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2Principal Component Analysis (PCA)

Principal component analysis is a multi-variate statistical method.

Aim: to obtain a compact representation of the data.

Principal Component Analysis = Proper Orthogonal Decomposition

PCA (or POD) is applied here for three purposes:
1. Damage detection
2. Structural health monitoring
3. Identification of nonlinear parameters



3Outline

• Principal Component Analysis

• Damage detection

• Structural Health Monitoring

• Identification of nonlinear parameters

• Conclusion



4Principal Component Analysis (PCA)

Mathematical formulation

Let q (x,t) be a random field on a domain W

W

),( txq),()(),( txxtx q 

mean

time varying part

At time tk , the system displays a snapshot ),()( k
k txx  
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The POD aims at obtaining the most characteristic structure f (x) 
of an ensemble of snapshots i.e.

Maximize with  2
,f k 1

2 f

where   W W dxgxfgf )()(,

. denotes the averaging operation

. denotes the norm

It can be shown that the problem reduces to the following integral 
eigenvalue problem

)()()()( xxdxxx kk ff W

averaged auto-correlation function

Principal Component Analysis (PCA)
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Thus the solution of the optimization problem

Maximize with  2
,f k 1

2 f

is given by the orthogonal eigenfunctions fi(x) of the integral equation

)()()()( xxdxxx kk ff W

uncorrelated coefficients

fi(x) are called the proper orthogonal modes (POM)

i are called the proper orthogonal values (POV)

and we have 





1

)()(),(
i

ii xtatx f where  )(),,()( xtxta ii f

Principal Component Analysis (PCA)
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m
measurement
co-ordinates

N snapshots

Observation matrix:

W

1x
ix

mx

Instrumented structure

In practice, the data are discretized in space and time.

1 1 1

1

( ) ( )

( ) ( )

N

m N

m m N

x t x t

x t x t


 
   
  

X



  



Principal Component Analysis (PCA)
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The m x m correlation matrix R is built

1 T

m
R X X

The eigenvalue problem is solved

uuR 

eigenvectors of X XT (POMs)

eigenvalues (POVs)

Principal Component Analysis (PCA)
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1 1 1

1

( ) ( )

( ) ( )

N

m N

m m N

x t x t

x t x t


 
   
  

X



  



m measurement co-ordinates

N time samples

Computation of the POMs using SVD

Using SVD

T
m N m m m N N N    X U V

eigenvectors of X XT (POM)

)POV()( iidiag 

W

1x
ix

mx

Principal Component Analysis (PCA)
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Reference 
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Geometric interpretation

PCA in 2D-space 1 1 1 2 1
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
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PC-I
PC-II

O
x1

x2

Geometric interpretation

PCA in 2D-space

Reference 
data set

Principal Component Analysis (PCA)
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• Principal Component Analysis (PCA)

• Damage detection

• Structural Health Monitoring

• Identification of nonlinear parameters

• Conclusion

Outline
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Principal Component Analysis
Statistical approach

Eigenvalue problem:

Modal Analysis
Deterministic approach

Eigenvalue problem:

)(tpxKxCxM  

0ΦMK  )( 2 R u u





n

j

jj tat

1

)()()( ux

Spatial 
information

Natural frequencies Time information

 Instantaneous 
frequencies

Spatial 
information

Principal Component Analysis (PCA)

Response:

where

   



n

i
ii tt

1
)(Φx 

   tBtA iiiii  sincos 
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Key idea

• Use PCA to extract the structural response subspace

• Use the concept of subspace angles to compare the hyperplanes
associated with the reference (undamaged) state and with the 
current (possibly damaged?) state of the structure. 

Damage detection problem

Concept of subspace angle (Golub-Van Loan)



16Damage detection problem

T
SDSDSDD

T
S VΣUQQ 

Given two subspaces                    andpnS  qpqn  D

Carry out the QR-factorizations                     and SS RQS  DD RQD 

define orthonormal bases

Concept of subspace angle (Golub-Van Loan)

The angles qi between subspaces 

S and D are defined through the 

singular values associated to

   qidiag iSD ,,1cos  qΣ

S

D
1q
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Consider the transformation matrix T containing the p first eigenvectors

associated with the largest eigenvalues.

Re-mapping of the projected data back to the original subspace gives

PCA provides a linear mapping of the measured data from the original 

dimension m to a lower dimension p

   1

T

p N m Np    Y u u X

loading matrix T of dimension m x pscore matrix

The residual error matrix is defined as:

estimated

Novelty analysis  the aim is to build a prediction model using the 
principal components of reference.

Damage detection problem

XXE ˆ

XTTYTX TT ˆ



22Damage detection problem
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PC-II
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Definition of the Novelty Index

Residual error matrix :

Euclidean norm : E
k kNI  E

prediction error vector at time tk

Mahalanobis norm : 1M T
k k kNI  E R E

1 T

N
R X X (covariance matrix)

Damage detection problem

XXE ˆ
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mean value

standard deviation

Statistical tool : 3CL NI   (Upper Control Limit at 99.7 % confidence interval)

The ratio           may be used as a quantitative indicator of damage level.d

r

NI

NI

damaged state

reference state

Damage detection problem
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Environmental Vibration Testing

Test specimen

power amplifier

Detection of damages usually by visual inspection or by comparison 
of frequency spectra before and after the test.

Objective : to be able to detect damage as soon as it appears.

Electrodynamic 
vibration exciter

sensors

Signal 
conditioner

Acquisition and 
control devices

Excitation 
signal

Example of damage detection
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Crack initiation and propagation

Mode of failure of the crown

Fatigue testing of a street lighting device

Vibration specifications 

• Sine excitation at the first resonance 
frequency (~ 12,4 Hz) during 1 hour.

• Acceleration level of 0,5 g at the fixation.

Total test duration: ~ 4 hours

Control accelerometer

Strain gauges
Inner side of the crown

+ 10 measurement accelerometers

Example of damage detection
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Limitation of the PCA-based method

The number of sensors must be larger than the number of active 
modes   it can be solved using the concept of null-subspace of 
the Hankel matrices of responses.

Principal Component Analysis (PCA)

Null Subspace Analysis (NSA)

Aim : to replace the observation matrix X by a “dynamic” response 

matrix (i.e. the Hankel matrix)
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Example: beam with nonlinear stiffness used as benchmark in the 
framework of the European action COST F3. 

cubic stiffness is realised by 
means of a very thin beam

For weak excitation, the system behaviour may be considered as 
linear. When the excitation level increases, the thin beam exhibits 
large displacements and a nonlinear geometric effect is activated 
resulting in a stiffening effect at the end of the main beam. 

Detection of nonlinearity onset
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Test n° 1-7 8 9 10 11 12

Largest displacement (mm) < 0.04 0.48 0.72 0.93 1.20 1.37

Impact excitation

Detection of nonlinearity onset

The nonlinearity is activated
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WT of the displacement at coordinate n° 7

Two frequency lines 
(called ‘ridges’) are 

observed respectively at 
32.6 Hz and 144.7 Hz

 at low excitation level (impact of 70N), the behaviour of the beam 
appears as linear (largest displacement lower than 0.15 mm).

Detection of nonlinearity onset

Detection based on the Wavelet Transform (WT)
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 at high level of excitation (impact of 1500N), the behaviour is clearly 
nonlinear (maximum displacement at the right end of about 2.4 mm).

• drop-off of the frequencies 
down to the linear system 
values as the nonlinear 
effect vanishes progressively

• presence of a third order 
superharmonic of the first 
frequency (curve n° 3) 

WT of the displacement at coordinate n° 7

Detection of nonlinearity onset

Detection based on the Wavelet Transform (WT)
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Instantaneous deformation shapes

Defining an instantaneous deformation matrix A = [M1 M2 M3].

The instantaneous singular values 
of the decomposition in terms of 
energy percentage reveals that the 
third singular value is negligible.

 the third (superharmonic) deformation ‘mode’ (M3) is 
actually a linear combination of the two other ‘modes’.

Superharmonic ‘mode’Second ‘mode’First ‘mode’

Detection of nonlinearity onset
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Detection based on the concept of subspace angle

• the structure is now excited at increasing level of impact forces 
(amplitudes ranging from 100 N to 1500 N).

Evolution of the instantaneous frequencies

Detection of nonlinearity onset
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The instantaneous deformation shapes associated to the two frequencies 
may be considered as instantaneous active modes to define a subspace 
which characterises the dynamic state of the structure. The comparison 
of subspace angles between the reference state (defined by the linear 
normal modes) and current states at different excitation levels reveals 
the range of activation of the nonlinearity.

a) Based on the 1st mode    b) Based on the 2nd mode     c) Based on both modes

Time evolution of subspace angles for different excitation levels

Detection of nonlinearity onset
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Angle–displacement amplitude at the end of the beam at t = 0.1 s

Detection of nonlinearity onset
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EKPCA-based detection method

Eigenvalue diagram
EKPCA detection based on 

the subspace angle

Detection of nonlinearity onset
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• Principal Component Analysis (PCA)

• Damage detection

• Structural Health Monitoring

• Identification of nonlinear parameters

• Conclusion

Outline
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Initial (healthy) 
structure

Structural Health Monitoring (step 1)

The SHM process involves three steps:

1) the observation of a system over time using periodically sampled 
dynamic measurements from an array of sensors, 

Structure in its 
current state
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Initial (healthy) 
structure

Structural Health Monitoring (step 2)

The SHM process involves three steps:

1) the observation of a system over time using periodically sampled 
dynamic measurements from an array of sensors, 

Structure in its 
current state

 i x (i)

Features

 i x (i)

Features

2) the extraction of damage-sensitive features from these 
measurements, 
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Initial (healthy) 
structure

Structural Health Monitoring (step 3)

The SHM process involves three steps:

1) the observation of a system over time using periodically sampled 
dynamic measurements from an array of sensors,.

Structure in its 
current state

 i ; x (i)

Features

 i ; x (i)

Features

2) the extraction of damage-sensitive features from these 
measurements, 

Damage ? ?

3) the statistical analysis of these features to determine if the structure 
is healthy or damaged.
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The damage state of a system can be described as a five-step process 
(Rytter, 1993) to answer the following questions.

• Level 1: Existence. Is there damage in the system?

• Level 2: Location. Where is the damage in the system?

• Level 3: Type. What kind of damage is present?

• Level 4: Extent. How severe is the damage?

• Level 5: Prognosis. How much useful life remains?

Damage problem
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 Use of statistical procedures to increase robustness

Categories of false indications of damage

• False-positive damage indication = indication of damage 
when none is present.

• False-negative damage indication = no indication of damage 
when damage is present.

Some difficulties

Influence of environmental conditions

• e.g. temperature variations in civil engineering structure
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• Located in Luxembourg

• Two spans (102m total) concrete box 

girder bridge built in 1966

• 112 pre-stressed steel cables

• Destruction for territory development  

purpose

The Champangshiehl bridge (1)

Views of the Champangshiehl bridge 
(Luxembourg)
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Context

• Project: « Dynamic and Static evaluation 
of civil engineering structures » led by 

the University of Luxembourg
- Aim: to assess the feasibility of non-

destructive testing methods for 
condition monitoring of civil 

structures
- Mean: introduce controlled damage 

in the Champangshiehl bridge

• Collaboration with the University of Liège 
to test damage detection techniques.

The Champangshiehl bridge (2)

Views of the Champangshiehl bridge 
(Luxembourg)
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0%

33,70% 33,70%
46,10% 46,10%

0% 0%
12,60%

24,20%

62,12%

Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4

Section 1 Section 2

Bridge top-view – cutting sections

Percentage of cut tendons in each section

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Damage scenarios
4 damage cases

The Champangshiehl bridge (3)
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• Dynamic measurements
– Tri-axial accelerometers
– 20 measurement points (A1-A10, B1-B10). 

• Excitation
– Impact excitation between B5 and B6
– Swept sine excitation by a reaction-type vibration machine using 

two rotating unbalances

Measurement set-up

Location of the sensors on the bridge deck

The Champangshiehl bridge (4)
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Evolution of the temperatures recorded 
at different locations on the bridge

Measurement set-up

The Champangshiehl bridge (4)
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• Use of the free response after impact excitation
• Detection of the 2 first natural frequencies in all the scenarios

• In the healthy state (scenario #0): f1 = 1.92 Hz, f2 = 5.54 Hz

The natural frequencies 
decrease as more tendons 
are cut (except for f1 in 
damage scenario 2)

Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4

delta f1 0,00% -2,60% 1,60% -5,21% -8,85%

delta f2 0,00% -1,62% -5,42% -2,71% -4,33%

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

Fr
eq

ue
nc

y 
de

vi
at

io
n 

[%
]

Identification of natural frequencies using SSI

The Champangshiehl bridge (5)
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Damage detection results

The Champangshiehl bridge (6)
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Damage detection by EPCA

Scenario #0
Healthy states

Damaged states

#1 #2 #3 #4
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Use of Principal Component Analysis (*)

In the following method, measurement of environmental variables is not 
required but their effects are merely observed from the variation of 
measured features (i.e. natural frequencies in this case).

Let us denote by yk a vector of n vibration features identified at time tk

and let us collect all the samples (k=1, …, N) in a (nxN) matrix Y.

Eliminating environmental effects (1)

(*) A.-M. Yan et al., Structural damage diagnosis under varying environmental conditions, MSSP 19 (2005) 847-864

Performing SVD of the covariance matrix gives

2T TY Y = U Σ U with TU U = I

1

2

0

0

 
  

 

Σ
Σ

Σ negligible (due to noise)
and
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m N m n n N  X T Y

loading matrixscore matrix

The dimension m may be thought as the physical order of the system 

which corresponds to the number of combined environmental factors 
that affect the features.

The first m columns of U are taken to build matrix T so that

Eliminating environmental effects (2)

The loss of information can be assessed by re-mapping the projected data 
back to the original space

T Tˆ  Y T X T T Y

and the residual error matrix is defined as : ˆE = Y Y

estimated
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Definition of the Novelty Index

Residual error matrix : ˆE = Y Y

Euclidean norm : E
k kNI  E

prediction error vector at time tk

Mahalanobis norm : 1M T
k k kNI  E R E

1 T

N
R Y Y (covariance matrix)

mean value

standard deviation

Statistical tool : 3CL NI   (Upper Control Limit at 99.7 % confidence interval)

Eliminating environmental effects (3)
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O
y1

y2

Eliminating environmental effects (4)

Reference 
data set

In the 2D-space

Principal component analysis

The features are distributed 
around a geometric center

Environmental variations are responsible for the dispersion

+
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O
y1

y2

Eliminating environmental effects (5)

Reference 
data set

PC-I 
(main environmental factor)

PC-II 
(secondary factors)

In the 2D-space

Principal component analysis

+
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O
y1

y2

Eliminating environmental effects (6)

Reference 
data set

PC-I 
(main environmental factor)

PC-II 
(secondary factors)

In the 2D-space

Principal component analysis

Y

X1 (Y1)
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Damaged 
structure

Eliminating environmental effects (7)

In the 2D-space

Principal component analysis

Reference 
data set

PC-I 
(main environmental factor)

PC-II 
(secondary factors)

Y

X1 (Y1)

If the structure is damaged, the features depend 
in a different way on the environmental factors
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Eliminating environmental effects (8)

In the 2D-space

Principal component analysis

Reference 
data set

PC-I 
(main environmental factor)

PC-II 
(secondary factors)

Z

Y

X1 (Y1)

Remark: data normalization (zero-mean and unitary 
standard deviation) should be avoided in the present case !
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O
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Damaged 
structure

Eliminating environmental effects (9)

In the 2D-space

Principal component analysis

Reference 
data set

PC-I 
(main environmental factor)

PC-II 
(secondary factors)

Z

Y

X1 (Y1)

A

C

B

Limited range of environmental variations:              
PCA-I from data set A ~ PCA-I from data set B
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Natural frequencies are identified using of the Wavelet Transform and 
are chosen as system features

The Champangshiehl bridge (7)

Healthy states Damaged states

#1 #2 #3 #4

Healthy states Damaged states

#1 #2 #3 #4

#1 #2
#3 #4

#1 #2 #3 #4#0#0

#0#0

#0

#0

#0 #0



61The Champangshiehl bridge (8)

PCA procedure applied on the matrix of collected features  one single 
environmental factor has an influence (temperature)

Mean value of NI for 
the reference data set

Evolution of the Novelty Index

outlier limit

Healthy states Damaged states



62The Champangshiehl bridge (9)

Percentage of samples exceeding the outlier limit

Healthy states Damaged states

Ratio Nid/Nir between the damaged and the healthy states
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• Principal Component Analysis (PCA)

• Damage detection

• Structural Health Monitoring

• Identification of nonlinear parameters

• Conclusion

Outline



64Nonlinearity in engineering applications

hardening nonlinearities in 
engine-to-pylon connections

fluid-structure interaction
backlash and friction in 

control surfaces and joints

composite materials

Many works are reported in the literature on dynamic testing and 
identification of nonlinear systems but very few address nonlinear 
phenomena during modal survey tests.



65Theoretical Modal Analysis

Finite Element model

Linear systems Nonlinear systems

Eigenvalue problem

0 xKxCxM 

jjj ΦMΦK 2

Natural frequencies (j
2)

Mode shapes (Fj)

Finite Element model

NNM computation

  0 xx,fxM  NL

NNM frequencies
NNM modal curves



66Experimental Modal Analysis (EMA)

EMA for linear systems is now mature and widely used in structural 
engineering  well established techniques.

Finite Element model Response measurements

Theoretical approach Experimental approach

Eigenvalue problem

0 xKxM 

jjj ΦMΦK 2

Natural frequencies (j
2)

Mode shapes (Fj)

Time series

Identification methods

Time

A
cc

 (
m

/s
2
)



67Normal mode testing

EMA for nonlinear systems is still a challenge.

Finite Element model Response measurements

Theoretical approach Experimental approach

Numerical NNM computation

NNM frequencies
NNM modal curves

Time series

Experimental NNM extraction

  0 xx,fxM  NL

Time

A
cc

 (
m

/s
2
)



68

There are two main techniques for EMA. 

1. Phase resonance methods (Normal mode testing)

One of the normal mode at a time is excited using multi-point sine 
excitation at the corresponding natural frequency. The modes are 
identified one by one. 

 can be extended to nonlinear structures according to the 
invariance property of NNMs: 

« If the motion is initiated on one specific NNM,                           
the remaining NNMs remain quiescent for all time. »

Experimental Modal Analysis (EMA)

Remark
• Expensive and difficult.
• Extremely accurate mode shapes  a way to identify NNMs 

(but still a research topic).
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2. Phase separation methods

Several modes are excited at once using either broadband excitation 
(e.g., hammer impact and random excitation) or swept-sine excitation 
in the frequency range of interest. 

 in the nonlinear case, extraction of individual NNMs is not 
possible generally, because modal superposition is no longer valid.

 use of the proper orthogonal decomposition (POD) method 
to extract features from the time series .

Experimental Modal Analysis (EMA)

Remark

• All structures encountered in practice are nonlinear to some degree.

• If a nonlinear structure is excited with a broadband excitation signal 
(e.g. random force), then the results will appear linear 
experimental modal analysis will lead to an updated linearized model !
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Finite Element model

Linear systems Nonlinear systems
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Eigenvalue problem

Finite Element model

POD of the response
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Proper Orthogonal Decomposition (POD)
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Time information

 instantaneous frequencies

POM
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Comparison of LNM, NNM and POM on the 2 DOF example

x1

x 2

-1.5 1.5

-2

2

NNM

First mode

LNM

POM

The POM is the best linear 
representation of the 

nonlinear normal mode.

Geometric interpretation of the POMs
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Parameters for model updating (Crucial step!)

The number of parameters :

• should be kept small to avoid problems of ill-conditioning, 

• should be chosen with the aim of correcting recognised features in 
the model.

 requires physical insight  leads to knowledge-based models.

Methodology

• Estimation of nonlinear parameters only (which will be based on 
FE updating techniques).

Assumption

• The linear counterpart of the structure is known (updated).

Model parameter estimation using POD 
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222 )()()( jk
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jjij
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VUJ  

 selection of the POMs with the highest POV

X = U  VT

POM Associated energy 
(mode participation)

Time 
information

Parameter estimation using POD

Minimise the residuals between the bi-orthogonal decompositions 
of the measured and simulated data.

Principle of the method

Penalty function
Wavelet Transform 

Instantaneous frequencies
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Definition of a measurement vector v containing the modal features.

• In the case of linear systems

• In the case of nonlinear systems

Model parameter estimation techniques
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i th eigenvalue

i th mode shape vector

 TT
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T
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TT UωUωUωv ,,,,,,, 11 

i th set of instantaneous frequencies

i th POM
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Penalty function methods are based on the Taylor series expansion of 
the modal data in terms of the unknown parameters 

The vector of modal features v depends on parameters p

Model parameter estimation techniques

 pvvε 

A residual between analytical results and measured data is defined as

)(pvv 
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Op 













sensitivity matrix

initial estimation 
of the parameters

This expansion is often limited to the first two terms.
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The weighted penalty function is defined as

where pSvε  is the error in the predicted measurements.

Model parameter estimation techniques
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 is the sensitivity matrix.

Minimising J with respect to p leads to

  vWSSWSp 
 TT 1

With the assumption that the number of measurements is larger than 
the number of parameters, the matrix                 is square and 
hopefully full rank.

SWST

εWεTJ 

weighting matrix
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Vertical viewHorizontal view

Experimental 
set-up

Benchmark of the European COST Action F3 « Structural Dynamics »

Example of a nonlinear beam
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Finite Element model of the beam

The nonlinear stiffening effect of the thin beam is modelled         
by a nonlinear function in displacement of the form:

where A and a are nonlinear parameters to be identified.

 xsignxAfnl
a

Example of a nonlinear beam
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Identification of linear and nonlinear parameters

• 2 parameters : nonlinear stiffness + Young’s modulus

• Penalty function in terms of the first POM

• Simulation time = 0.4 sec

• Gaussian white noise of 1 %

• Nonlinear parameter correction < 10 %

• Linear parameter correction < 50 % 

Simulated results

Example of a nonlinear beam
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Simulated results

Before
updating

After
updating

Comparison between the original (−) and the reconstructed (--) signals

Example of a nonlinear beam
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Well-conditioning Ill-conditioning
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Linear parameter Linear parameter

Simulated results

Example of a nonlinear beam
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PSD of the time evolution 
of the 1st POM

Frequency (Hz)

)()( xsignxAxfnl
a

Experimental results (Vertical set-up)

Model of the nonlinear stiffness

Results of the identification of 
the nonlinear parameters based 
on the model updating method:

a = 2.8

A = 1.65 109 N/m2.8 Updated

Measured

Example of a nonlinear beam
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Comparison of the POM
1st POM 2nd POM

3rd POM 4th POM

Experimental results (Vertical set-up)

□ experimental

* nonlinear model
(after updating)

o linear model
(before updating)

Example of a nonlinear beam
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• Use of PCA for 3 goals:

– damage detection problem based on the concept of subspace 

angle;

– elimination of environmental effects.

– Identification of nonlinear parameters

• Good results obtained on an intentionally damaged bridge.

• Testing of the method on many other bridges is currently in progress.

Conclusion


