





## Influence of environmental conditions on trophic niche partitioning among sea stars assemblages

**Baptiste Le Bourg**, Alice Blanchard, Bruno Danis, Quentin Jossart, Gilles Lepoint, Camille Moreau, Loïc N. Michel









pictures: Norbert Wu, Dirk Schories

- 12% of known sea star species living in the Southern Ocean
- Important group of Antarctic benthos with known trophic diversity







Predator (ex: *Lophaster gaini*)

Scavenger (ex: *Odontaster validus*) Ciliary mucous-feeder (ex: *Glabraster antarctica*)

 Sea stars will have to face new kind of stress because of climate change

#### 1979-2004 Ice season duration changes (days/year)



- Regional variations in changes of sea ice extent and ice season duration
- Impact on pelagic food webs and potential prey of sea stars

## Objectives

• To compare regional differences of trophic diversity, variability and plasticity in three Antarctic regions

 $\rightarrow$  Isotopic niches

Trophic diversity: differences in trophic ecology between species
Trophic variability: differences in trophic ecology between individuals

Trophic plasticity: ability to modify trophic ecology

## Using stable isotopes in trophic ecology

- Stable isotope composition of an organism reflects stable isotope composition of its food
- Isotopic niche ↔ trophic niches → estimation of trophic diversity, trophic plasticity and diet overlap with ellipse areas (SIBER package of R)



## Sampling



26 species (242 specimens)

#### Antarctic regions with ice retreat

South Shetland Islands South Orkney Islands

Antarctic regions with ice gain

Weddell Sea

 $\delta^{\rm 13}C$  and  $\delta^{\rm 15}N$  in tegument measured by EA-IRMS

Specimens provided by British Antarctic Survey and Université Libre de Bruxelles

### **South Shetland Islands**



- Low dispersion of stable isotope ratios and high overlap
- Low intraspecific variability

### **South Shetland Islands**



Labidiaster anulatus' niche smaller than that of the four other species

## **South Orkney Islands**



- Low dispersion of stable isotope ratios and low overlap except for Notasterias sp.
- Low intraspecific variability

### South Orkney Islands



• Diplasterias sp.'s niche higher than Notasterias sp.'s and Peribolaster folliculatus' niches

## Antarctic regions with ice retreat

- Low interspecific and intraspecific variation of isotopic values
- Small niche areas  $\rightarrow$  specialised diets?
- Low  $\delta^{13}C$

→ Reliance on one food source at the basis of the food web (likely summer phytoplankton bloom)

### Weddell Sea



- Low differences of  $\delta^{13}$ C but well differentiated  $\delta^{15}$ N values
- High intraspecific variability for 4 species

### Weddell Sea



- Large niches for Acodontaster sp., Diplasterias sp., and Glabraster antarctica
- Peraster sp.'s niche smaller than that of the four other species

## Antarctic regions with ice gain

- High interspecific (δ<sup>15</sup>N) and intraspecific (δ<sup>13</sup>C) variation of isotopic values
- Large niche areas for some species
- Presence of both generalist and specialist species?

→ Reliance on more than one food source at the basis of the food web (likely phytoplankton and ice algae)

| Antarctic regions<br>with low ice | Antarctic regions<br>with high ice |
|-----------------------------------|------------------------------------|
| Low isotopic diversity            | High isotopic diversity            |
| Low isotopic variability          | High isotopic variability          |

How explaining?

#### Weddell Sea

#### South Shetland Islands South Orkney Islands







**v** Phytoplankton

#### Weddell Sea



#### South Shetland Islands South Orkney Islands





# Thank you for your attention



baptiste.lebourg@doct.ulg.ac.be

# Acknowledgements





## British Antarctic Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

This work is part of vERSO (Ecosytem Response to global change: a multiscale approach in Southern Ocean, BR/132/A1/vERSO) and RECTO (Refugia and Ecosystem Tolerance in the Southern Ocean, BR/154/A1/RECTO) projects funded by BELSPO