
480	1	50	0.321	0.047	0.041	7.026	6.394
480	1	100	0.642	0.951	0.045	148.1	3.554
480	1	150	0.963	0.999	0.029	155.6	4.512
480	1	200	1.283	1.043	0.052	162.5	8.125
960	2	50	0.642	0.688	0.041	53.60	3.377
960	2	100	1.283	1.200	0.036	93.53	1.403
960	2	150	1.925	1.906	0.037	152.8	2.903
960	2	200	2.567	2.619	0.073	204.1	5.715
1152	2.4	50	0.770	0.787	0.042	51.10	2.708
1152	2.4	100	1.540	1.520	0.074	98.70	2.369
1152	2.4	150	2.310	2.296	0.069	149.1	4.622
1152	2.4	200	3.080	3.067	0.059	199.2	3.785
1440	3	50	0.963	0.911	0.067	47.30	3.500
1440	3	100	1.925	1.889	0.071	98.13	1.864
1440	3	150	2.889	2.888	0.092	149.9	1.499
1440	3	200	3.850	3.841	0.102	199.5	5.367

Digital Holography & 3-D Imaging

Larger speckles lead to larger random error.

Speckle size = 2.4 px gives satisfactory results.

29 May - 01 June, 2017, Jeju Island, South Korea