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Abstract

This paper presents a Discontinuous Galerkin scheme in order to solve the nonlinear elliptic partial differential
equations of coupled electro-thermal problems.

In this paper we discuss the fundamental equations for the transport of electricity and heat, in terms of
macroscopic variables such as temperature and electric potential. A fully coupled nonlinear weak formulation
for electro-thermal problems is developed based on continuum mechanics equations expressed in terms of
energetically conjugated pair of fluxes and fields gradients. The weak form can thus be formulated as a
Discontinuous Galerkin method.

The existence and uniqueness of the weak form solution are proved. The numerical properties of the
nonlinear elliptic problems i.e., consistency and stability, are demonstrated under specific conditions, i.e.
use of high enough stabilization parameter and at least quadratic polynomial approximations. Moreover the
prior error estimates in the H1-norm and in the L2-norm are shown to be optimal in the mesh size with the
polynomial approximation degree.

Keywords: Discontinuous Galerkin Method, Electro-thermal coupling, nonlinear elliptic problem, error
estimates

1. Introduction

Electro-thermal materials received a significant interest in recent years due to their capability to convert
electricity directly into heat and vice versa, which promises a wide range of applications in energy and en-
vironment fields. The main interest of this work is to derive a consistent and stable Discontinuous Galerkin
(DG) method for two-way electro-thermal coupling analyzes considering electro-thermal effects such as See-
beck and Peltier effects, but also Joule heating. These effects describe the direct conversion of the difference
in electric potential into a temperature difference within the system (Peltier effect), and vice versa (Seebeck
effect). This is typical of thermo-electric cells which could work in two ways: electric generations [1, 2] and
heat pumps which operate in cool or heat modes [3].
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Electro-thermal continuum has extensively been developed in the literature [3, 4, 5, 6]. For example,
as a non-exhaustive list, Ebling et al. [1] have implemented thermo-electric elements into the finite element
method and have validated it by analytical and experimental results for the figure of merit values. Liu [6] has
developed a continuum theory of thermo-electric bodies. He has applied it to predict the effective properties
of thermo-electric composites. However he has considered that the temperature and voltage variations are
small, which leads to a linear system of partial differential equations. Pérez-Aparicio et al. [5] have proposed
an electro-thermal formulation for simple configurations and have provided a comparison between analytical
and numerical results.

The constitutive equations that govern electro-thermal coupling can be formulated in term of (−V
T , 1

T )
instead of (V, T), where T is the temperature and V is the electric potential. Such a formulation has been
considered in the literature, e.g. by Mahan [4], Yang et al. [7], Liu [6], in order to obtain a conjugated
pair of fluxes and fields gradients. Mahan [4] has provided a comparison between the different energy fluxes
that have been developed and used by different researchers and concluded that all these different treatments
result in the same equation.

In this paper a discontinuous Galerkin weak formulation in terms of energetically conjugated fields gra-
dients and fluxes is proposed. The main strengths of the DG method are the ease in handling elements
of different types, the high order accuracy reached for higher polynomial orders and the high scalability
in parallel simulations. Indeed the possibility of using irregular and non conforming meshes in algorithm
makes it suitable for time dependent transient problems as it allows for easy mesh modification dynami-
cally with time. Above all, since the DG method allows discontinuities of the physical unknowns within
the interior of the problem domain, it is a natural approach to capture the jumps across the material in-
terface in electro-thermal coupled problems. However, if not correctly formulated, discontinuous methods
can exhibit instabilities, and the numerical results fail to approximate the exact solution. For practitioners,
it is important to have methods available which yield reliable results for a wide variety of problems. By
using an adequate inter element flux definition combined to stabilization techniques, the shortcomings of
non-stabilized DG methods can be overcome, e.g. [8, 9, 10].

Since the seminal work of Reed et al. [11], DG methods have been developed to solve hyperbolic,
parabolic, and elliptic problems. The state of the art of DG methods and their developments can be found
in [12]. Most of DG methods for elliptic and parabolic problems rely on the Interior Penalty (IP) method.
The main principle of IP, as introduced by [13, 14], is to constrain weakly the compatibility instead of
building it into the finite element which makes it easier to use discontinuous polynomial spaces of high
degree. The interest in the symmetric interior penalty (SIPG) methods, which will be considered in this
paper, has been renewed by Wheeler [14] due to demands for optimality of convergence rates with the mesh
size hs (i.e., the rates of the convergence is k in the H1-norm and k + 1 in the L2-norm, where k is the
polynomial approximation degree). However there exist other possible choices of traces and numerical fluxes
as discussed by Arnold et al. [15], who have provided an analysis of a large class of discontinuous methods for
second order elliptic problems with different numerical fluxes, and declared that IP, NIPG (Non-Symmetric
Interior Penalty), LDG (Local discontinuous Galerkin) and other DG methods are consistent and stables
methods. In particular Arnold et al. [15] have proposed a framework for dealing with linear elliptic problems
by means of DG methods and demonstrated that DG methods which are consistent, adjoint consistent, and
stable achieve optimal error estimates, and that the inconsistent DG methods like the pure penalty methods
can still achieve optimal error estimates provided they are super-penalized. Besides, Georgoulis [16] has
derived anisotropic hp version error bounds for linear second order elliptic diffusion convection reaction
using Discontinuous Galerkin finite element methods (SIPG and NIPG), on shape-regular and anisotropic
elements, and for isotropic and anisotropic polynomial degrees for the element bases. He has also observed
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optimal order of convergence in the L2-norm for the SIPG formulation when a uniform mesh size refinement
for different values of k is employed. Moreover, he has shown that the solution of the adjoint problem suffers
from sub-optimal rates of convergence when a NIPG formulation is used. Yadav et al. [17] have extended
the DG methods from a linear self-adjoint elliptic problem to a second order nonlinear elliptic problem. The
nonlinear system resulting from DG methods is then analyzed based on a fixed point argument. They have
shown that the error estimate in the L2-norm for piece-wise polynomials of degree k ≥ 1 is k + 1. They have
also provided numerical results to illustrate the theoretical results. Gudi et al. [18] have proposed an analysis
for the most popular DG schemes such as SIPG, NIPG and LDG methods for nonlinear elliptic problems,
and the error estimates have been studied for each of these methods by reformulating the problems in a
fixed point form. In addition, according to Gudi et al. [18], optimal errors in the H1-norm and in L2-norm
are proved for SIPG for polynomial degrees larger or equal to 2, and a loss in the optimality in L2-norm is
observed for NIPG and LDG. In that work a deterioration in the order of convergence in hs is noted when
linear polynomials are used.

Recently, DG has been used to solve coupled problems. For instance Wheeler and Sun [19] have proposed
a primal DG method with interior penalty (IP) terms to solve coupled reactive transport in porous media.
In that work, a cut off operator is used in the DG scheme to treat the coupling and achieve convergence.
They have declared that optimal convergence rates for both flow and transport terms can be achieved if
the same polynomial degree of approximation is used. However if they are different, the behavior for the
coupled system is controlled by the part with the lowest degree of approximation, and the error estimate
in L2(H1)-norm is nearly optimal in k with a loss of 1

2 when polynomials with different degrees are used.
Furthermore, Zheng et al. [20] have proposed a DG method to solve the thermo-elastic coupling problems
due to temperature and pressure dependent thermal contact resistance. In that work the DG method is
used to simulate the temperature jump, and the mechanical sub-problem is solved by the DG finite element
method with a penalty function.

To the authors knowledge there is no development related to DG methods for electro-thermal coupling,
which is the aim of this paper. The main advantage of this work is the aptitude to deal with complex geometry
and the capability of the formulation to capture the electro-thermal behavior for composite materials with
high contrast: one phase has a high electric conductivity (e.g., carbon fiber) and other is a resistive material
(e.g., polymers). The key point in being able to develop a stable DG method for electro-thermal coupling is to
formulate the equations in terms of energetically conjugated pairs of fluxes and fields gradients. Indeed, the
use of energetically consistent pairs allow writing the strong form in a matrix form suitable to the derivation
of a SIPG weak form as it will be demonstrated in this paper.

This paper is organized as follows. Section 2 describes the governing equations of electro-thermal mate-
rials. In order to develop the DG formulation, the weak form is formulated in terms of a conjugated pair
of fluxes and fields gradients, resulting in a particular choice of the test functions (δ( 1

T ), δ(−V
T )) and of the

trial functions ( 1
T ,
−V
T ). A complete nonlinear coupled finite element algorithm for electro-thermal materials

is then developed in Section 3 using the DG method to derive the weak form. This results into a set of non-
linear equations which is implemented within a three-dimensional finite element code. Section 4 focuses on
the demonstration of the numerical properties of the DG method under the assumption of a bi-dimensional
problem, based on rewriting the nonlinear formulation in a fixed point form following closely the approach
described in [21, 18]. The numerical properties of the nonlinear elliptic problem, i.e. consistency and the
uniqueness of the solution, can then be demonstrated, and the prior error estimate is shown to be optimal
in the mesh size for polynomial approximation degrees k > 1. In Section 5, several examples of applications
in one, two, and three dimensions are provided for single and composite materials, in order to validate the
accuracy and effectiveness of the electro-thermal DG formulation and to illustrate the algorithmic properties.
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We end by some conclusions, remarks, and perspectives in Section 6.

2. Governing equations

In this section an overview of the basic equations that govern the electro-thermal phenomena is presented
for a structure characterized by a domain Ω ⊂ Rd, with d = 2, or 3 the space dimension, whose external
boundary is ∂Ω. In particular we discuss the choice of the conjugated pair of fluxes and fields gradients that
will be used to formulate the strong form in a matrix form.

2.1. Strong form

The first balance equation is the electrical charge conservation equation. When assuming a steady state,
the solution of the electrical problem consists in solving the following Poisson type equation for the electrical
potential

∇ · jjje = 0 ∀ xxx ∈ Ω , (1)

where jjje [A/m2] denotes the flow of electrical current density vector, which is defined as the rate of charge
carriers per unit area or the current per unit area. At zero temperature gradient, the current density jjje
is described by Ohm’s law which is the relationship between the electric potential V [V] gradient and the
electric current flux per unit area through the electric conductivity lll [S/m], with

jjje = lll · (−∇V). (2)

However when T [K] varies inside the body, an electromotive force (∇V)s per unit length appears, and reads

(∇V)s = −α∇T, (3)

where α [V/K] is the Seebeck coefficient which is in general temperature dependent and defined as the deriva-
tive of the electric potential with respect to the temperature. By taking in consideration the Seebeck effect,
Eq. (3), and adding it to Ohm’s Law, Eq.(2), for systems in which the particle density is homogeneous [4],
the current density is rewritten as

jjje = lll · (−∇V) + αlll · (−∇T). (4)

The second balance equation is the conservation of the energy flux, which is a combination of the inter
exchanges between the thermal and electric energies:

∇ · jjjy = −∂ty ∀ xxx ∈ Ω. (5)

The right hand side of this equilibrium equation is the time derivative of the internal energy density y [J/m3]

y = y0 + cv T, (6)

which consists of the constant y0 independent of the temperature and of the electric potential, and of the
volumetric heat capacity cv [J/(K ·m3)] multiplied by the absolute temperature T. Moreover the energy flux
jjjy is defined as

jjjy = qqq + Vjjje, (7)
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where qqq [W/m2] is the heat flux. On the one hand, at zero electric current density, jjje = 0 (open circuit), the
heat flux is given by the Fourier ’s Law

qqq = kkk · (−∇T), (8)

where kkk [W/(K ·m)] denotes the symmetric matrix of thermal conductivity coefficients, which may depend
on the temperature. On the other hand, at zero temperature gradient, the heat flux is given by

qqq = βα jjje = αTjjje, (9)

where the coupling between the heat flux qqq and the electric current density jjje is governed by the Peltier
coefficient βα = αT. By superimposing the previous terms to the Fourier’s Law, Eq. (8), the thermal flux
can be rewritten as:

qqq = kkk · (−∇T) + αTjjje = (kkk + α2 Tlll) · (−∇T) + αTlll · (−∇V). (10)

The first term is due to the conduction and the second term corresponds to the joule heating effect.
Let us now define the Sobolev space Ws

r(Ω), with s a non-negative integer and r ∈ [1,∞[, the subspace
of all functions from the norm Lr(Ω) whose generalized derivatives up to order s exist and belong to Lr(Ω),
which is defined as

Ws
r(Ω) = {f ∈ Lr(Ω), ∂αf ∈ Lr(Ω) ∀ | α |≤ s, s ≥ 1} . (11)

When r = 2, the spaces are Hilbert spaces equipped with the scalar product: Ws
2(Ω) = Hs(Ω). For s = 0 ,

the norm is the L2 norm.
Therefore the conservation laws are written as finding V, T ∈ H2(Ω)×H2+

(Ω) such that

∇ · jjje = 0 ∀ xxx ∈ Ω, (12)

∇ · jjjy = ∇ · qqq + jjje · ∇V = −∂ty ∀ xxx ∈ Ω, (13)

where T belongs to the manifold H2+

, such that T is always strictly positive.
These equations are completed by suitable boundary conditions, where the boundary ∂Ω is decomposed

into a Dirichlet boundary ∂DΩ and a Neumann boundary ∂NΩ (i.e., ∂DΩ∪ ∂NΩ = ∂Ω, and ∂DΩ∩ ∂NΩ = 0).
On the Dirichlet BC, one has

T = T̄ > 0 , V = V̄ ∀ xxx ∈ ∂DΩ, (14)

where T̄ and V̄ are the prescribed temperature and electric potential respectively. The natural Neumann
boundary conditions are constraints on the secondary variables: the electric current for the electric charge
equation and the energy flux for the energy equation, i.e.

jjje · nnn = j̄e , jjjy · nnn = j̄y ∀ xxx ∈ ∂NΩ, (15)

where nnn is the outward unit normal to the boundary ∂Ω. For simplicity we consider the same boundary
division into Neumann and Dirichlet parts for the both fields T and V. However in the general case this
could be different.
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The set of Eqs. (12, 13) can be rewritten under a matrix form. First we rewrite Eqs. (4, 7, 10) under
the form

jjj =

(
jjje
jjjy

)
=

(
lll αlll

Vlll + αTlll kkk + αVlll + α2Tlll

)(
−∇V
−∇T

)
. (16)

The set of governing Eqs. (12, 13) thus becomes finding V, T ∈ H2(Ω)×H2+

(Ω) such that

div (jjj) =

(
0
−∂ty

)
= iii, (17)

where we have introduced iii =

(
0
−∂ty

)
for a future use.

2.2. The conjugated driving forces

First the weak form of the conservation of electric charge carriers, Eq. (1), is obtained by taking the
inner product of this equation with a suitable scalar test function δfV ∈ H1(Ω′) over a sub-domain Ω′ ⊂ Ω,
yielding ∫

Ω′
∇ · jjjeδfVdΩ′ = 0 ∀δfV ∈ H1(Ω′). (18)

After a simple formal integration by parts and using the divergence theorem, we obtain

−
∫

Ω′
jjje · ∇δfV dΩ′ +

∫
∂Ω′

jjje · nnnδfV dS = 0 ∀δfV ∈ H1(Ω′). (19)

Secondly, taking the inner product of the second balance equation, Eq. (13), with the test function δfT ∈
H1(Ω′), over the sub-domain Ω′ ⊂ Ω leads to∫

Ω′
∇ · qqqδfTdΩ′ +

∫
Ω′

jjje · ∇VδfTdΩ′ = −
∫

Ω′
∂tyδfTdΩ′ ∀δfT ∈ H1(Ω′). (20)

Moreover by applying the divergence theorem, one obtains∫
Ω′

qqq · ∇δfTdΩ′ =

∫
∂Ω′

qqq · nnnδfTdS +

∫
Ω′
∇V · jjjeδfTdΩ′ +

∫
Ω′
∂tyδfTdΩ′ ∀δfT ∈ H1(Ω′). (21)

By substituting the internal energy, Eq. (6), and the thermal flux, Eq. (10), this last equation reads∫
Ω′

(kkk · (−∇T) + αTjjje) · ∇δfTdΩ′ =

∫
Ω′

cV ∂tTδfTdΩ′ +

∫
Ω′
∇V · jjjeδfTdΩ′

+

∫
∂Ω′

(kkk · (−∇T) + αTjjje) · nnnδfTdS.

(22)

In order to define the conjugated forces, let us substitute δfV by −V
T in Eq. (19). This results into∫

∂Ω′
jjje · nnn(−V

T
)dS =

∫
Ω′

jjje · (−
∇V

T
+

V

T2∇T)dΩ′. (23)
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Substituting δfT by 1
T ∈ H1+

(Ω′) in Eq. (22) leads to:∫
Ω′

(
(−∇T) · kkk · (−∇T)

T2 − αjjje
T
· ∇T

)
dΩ′ =

∫
Ω′

(
cV

T
∂tT)dΩ′ +

∫
Ω

∇V · j
jje
T

dΩ′

+

∫
∂Ω′

(
kkk · (−∇T

T
) + αjjje

)
· nnndS.

(24)

By subtracting Eq. (23) from Eq. (24), one gets∫
Ω′

cV

T
∂tTdΩ′ +

∫
∂Ω′

(
kkk · (−∇T

T
) + αjjje + jjje(

V

T
)

)
· nnndS

=

∫
Ω′

(
−jjje ·

∇V

T
+ jjje ·

∇V

T
− jjje

V

T2 · ∇T

)
dΩ′ +

∫
Ω′

(
(−∇T) · kkk · (−∇T)

T2 − αjjje
T
· ∇T

)
dΩ′,

(25)

or ∫
Ω′

1

T
(cV ∂tT)dΩ′ +

∫
∂Ω′

1

T
(qqq + jjjeV) · nnndS =

∫
Ω′

−∇T

T2 · (jjjeV− kkk · ∇T + αjjjeT) dΩ′. (26)

Henceforth, as jjjy = qqq + jjjeV, this last result is rewritten as∫
Ω′
∂tyδfTdΩ′ +

∫
∂Ω′

jjjy · nnnδfTdS =

∫
Ω′

jjjy · ∇δfTdΩ′. (27)

By this way we recover the conservation equation of the energy flux, Eq. (5), which shows that jjje, jjjy and
∇(−V

T ),∇( 1
T ) is a conjugated pair of fluxes and fields gradients as shown in [6].

2.3. Strong form in terms of the conjugated pairs of fluxes and fields gradients

Let us define a 2 × 1 vector of the unknown fields MMM =

(
fV
fT

)
, with fV = −V

T and fT = 1
T , then the

gradients of the fields vector ∇MMM, a 2d× 1 vector in terms of (∇fV,∇fT), is defined by

(
∇MMM

)
=

(
∇fV
∇fT

)
=

(
∇(−V

T )
∇( 1

T )

)
=

(
− 1

TIII V
T2 III

0 − 1
T2 III

)(
∇V
∇T

)
. (28)

Hence, the fluxes defined by Eq. (16) can be expressed in terms of fV, fT, yielding

jjj =

(
jjje
jjjy

)
=

(
lllT VTlll + αT2lll

VTlll + αT2lll T2kkk + 2αT2Vlll + α2T3lll + TV2lll

)(
∇fV
∇fT

)
. (29)

The 2d × 1 fluxes vector jjj is the product of the fields gradients vector ∇MMM, which derived from the state
variables (fV, fT), by a coefficients matrix ZZZ(V,T) of size 2d×2d, which is temperature and electric potential
dependent. This formulation of the conjugated forces leads to a symmetric coefficients matrix ZZZ(V,T) such
that

jjj = ZZZ ∇MMM. (30)
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From Eq. (29), the symmetric coefficients matrix ZZZ(V,T) is positive definite if ZZZ00 and ZZZ11 - ZZZT
10ZZZ−1

00 ZZZ01 are
positive definite. Since ZZZ00 = lllT is positive definite, and ZZZ11 - ZZZT

10ZZZ−1
00 ZZZ01 = kkkT2 is also positive definite,

then ZZZ(V,T) is a positive definite matrix.
The coefficient matrix ZZZ(V,T) in Eq. (29) could also be rewritten in terms of (fV, fT) = (−V

T ,
1
T ), since

T = 1
fT
,V = − fV

fT
, as

ZZZ(fV, fT) =

( 1
fT

lll − fV
f2T

lll + α 1
f2T

lll

− fV
f2T

lll + α 1
f2T

lll kkk
f2T
− 2α fV

f3T
lll + α2 1

f3T
lll +

f2V
f3T

lll

)
. (31)

Since the coefficients matrix is positive definite, the energy can be defined by

∇MMMTjjj = ∇MMMTZZZ(fV, fT)∇MMM

=
(
∇fV ∇fT

)( 1
fT

lll − fV
f2T

lll + α 1
f2T

lll

− fV
f2T

lll + α 1
f2T

lll kkk
f2T
− 2α fV

f3T
lll + α2 1

f3T
lll +

f2V
f3T

lll

)(
∇fV
∇fT

)
≥ 0.

(32)

Finally, the strong form (16, 17) can be expressed as
div(jjj) = iii ∀ xxx ∈ Ω,

MMM = M̄MM ∀ xxx ∈ ∂DΩ,

n̄nnT jjj = j̄jj ∀ xxx ∈ ∂NΩ,

(33)

where n̄nn =

(
nnn 0
0 nnn

)
, M̄MM ∈ L2(∂DΩ)× L2+

(∂DΩ), and j̄jj =

(
j̄e
j̄y

)
.

3. Thermo-electrical analysis with the Discontinuous Galerkin (DG) finite element method

Let the domain Ω ⊂ Rd be approximated by a discretized domain Ωh ⊂ Rd such that Ω ≈ Ωh = ∪eΩe,
where a finite element in Ωh is denoted by Ωe. The boundary ∂Ωh is decomposed into a region of Dirichlet
boundary ∂DΩh, and a region of Neumann boundary ∂NΩh. The intersecting boundary of the finite elements
is denoted by ∂IΩh = ∪e∂Ωe \ ∂Ωh as shown in the Fig. 1, with ∂NΩh = ∪e∂NΩe, ∂DΩh = ∪e∂DΩe,
∂Ωh ∪ ∂IΩh = ∪e∂Ωe, and ∂IΩ

e = ∂Ωe
⋂
∂IΩh.

Within this finite element discretization, an interior face (∂IΩ)
s

= ∂Ωe+ ∩ ∂Ωe− is shared by elements
Ωe+ and Ωe−, and nnn− is the unit normal vector pointing from element Ωe− toward element Ωe+, see Fig. 1.
Similarly, an exterior Dirichlet edge (∂DΩ)

s
= ∂Ωe ∩ ∂DΩh is the intersection between the boundary of the

element Ωe and the Dirichlet boundary, and nnn− = nnn is used to represent the outward unit normal vector.
Finally (∂DIΩ)

s
is a face either on ∂IΩh or on ∂DΩh, with

∑
s (∂DIΩ)

s
= ∂IΩh ∪ ∂DΩh.
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Figure 1: interface between two elements (Ωe+) and (Ωe−)

3.1. Weak discontinuous form

The weak form of the matrix form Eq. (33) will be formulated by considering a two-field coupled problem
defined in terms of the energetically conjugated pair of fluxes and fields gradients as defined in Section 2.3.

To account for the discontinuity in MMM =

(
fV
fT

)
, we can define the associated norm of the standard

broken Sobolev space Ws
r(Ωh) of order s and exponent r with 1 ≤ r < ∞. Starting from the Sobolev space

norm and semi norm‖MMM ‖Ws
r(Ω

e) =
(∑

|α|≤s

∫
Ωe
‖ ∂αfT ‖r dx +

∑
|α|≤s

∫
Ωe
‖ ∂αfV ‖r dx

) 1
r

,

|MMM |Ws
r(Ω

e) =
(∫

Ωe
‖ ∂sfT ‖r dx +

∫
Ωe
‖ ∂sfV ‖r dx

) 1
r

,
(34)

the norm and semi norm of the broken Sobolev space read‖MMM ‖Ws
r(Ωh) =

(∑
e ‖MMM ‖rWs

r(Ω
e)

) 1
r

,

|MMM |Ws
r(Ωh) =

(∑
e |MMM |rWr

s(Ω
e)

) 1
r

.
(35)

For the case r =∞, the norm is defined as

‖MMM ‖Ws
∞(Ωh)= maxe ‖MMM ‖Ws

∞(Ωe), with ‖MMM ‖Ws
∞(Ωe)= max|α|≤s{‖ ∂αfV ‖L∞(Ωe), ‖ ∂αfT ‖L∞(Ωe)} . (36)

We can define the broken Sobolev spaces for the case r = 2 as

X(+)
s =

{
MMM ∈ L2(Ωh)× L2(+)

(Ωh) |
MMM|Ωe∈Hs(Ωe)×Hs(+)

(Ωe) ∀Ωe∈Ωh

}
, (37)

and

YYY =
{
∇MMM ∈ (L2(Ωh))3 × (L2(Ωh))3 |∇MMM|Ωe∈(H1(Ωe))3×(H1(Ωe))3 ∀Ωe∈Ωh

}
, (38)
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where, we define X+
s as the manifold such that fT > 0, while Xs is the manifold for which fT Q 0, with

X+
s ⊂ Xs. For conciseness, we have used an abuse of notations in Eq. (37), in which “•(+)” holds either for

“•” or for “•+”. Still for conciseness, we define X(+) = X
(+)
2 .

Let us derive the weak form of the governing equation (33) for electro-thermal coupling by multiplying
it by a suitable test function δMMM ∈ X1, performing a volume integral, and using the divergence theorem on
each element Ωe. This leads to state the problem as finding MMM ∈ X+

1 such that

−
∑

e

∫
Ωe

∇δMMMTjjj(MMM,∇MMM) dΩ +
∑

e

∫
∂Ωe

δMMMTn̄nnTjjj(MMM,∇MMM) dS =

∫
Ωh

δMMMTiiidΩ ∀δMMM ∈ X1. (39)

The surface integral of this last equation is rewritten as∑
e

∫
∂Ωe

δMMMTn̄nnTjjj(MMM,∇MMM)dS =
∑

e

∫
∂NΩe

δMMMTn̄nnTjjj(MMM,∇MMM)dS +
∑

e

∫
∂IΩe∪∂DΩe

δMMMTn̄nnT jjj(MMM,∇MMM)dS. (40)

The second term of the right hand side of Eq. (40) can be rewritten using∑
e

∫
∂IΩe

δMMMTn̄nnTjjj(MMM,∇MMM)dS =

∫
∂IΩh

(
δMMM−

T

n̄nn−
T

jjj−(MMM,∇MMM) + δMMM+T

n̄nn+T

jjj+(MMM,∇MMM)
)

dS, n̄nn+ = −n̄nn−,

∑
e

∫
∂DΩe

δMMMTn̄nnTjjj(MMM,∇MMM)dS = −
∫
∂DΩh

(
−δMMMTn̄nn−

T

jjj(MMM,∇MMM)
)

dS and n̄nn− = n̄nn.

(41)

In these equations we use the superscript “−(+)” to refer to the value of element Ωe−(Ωe+

). Moreover we

define δMMMnnn =

(
nnn− 0
0 nnn−

)
δMMM and MMMnnn =

(
nnn− 0
0 nnn−

)
MMM for future use.

We can introduce trace operators to manipulate the numerical flux and obtain the primal formulation.
On ∂IΩh, the average 〈•〉 and the jump J•K operators are defined as 〈•〉 = 1

2 (•+ + •−), J K = (•+−•−). The
definition of these two trace operators can be extended on the Dirichlet boundary ∂DΩh as 〈•〉 = •, J•K =
(−•). Therefore using Eqs. (41), Eq. (39) becomes∑

e

∫
Ωe

∇δMMMTjjj(MMM,∇MMM)dΩ +

∫
Ωh

δMMMTiiidΩ =

∫
∂NΩh

δMMMTn̄nnTjjj(MMM,∇MMM)dS

−
∫
∂IΩh∪∂DΩh

q
δMMMT

nnn jjj(MMM,∇MMM)
y

dS.

(42)

Applying the Neumann boundary conditions specified in Eq. (33) allows this last result to be rewritten as
finding MMM ∈ X+

1 such that∫
∂NΩh

δMMMTj̄jj dS =

∫
Ωh

∇δMMMTjjj(MMM,∇MMM)dΩ +

∫
Ωh

δMMMTiiidΩ +

∫
∂IΩh∪∂DΩh

q
δMMMT

nnn jjj(MMM,∇MMM)
y

dS ∀δMMM ∈ X1. (43)

Applying the mathematical identity JabK = JaK 〈b〉 + JbK 〈a〉 on ∂IΩh, and by neglecting the second term
because only consistency of the test functions needs to be enforced, then the consistent flux related to the

last term of Eq. (43) reads
r
δMMMT

nnn

z
〈jjj(MMM,∇MMM)〉.

Moreover, on the one hand, due to the discontinuous nature of the trial functions in the DG weak form,
the inter-element discontinuity is allowed, so the continuity of unknown variables is enforced weakly by
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using symmetrization and stabilization terms at the interior elements boundary interface ∂IΩh. On the
other hand, the Dirichlet boundary condition (33) is also enforced in a weak sense by considering the same
symmetrization and stabilization terms at the Dirichlet elements boundary interface ∂DΩh. By using the
definition of the conjugated force, Eq. (29), the virtual energy flux δjjj(MMM) reads

δjjj(MMM) = ZZZ(MMM)∇δMMM. (44)

This last result allows formulating the symmetrization and quadratic stabilization terms so the weak
form Eq. (43) becomes finding MMM ∈ X+

1 such that:

∫
∂NΩh

δMMMTj̄jjdS−
∫
∂DΩh

M̄MM
T
nnn

(
ZZZ(M̄MM)∇δMMM

)
dS +

∫
∂DΩh

δMMMT
nnn

(
B
hs

ZZZ(M̄MM)

)
M̄MMnnndS

=

∫
Ωh

∇δMMMTjjj(MMM,∇MMM)dΩ +

∫
Ωh

δMMMTiiidΩ +

∫
∂IΩh∪∂DΩh

q
δMMMT

nnn

y
〈jjj(MMM,∇MMM)〉dS

+

∫
∂IΩh

q
MMMT

nnn

y
〈ZZZ(MMM)∇δMMM〉dS +

∫
∂DΩh

q
MMMT

nnn

y 〈
ZZZ(M̄MM)∇δMMM

〉
dS

+

∫
∂IΩh

q
δMMMT

nnn

y〈 B
hs

ZZZ(MMM)

〉
JMMMnnnK dS +

∫
∂DΩh

q
δMMMT

nnn

y〈 B
hs

ZZZ(M̄MM)

〉
JMMMnnnK dS ∀δMMM ∈ X1,

(45)

where M̄MMnnn =

(
nnn 0
0 nnn

)
M̄MM. In this equation B is the stability parameter which has to be sufficiently high to

guarantee stability, as it will be shown in Section 4, and hs is the characteristic length of the mesh, which
will also be defined in Section 4.

The last two terms of the left hand side of Eq. (45) make sure that the Dirichlet boundary condition
(33) is weakly enforced, as it will be shown in Section 4. The last five terms of the right hand side of Eq.
(45) are the interface terms, which correspond to a SIPG method:

1. The first term ensures consistency despite the discontinuity of the test function δMMM between two
elements, and involves the consistent numerical flux which is here the traditional average flux.

2. The second and third term achieve symmetry of the weak form and thereby also of the stiffness matrix
after FE discretization. It also ensures (weakly) the continuity of solution across element boundaries
and the optimal convergence rate in the L2-norm.

3. The last two terms ensure stability, as it is well known that the discontinuous formulation of elliptic
problems requires quadratic terms. The stabilization term depends on a stability parameter, which is
independent of mesh size and material properties, as it will be shown in Section 4.

46- ally the weak form (45) is thus summarized as finding MMM ∈ X+
1 such that:

a(MMM, δMMM) = b(M̄MM, δMMM)−
∫

Ωh

δMMMTiiidΩ ∀δMMM ∈ X1, (46)
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with

a(MMM, δMMM) =

∫
Ωh

∇δMMMTjjj(MMM,∇MMM)dΩ +

∫
∂IΩh∪∂DΩh

q
δMMMT

nnn

y
〈jjj(MMM,∇MMM)〉dS

+

∫
∂IΩh

q
MMMT

nnn

y
〈ZZZ(MMM)∇δMMM〉dS +

∫
∂DΩh

q
MMMT

nnn

y 〈
ZZZ(M̄MM)∇δMMM

〉
dS

+

∫
∂IΩh

q
δMMMT

nnn

y〈 B
hs

ZZZ(MMM)

〉
JMMMnnnK dS +

∫
∂DΩh

q
δMMMT

nnn

y〈 B
hs

ZZZ(M̄MM)

〉
JMMMnnnK dS,

(47)

and

b(M̄MM, δMMM) =

∫
∂NΩh

δMMMTj̄jjdS−
∫
∂DΩh

M̄MM
T
nnn

(
ZZZ(M̄MM)∇δMMM

)
dS +

∫
∂DΩh

δMMMT
nnn

(
B
hs

ZZZ(M̄MM)

)
M̄MMnnndS. (48)

It should be noted that the test functions in the previous equations of the weak formulation belong to X1,
however for the numerical analysis, we will need to be in X2.

3.2. Finite element discretization

In the finite element method, the trial function MMM is approximated by MMMh, which is defined over a finite
element Ωe using the interpolation concepts in terms of the standard shape function Na ∈ R at node a, see
[22], yielding

MMMh = NNNa MMMa ,∇MMMh = ∇NNNa MMMa, (49)

where MMMa denotes the nodal value of MMMh at node a, NNNa =

(
Na 0
0 Na

)
is a matrix of the shape functions and

∇NNNa =

(
∇Na 0
0 ∇Na

)
is a matrix of the shape function gradients. In order to obtain a Galerkin formulation,

the test functions are approximated using the same interpolation, i.e.

δMMMh = NNNa δMMMa , ∇δMMMh = ∇NNNa δMMMa. (50)

In this work, we assume a constant mesh size on the elements, but the theory can be generalized by
considering bounded element sizes such as in [18]. We assume the discretization is shaped with a regular

mesh of size hs defined as |Ω
e|

|∂Ωe| . We also assume shape regularity of Ωh so that there exist constants c1, c2, c3,

and c4, independent of hs, such that

c1 diam ((∂DIΩ)
s
) ≤ hs ≤ c2 diam ((∂DIΩ)

s
), and

c3 diam (Ωe) ≤ hs ≤ c4 diam (Ωe).
(51)

The finite discontinuous polynomial approximation MMMh =

(
fVh

fTh

)
∈ Xk+

of the solution is thus defined in

the space

Xk(+)

=
{

MMMh ∈ L2(Ωh)× L2(+)

(Ωh) |
MMMh|Ωe∈Pk(Ωe)×Pk(+)

(Ωe) ∀Ωe∈Ωh

}
, (52)
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where Pk(Ωe) is the space of polynomial functions of order up to k and Pk+

means that the polynomial
approximation remains positive. In the numerical framework, the positive nature of the polynomial approx-
imation is not directly enforced, but results naturally from the resolution of the well-posed finite element
problem.

Using these definitions, the problem becomes finding MMMh ∈ Xk+

such that

a(MMMh, δMMMh) = b(M̄MM, δMMMh)−
∫

Ωh

δMMMT
h iiidΩ ∀δMMMh ∈ Xk. (53)

The set of Eqs. (53) can be rewritten under the form:

FFFa
ext

(
MMMb
)

= FFFa
int

(
MMMb
)

+ FFFa
I

(
MMMb
)
, (54)

where MMMb is the vector of the unknown fields at node b. The nonlinear Eqs. (54) are solved using the Newton
Raphson scheme. To this end, the forces are written in a residual form. The predictor, iteration 0, reads
MMMb = MMMb0, the residual at iteration i reads

FFFa
ext

(
MMMbi

)
−FFFa

int

(
MMMbi

)
−FFFa

I

(
MMMbi

)
= RRR, (55)

and at iteration i, the first order Taylor development yields the system to be solved, i.e.

000 = RRRa +

(
∂FFFa

ext

∂MMMb
− ∂FFFa

int

∂MMMb
− ∂FFFa

I

∂MMMb

)(
MMMb −MMMbi

)
. (56)

In this last equation

FFFa
ext =

∑
e

∫
(∂NΩ)s

NNNaj̄jjdS−
∑

s

∫
(∂DΩ)s

∇NNNaT

ZZZ(M̄MM)M̄MMnnndS

+
∑

s

∫
(∂DΩ)s

NNNan̄nnT

(
ZZZ(M̄MM)

B
hs

)
M̄MMnnndS,

(57)

FFFa
int =

∑
e

∫
Ωe

∇NNNaT

jjj(MMMh,∇MMMh)dΩ +
∑

e

∫
Ωe

NNNaiiidΩ, (58)

FFFa±
I = FFFa±

I1 + FFFa±
I2 + FFFa±

I3 , (59)

with the three contributions to the interface forces on ∂IΩh
1

FFFa±
I1 =

∑
s

∫
(∂IΩ)s

(
±NNNa±) n̄nn−

T

〈jjj(MMMh,∇MMMh)〉dS, (60)

FFFa±
I2 =

1

2

∑
s

∫
(∂IΩ)s

(
∇NNNa±T

ZZZ±(MMMh)
)

JMMMhnnnK dS, (61)

1The contributions on ∂DΩh can be directly deduced by removing the factor (1/2) accordingly to the definition of the average
flux on the Dirichlet boundary and by substituting ZZZ(MMMh) by ZZZ(M̄MM).
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FFFa±
I3 =

∑
s

∫
(∂IΩ)s

(
±NNNa±) n̄nn−

T

〈
ZZZ(MMMh)

B
hs

〉
JMMMhnnn

K dS. (62)

In these equations the symbol “±” refers to the node e± (with “+” for node a+ and “-” for node a−).
This system is solved by means of a Newton-Raphson method with the stiffness matrix computed in

Appendix A, where the iterations continue until the convergence to a specified tolerance is achieved.

4. Numerical properties for DG method

In this section, the numerical properties of the weak formulation stated by Eq. (46) are studied in steady
state conditions (iii = 0), and under the assumption that d = 2. It is demonstrated that the framework
satisfies two fundamental properties of a numerical method: consistency and stability. Moreover we show
that the method possesses the optimal convergence rate with respect to the mesh size.

4.1. Discontinuous space and finite element properties

In this part, we will assume that ∂DΩh = ∂Ωh. This assumption is not restrictive but simplifies the
demonstrations. Let us also define the norms, which appear in the analysis of the interior penalty, for
MMM ∈ X1

|‖MMM ‖|2∗ =
∑

e

‖∇MMM‖2L2(Ωe) +
∑

e

h−1
s ‖ JMMMnnnK ‖2L2(∂Ωe), (63)

|‖MMM ‖|2 =
∑

e

‖MMM‖2H1(Ωe) +
∑

e

h−1
s ‖ JMMMnnnK ‖2L2(∂Ωe), (64)

and

|‖MMM ‖|21 =
∑

e

‖MMM‖2H1(Ωe) +
∑

e

hs ‖MMM ‖2H1(∂Ωe) +
∑

e

h−1
s ‖ JMMMnnnK ‖2L2(∂Ωe), (65)

where ∂Ωe = ∂IΩ
e ∪ ∂DΩe. Eqs. (63-65) define norms as |‖MMM‖|∗ = 0 only when MMM = cst on Ωh and is equal

to 0 on ∂DΩh.

Lemma 4.1 (Relation between energy norms on the finite element space). From [14], for MMMh ∈ Xk, there
exists a positive constant Ck, depending on k, such that

|‖MMMh ‖|1≤ Ck |‖MMMh ‖| . (66)

where Ck is a positive constant, independent of the mesh size.

The demonstration directly follows by bounding the extra terms
∑

e hs ‖ MMM ‖2
L2(∂Ωe)

and
∑

e hs ‖
∇MMM ‖2

L2(∂Ωe)
of the norm defined by Eq. (65), in comparison to the norm defined by Eq. (64), using

successively the trace inequality, Eq. (B.5), and the inverse inequality, Eq. (B.9), for the first term, and the
trace inequality on the finite element space, Eq. (B.6), for the second term.
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4.2. Consistency

To prove the consistency of the method, the exact solution MMMe ∈ H2(Ω) × H2+

(Ω) of the problem
stated by Eqs. (33) is considered. This implies JMMMeK = 0, 〈jjj〉 = jjj on ∂IΩh, and JMMMeK = −M̄MM = −MMMe,
〈jjj〉 = jjj = ZZZ(MMMe)∇MMMe, and ZZZ(MMM) = ZZZ(M̄MM) = ZZZ(MMMe) on ∂DΩh. Therefore, Eq. (46) becomes:∫

∂NΩh

δMMMTj̄jjdS−
∫
∂DΩh

M̄MM
T
nnn

(
ZZZ(M̄MM)∇δMMM

)
dS +

∫
∂DΩh

δMMMT
nnn

(
B
hs

ZZZ(M̄MM)

)
M̄MMnnndS

=

∫
Ωh

∇δMMMTjjj(MMMe,∇MMMe)dΩ +

∫
∂IΩh

q
δMMMT

nnn

y
jjj(MMMe,∇MMMe)dS−

∫
∂DΩh

δMMMT
nnn jjj(MMMe,∇MMMe)dS

−
∫
∂DΩh

MMMe
nnn

TZZZ(M̄MM)∇δMMMdS +

∫
∂DΩh

δMMMT
nnn

B
hs

ZZZ(M̄MM)MMMe
nnndS ∀δMMM ∈ X .

(67)

Integrating the first term of the right hand side by parts leads to∑
e

∫
Ωe

∇δMMMTjjj(MMMe,∇MMMe)dΩ = −
∑

e

∫
Ωe

δMMMT∇jjj(MMMe,∇MMMe)dΩ +
∑

e

∫
∂Ωe

δMMMT
nnn jjj(MMMe,∇MMMe)dS, (68)

and Eq.(67) becomes∫
∂NΩh

δMMMTj̄jjdS−
∫
∂DΩh

M̄MM
T
nnn

(
ZZZ(M̄MM)∇δMMM

)
dS +

∫
∂DΩh

δMMMT
nnn

(
B
hs

ZZZ(M̄MM)

)
M̄MMnnndS =

−
∑

e

∫
Ωe

δMMMT∇jjj(MMMe,∇MMMe)dΩ +

∫
∂NΩh

δMMMT
nnn jjj(MMMe,∇MMMe)dS

−
∫
∂DΩh

MMMeT

nnn ZZZ(M̄MM)∇δMMMdS +

∫
∂DΩh

δMMMT
nnn

B
hs

ZZZ(M̄MM)MMMe
nnndS ∀δMMM ∈ X.

(69)

The arbitrary nature of the test functions leads to recover the set of conservation laws and the boundary
conditions stated by Eqs. (33).

4.3. Stability of the DG formulation

The demonstration of the stability follows closely the approach developed by [8, 14, 17, 18] for linear and
nonlinear elliptic problems. Since the problem is herein coupled, and as the elliptic operator is different,
we report the modified main steps of the demonstrations that were initially developed in [17, 18] for d = 2.
The main idea to prove the solution uniqueness and to establish the prior error estimates is to linearize the
problem by reformulating the nonlinear problem in a fixed point form which is the solution of the linearized
problem as proposed in [17, 18, 23].

Starting from the definition of matrix ZZZ(MMM), Eq. (31), which is a symmetric and positive definite matrix,
as we have proved in Section 2.2, let us define the minimum and maximum eigenvalues of the matrix ZZZ(MMM)
as λ(MMM) and Λ(MMM), then for all ξ ∈ R2d

0

0 < λ(MMM)|ξ|2 ≤ ξiZZZij(MMM)ξj ≤ Λ(MMM)|ξ|2. (70)

Also by assuming that ‖MMM ‖W1
∞
≤ α, then there is a positive constant Cα such that

0 < Cα < λ(MMM). (71)
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In the subsequent analysis, we use the following integral form of the Taylor’s expansions of jjj, defined in
Eq. (30), for (VVV,∇PPP) ∈ X+ ×YYY in terms of (MMM,∇MMM) ∈ X+ ×YYY

jjj(VVV,∇PPP)− jjj(MMM,∇MMM) = −jjjMMM(MMM,∇MMM)(MMM−VVV)− jjj∇MMM(MMM)(∇MMM−∇PPP) + R̄RRjjj(MMM−VVV,∇MMM−∇PPP)

= −j̄jjMMM(MMM,∇MMM)(MMM−VVV)− j̄jj∇MMM(MMM)(∇MMM−∇PPP),
(72)

where jjjMMM is the partial derivative of jjj with respect to MMM, jjj∇MMM is the partial derivative of jjj with respect to ∇MMM
expressed in the matrix form, and where j̄jjMMM, j̄jj∇MMM, and R̄RRjjj are the remainder terms. With VVVt = MMM+t(VVV−MMM),
∇PPPt = ∇MMM + t(∇PPP−∇MMM), we have

j̄jjMMM(MMM,∇MMM) =

∫ 1

0

jjjMMM(VVVt,∇PPPt)dt, j̄jj∇MMM(MMM,∇MMM) =

∫ 1

0

jjj∇MMM(VVVt,∇PPPt)dt, (73)

R̄jjj(MMM−VVV,∇MMM−∇PPP) = (MMM−VVV)Tj̄jjMMMMMM(VVV,∇PPP)(MMM−VVV) + 2(MMM−VVV)Tj̄jjMMM∇MMM(VVV,∇PPP)(∇MMM−∇PPP), (74)

and

j̄jjMMMMMM(VVV,∇PPP) =

∫ 1

0

(1− t)jjjMMMMMM(VVVt,∇PPPt)dt,

j̄jjMMM∇MMM(VVV,∇PPP) =

∫ 1

0

(1− t)jjjMMM∇MMM(VVVt,∇PPPt)dt .

(75)

Using the definition Eq. (30) of jjj, we have jjjMMM = ∂ZZZ
∂MMM∇MMM, jjj∇MMM = ZZZ, jjjMMMMMM = ∂2ZZZ

∂MMM2∇MMM, jjjMMM∇MMM = jjj∇MMMMMM =
∂ZZZ
∂MMM , jjj∇MMM∇MMM = 0. If fT ≥ fT0 > 0, then j̄jjMMM, j̄jjMMMMMM ∈ LLL∞ (Ω × R × R+

0 × Rd × Rd) and j̄jj∇MMM, j̄jjMMM∇MMM, j̄jj∇MMMMMM ∈
LLL∞ (Ω × R × R+

0 ). Since jjj is a twice continuously differential function with all the derivatives through
the second order, which can be shown to be locally bounded in a ball around MMM ∈ R × R+

0 following the
argumentation of [17, 18] for d = 2, we denote by Cy

Cy = max
{
‖ jjj ‖W2

∞(Ω×R×R+
0 ×Rd×Rd), ‖ j̄jjMMM , j̄jjMMMMMM ‖L∞(Ω×R×R+

0 ×Rd×Rd),

‖ j̄jj∇MMM, j̄jjMMM∇MMM, j̄jj∇MMMMMM ‖L∞(Ω×R×R+
0 )

}
.

(76)

We can now study the weak form defined by Eq. (46) under the assumptions iii = 0 and j̄jj independent of MMM.
The problem thus reads as finding MMM ∈ X+ such that

a(MMM, δMMM) = b(M̄MM, δMMM) ∀δMMM ∈ X, (77)

with a(MMM, δMMM) defined by Eq. (47) and b(M̄MM, δMMM) by Eq. (48).

4.3.1. Derivation of the non-self-adjoint linear elliptic problem

Let us define MMMe ∈ H2(Ω)×H2+

(Ω) the solution of the strong form stated by Eq. (33). Thus as JMMMeK = 0
on ∂IΩ

e and as JMMMeK = −MMMe = −M̄MM on ∂DΩe, we have

a(MMMe, δMMMe) =

∫
Ωh

∇δMMMeT

jjj(MMMe,∇MMMe)dΩ +

∫
∂IΩh

r
δMMMeT

nnn

z
〈jjj(MMMe,∇MMMe)〉dS

−
∫
∂DΩh

δMMMe
nnn

Tjjj(MMMe,∇MMMe)dS−
∫
∂DΩh

M̄MM
T
nnn ZZZ(MMMe)∇δMMMedS

+

∫
∂DΩh

δMMMe
nnn

T B
hs

ZZZ(MMMe)M̄MMnnndS = b(M̄MM, δMMMe) ∀δMMMe ∈ X,

(78)
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as the weak form stated by Eq. (46) is consistent, see Section 4.2. Using the weak formulation (77), we state

the Discontinuous Galerkin finite element method for the problem as finding MMMh ∈ Xk+

, such that

a(MMMh, δMMMh) = b(M̄MM, δMMMh) ∀δMMMh ∈ Xk ⊂ X. (79)

Therefore, using δMMMe = δMMMh in Eq. (78), subtracting it from the DG discretization (79), then adding and sub-

tracting successively
∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z
〈jjj∇MMM(MMMe)∇δMMMh〉dS and

∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z〈
B
hs

jjj∇MMM(MMMe)
〉

JδMMMhnnn
K dS,

yields

0 = a(MMMe, δMMMh)− a(MMMh, δMMMh) =

∫
Ωh

∇δMMMT
h (jjj(MMMe,∇MMMe)− jjj(MMMh,∇MMMh)) dΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjj(MMMe,∇MMMe)− jjj(MMMh,∇MMMh)〉dS

+

∫
∂IΩh∪∂DΩh

r
MMMeT

nnn −MMMT
hnnn

z
〈jjj∇MMM(MMMe)∇δMMMh〉dS

−
∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z
〈(jjj∇MMM(MMMe)− jjj∇MMM(MMMh))∇δMMMh〉dS

−
∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(MMMh))

〉
JδMMMhnnn

K dS

+

∫
∂IΩh∪∂DΩh

r
MMMeT

nnn −MMMT
hnnn

z〈 B
hs

jjj∇MMM(MMMe)

〉
JδMMMhnnn

K dS ∀δMMMh ∈ Xk.

(80)

Using the Taylor series defined in Eq. (72) to rewrite the first two terms, the set of Eqs. (80) becomes

finding MMMh ∈ Xk+

such that:

A(MMMe;MMMe −MMMh, δMMMh) + B(MMMe;MMMe −MMMh, δMMMh) = N (MMMe,MMMh; δMMMh) ∀δMMMh ∈ Xk. (81)

In this last equation, for given ψψψ ∈ X+, ωωω ∈ X and δωωω ∈ X, we have defined the following forms:

A(ψψψ;ωωω, δωωω) =

∫
Ωh

∇δωωωTjjj∇ψψψ(ψψψ)∇ωωωdΩ +

∫
∂IΩh∪∂DΩh

q
δωωωT

nnn

y
〈jjj∇ψψψ (ψψψ)∇ωωω〉dS

+

∫
∂IΩh∪∂DΩh

q
ωωωT

nnn

y
〈jjj∇ψψψ(ψψψ)∇δωωω〉dS +

∫
∂IΩh∪∂DΩh

q
ωωωT

nnn

y〈 B
hs

jjj∇ψψψ(ψψψ)

〉
JδωωωnnnK dS,

(82)

B(ψψψ;ωωω, δωωω) =

∫
Ωh

∇δωωωT (jjjψψψ(ψψψ,∇ψψψ)ωωω) dΩ +

∫
∂IΩh∪∂DΩh

q
δωωωT

nnn

y
〈jjjψψψ(ψψψ,∇ψψψ)ωωω〉dS. (83)

For fixed ψψψ, the form A(ψψψ; ., .) and the form B(ψψψ; ., .) are bi-linear. The nonlinearilty of Eq. (81) is thus
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gathered in the term N (MMMe,MMMh; δMMMh) which reads

N (MMMe,MMMh; δMMMh) =

∫
Ωh

∇δMMMT
h (R̄RRjjj(MMM

e −MMMh,∇MMMe −∇MMMh))dΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y 〈
R̄RRjjj(MMM

e −MMMh,∇MMMe −∇MMMh)
〉

dS

+

∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z
〈(jjj∇MMM(MMMe)− jjj∇MMM(MMMh))∇δMMMh〉dS

+

∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(MMMh))

〉
JδMMMhnnn

K dS.

(84)

4.3.2. Solution uniqueness

Let us first define ηηη = IhMMM −MMMe ∈ X, with IhMMM ∈ Xk+

the interpolant of MMMe in Xk+

. The last relation
(81) thus becomes

A(MMMe; IhMMM−MMMh, δMMMh) + B(MMMe; IhMMM−MMMh, δMMMh) = A(MMMe;ηηη, δMMMh) + B(MMMe;ηηη, δMMMh)

+N (MMMe,MMMh; δMMMh) ∀δMMMh ∈ Xk.
(85)

To prove the existence of a solution MMMh of the problem stated by Eq. (80), which corresponds to
the DG finite element discretization (79), the problem is stated in the fixed point formulation and a map

Sh : Xk+

→ Xk+

is defined as follows [18]: for a given yyy ∈ Xk+

, find Sh(yyy) = MMMyyy ∈ Xk+

, such that

A(MMMe; IhMMM−MMMyyy, δMMMh) + B(MMMe; IhMMM−MMMyyy, δMMMh) = A(MMMe;ηηη,δMδMδMh) + B(MMMe;ηηη, δMMMh) +N (MMMe,yyy; δMMMh)

∀δMMMh ∈ Xk.
(86)

The existence of a fixed point of the map Sh is equivalent to the existence of a solution MMMh of the discrete
problem (79), see [18].

For the following analysis, we denote by Ck, a positive generic constant which is independent of the mesh
size, but may depend on CT ,C

k
D,C

k
I ,C

k
K, and on k which are defined in Appendix B, and can take different

values at different places.
To demonstrate the uniqueness, we have recourse to the following Lemmata, following [18].

Lemma 4.2 (Lower bound). For B larger than a constant, which depends on the polynomial approximation
only, there exist two constants Ck

1 and Ck
2, such that

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh) ≥ Ck
1 |‖ δMMMh ‖|2∗ −Ck

2 ‖ δMMMh ‖2L2(Ω) ∀δMMMh ∈ Xk, (87)

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh) ≥ Ck
1 |‖ δMMMh ‖|2 −Ck

2 ‖ δMMMh ‖2L2(Ω) ∀δMMMh ∈ Xk. (88)

Proceeding by using the bounds (71) and (76), the Cauchy-Schwartz’ inequality, the trace inequality
on the finite element space (B.6), the trace inequality, Eq. (B.4), and inverse inequality, Eq. (B.9), the
ξ-inequality –ξ > 0 : |ab| ≤ ξ

4a2 + 1
ξb2, as in Wheeler et al. [14] and Prudhomme et al. [8] analyzes, yields

to prove this Lemma 4.2. The two positive constants Ck
1,C

k
2 are independent of the mesh size, but do depend

on k and B. The proof follows the one presented in [24]. In particular, for Ck
1 to be positive, the following

constraint on the stabilization parameter should be satisfied: B >
C2

y

C2
α

Ck. Therefore for the method to be

stable, the stabilization parameter should be large enough depending on the polynomial approximation.

18



Lemma 4.3 (Upper bound). There exist C > 0 and Ck > 0 such that

| A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) | ≤ C |‖ uuu ‖|1 |‖ δMMM ‖|1 ∀uuu , δMMM ∈ X, (89)

| A(MMMe;uuu, δMMMh) + B(MMMe;uuu, δMMMh) | ≤ Ck |‖ uuu ‖|1 |‖ δMMMh ‖| ∀uuu ∈ X , δMMMh ∈ Xk, (90)

| A(MMMe;uuuh, δMMMh) + B(MMMe;uuuh, δMMMh) | ≤ Ck |‖ uuuh ‖| |‖ δMMMh ‖| ∀uuuh, δMMMh ∈ Xk. (91)

Applying the Hölder’s inequality, and the bound (76) on each term of A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) and
then applying the Cauchy-Schwartz’ inequality, lead to relation (89). Therefore relations (90) and (91) are
easily deduced from the relation between energy norms on the finite element space, Eq. (66). The proof
follows the one presented in [24].

Lemma 4.4 (Energy bound). Let MMMe ∈ Xs, s ≥ 2, and let IhMMM ∈ Xk, s ≥ 2, be its interpolant. Therefore,
there is a positive constant Ck > 0 independent of hs, such that

|‖MMMe − IhMMM ‖|1≤ Ckhµ−1 ‖MMMe ‖Hs(Ωh), (92)

with µ = min {s, k + 1}.

The proof follows from applying the interpolation inequalities, Eq. (B.1) and Eq. (B.3), on the mesh
dependent norm (65).

Lemma 4.5 (Auxiliary problem). We consider the following auxiliary problem, with φφφ ∈ L2(Ω)× L2(Ω):

−∇T (jjj∇MMM(MMMe)∇ψψψ + jjjMMM(MMMe,∇MMMe)ψψψ) = φφφ on Ω,

ψψψ = 0 on ∂Ω.
(93)

Assuming regular ellipticity of the operator, there is a unique solution ψψψ ∈ H2(Ω) × H2(Ω) to the problem
stated by Eq. (93), which satisfies the elliptic property

‖ ψψψ ‖H2(Ωh)≤ C ‖ φφφ ‖L2(Ωh) . (94)

Moreover, for a given ξξξ ∈ L2(Ωh)× L2(Ωh) there exists a unique φφφh ∈ Xk such that

A(MMMe; δMMMh,φφφh) + B(MMMe; δMMMh,φφφh) =
∑
e

∫
Ωe

ξξξTδMMMhdΩ ∀δMMMh ∈ Xk, (95)

and there is a constant Ck such that :

|‖ φφφh ‖|≤ Ck ‖ ξξξ ‖L2(Ωh) . (96)

The proof of the first statement is given in [25], by combining [25, Theorem 8.3] to [25, Lemma 9.17].
The proof of the second statement follows follows the methodology described by Gudi et al. [18]: The use of
Lemma 4.2 and Eq. (95) with δMMMh = φφφh allows bounding |‖ φφφh ‖| in terms of ‖ ξξξ ‖L2(Ωh) and ‖ φφφh ‖L2(Ωh);

‖ φφφh ‖L2(Ωh) is then estimated by considering φφφ = φφφh ∈ Xk in Eq. (93), multiplying the result by φφφh and
integrating it by parts on Ωh yielding ‖ φφφh ‖2L2(Ωh)

= A(MMMe;ψψψ,φφφh) + B(MMMe;ψψψ,φφφh). Inserting the interpolant

19



Ihψψψ in these last terms, i.e. ‖ φφφh ‖2L2(Ωh)
= A(MMMe;ψψψ − Ihψψψ,φφφh) + B(MMMe;ψψψ − Ihψψψ,φφφh) + A(MMMe; Ihψψψ,φφφh) +

B(GGGe; Ihψψψ,φφφh), bounding the last two terms by considering δMMMh = Ihψψψ in Eq. (95), bounding the first two
terms by making successive use of Lemmata 4.3 and 4.4, and using the regular ellipticity, Eq. (94), allow
deriving the bound ‖ φφφh ‖L2(Ωh)≤ Ck ‖ ξξξ ‖L2(Ωh), which results into the proof of (96).

The existence of the solution of the discrete problem is demonstrated by proving, using these Lemmata
[18], that the map Sh has a fixed point.

Theorem 4.6 (Solution uniqueness to the problem stated by Eq. (86)). The solution MMMyyy to the problem

stated by Eq. (86) is unique for a given yyy ∈ Xk+

with Sh(yyy) = MMMyyy.

Let us assume that there are two distinct solutions MMMyyy1
, MMMyyy2

, which result into

A(MMMe; IhMMM−MMMyyy1 , δMMMh) + B(MMMe; IhMMM−MMMyyy1 , δMMMh) = A(MMMe; IhMMM−MMMyyy2 , δMMMh) + B(MMMe; IhMMM−MMMyyy2 , δMMMh)

∀ δMMMh ∈ Xk.

(97)

For fixed MMMe, A and B are bi-linear, therefore this last relation becomes

A(MMMe;MMMyyy1
−MMMyyy2

, δMMMh) + B(MMMe;MMMyyy1
−MMMyyy2

, δMMMh) = 0 ∀ δMMMh ∈ Xk. (98)

Using Lemma 4.5, with ξξξ = δMMMh = MMMyyy1−MMMyyy2 ∈ Xk results in stating that there is a unique ΦΦΦh ∈ Xk solution
of the problem Eq. (95), with

A(MMMe;MMMyyy1
−MMMyyy2

,ΦΦΦh) + B(MMMe;MMMyyy1
−MMMyyy2

,ΦΦΦh) =‖MMMyyy1
−MMMyyy2

‖2L2(Ωh), (99)

and that |‖ ΦΦΦh ‖|≤ Ck ‖MMMyyy1
−MMMyyy2

‖L2(Ωh). Choosing δMMMh as ΦΦΦh in Eq. (98), we have ‖MMMyyy1
−MMMyyy2

‖L2(Ωh)= 0.
Therefore, the solution Sh(yyy) = MMMyyy is unique.

It is now demonstrated that Sh maps a ball Oσ(IhMMM) ⊂ Xk+

into itself and is continuous in the ball. The
ball Oσ is defined with a radius σ and is centered at the interpolant IhMMM of MMMe as

Oσ(IhMMM) =
{

yyy ∈ Xk+

such that |‖ IhMMM− yyy ‖|1≤ σ
}
,

with σ =
|‖ IhMMM−MMMe ‖|1

hεs
, 0 < ε <

1

4
.

(100)

The idea proposed in [18] is to work on a linearized problem in the ball Oσ(IhMMM) ⊂ Xk+

around the

interpolant IhMMM ∈ Xk+

of MMMe ∈ X+ so the nonlinear term jjj and its derivatives are locally bounded in the

ball Oσ(IhMMM) ⊂ Xk+

. We note from Lemma 4.4, Eq. (92) that

|‖ IhMMM−MMMe ‖|1 ≤ Ckhµ−1
s ‖MMMe ‖Hs(Ωh) and σ ≤ Ckhµ−1−ε

s ‖MMMe ‖Hs(Ωh) , (101)

with µ = min{s, k + 1}. Assuming MMMe ∈ H
5
2 (Ω)× H

5
2

+

(Ω) and considering s = 5
2 , CM =‖MMMe ‖

H
5
2 (Ωh)

, and

µ = 5
2 = s, this equation is rewritten

|‖ IhMMM−MMMe ‖|1 ≤ Ckh
3
2
s ‖MMMe ‖

H
5
2 (Ωh)

and σ ≤ CkCMh
3
2−ε
s if k ≥ 2. (102)

Moreover, it can be shown that jjj(xxx;yyy,∇yyy), jjjMMM(xxx;yyy,∇yyy), jjjMMMMMM(xxx;yyy,∇yyy), jjj∇MMM(xxx;yyy), jjjMMM∇MMM(xxx;yyy) are bounded
for xxx ∈ Ω̄, yyy ∈ Oσ(IhMMM), by the same reasoning as in [17] for d = 2, which justifies Eq. (76).

We have now the tools to bound the nonlinear term N (MMMe,yyy; δMMMh) of Eq. (86).
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Lemma 4.7. Let yyy ∈ Oσ(IhMMM) ⊂ Xk+

, with the ball Oσ(IhMMM) of radius σ defined in Eq. (100) and with

IhMMM ∈ Xk+

the interpolant of MMMe ∈ X+ in Xk+

, and let δMMMh ∈ Xk, then we have the bound

| N (MMMe,yyy; δMMMh) | ≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s σ

| δMMMh |H1(Ωh) +

(∑
e

hs | δMMMh |2H1(∂Ωe)

) 1
2

+

(∑
e

h−1
s ‖ JδMMMhnnnK ‖2L2(∂Ωe)

) 1
2

 .
(103)

Moreover, one has

| N (MMMe,yyy; δMMMh) | ≤ CkCy ‖MMMe ‖Hs(Ωh) hs
µ−2−εσ |‖ δMMMh ‖|1≤ CkCy ‖MMMe ‖Hs(Ωh) hs

µ−2−εσ |‖ δMMMh ‖|, (104)

with µ = min{s, k + 1}, or again

| N (MMMe,yyy; δMMMh) |≤ CkCyCMhs
1
2−εσ |‖ δMMMh ‖| if k ≥ 2. (105)

The bound (103) is obtained by defining ζζζ = MMMe − yyy which can be expanded as ζζζ = ηηη + ξξξ with ηηη =
MMMe − IhMMM ∈ X and ξξξ = IhMMM − yyy ∈ Xk. Therefore, every term of Eq. (84) can be bounded separately using
Taylor’s series (72-74), the generalized Hölder’s inequality, the generalized Cauchy-Schwartz’ inequality, the
definition of Cy in Eq. (76), the norm definition, Eq. (65), the definition of the ball, Eqs. (100, 101), and
some other inequalities which are reported in Appendix B, such as trace inequalities Eqs. (B.4-B.6), inverse
inequalities Eqs. (B.7-B.9) in the particular case of d = 2, and the interpolation inequalities Eqs. (B.1-B.3)
in the particular case of d = 2. The proof follows from the argumentation reported in [18] and is detailled in
[24]. The bound of the nonlinear term N (MMMe,yyy; δMMMh) is nominated by the term with the largest bound and
as a result we get Eq. (103). Moreover, using the definition of the energy norm (65) yields (104). Finally,
by using Lemma 4.1, Eq. (104) is rewritten as (105).

We now have the tools to demonstrate that Sh (i) maps a ball Oσ(IhMMM) ⊂ Xk+

into itself and (ii) is
continuous in the ball.

Theorem 4.8 (Sh maps Oσ(IhMMM) into itself). Let 0 < hs < 1 and σ be defined by Eq. (101), therefore

|‖ IhMMM−MMMyyy ‖|≤ Ck′σhεs if k ≥ 2, (106)

where, for a mesh size hs small enough and a given ball size σ, IhMMM−MMMyyy −→ 0, hence Sh maps Oσ(IhMMM) to
itself.

The proof is derived using the bounds obtained in Lemma 4.2, Eq. (88), Lemma 4.3, Eq. (90), Lemma
4.7, Eq. (105), the definition of the ball (100), and the auxiliary problem, Lemma 4.5. More details are
reported in Appendix C.

Theorem 4.9 (The continuity of the map Sh in the ball Oσ(IhMMM)). For yyy1, yyy2 ∈ Oσ(IhMMM), let MMMyyy1 = Sh(yyy1),
MMMyyy2 = Sh(yyy2) be solutions of Eq. (86). Then for 0 < hs < 1

|‖MMMyyy1
−MMMyyy2

‖| ≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy1 − yyy2 ‖| . (107)
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The proof of this theorem results from using Lemma 4.2, Eq. (88), proceeding similarly as to establish
Lemma 4.7, Eq. (105), and then using the auxiliary problem stated in Lemma 4.5. The proof is detailed in
Appendix D.

Following the argumentation in [18], using the Theorems 4.8 and 4.9 yields that for small hs, the maps
Sh has a fixed point: there exists MMMh ∈ Oσ(IhMMM) such that MMMh = Sh(MMMh). The uniqueness of this point is
directly deduced from Theorem 4.9. Moreover, the existence of a unique fixed point of the map Sh yields
the existence of a unique solution MMMh of the problem stated by Eq. (85), or again the existence of a unique
solution MMMh of the original quasi-linear discrete problem (79), which is the steady state version of the finite
element statement (53).

4.3.3. A priori error estimates

As Sh maps a ball into itself, we can use MMMh instead of MMMy in Eq. (106), hence we have

|‖ IhMMM−MMMh ‖| ≤ Ck′σhεs = Ck′ |‖ IhMMM−MMMe ‖|1 . (108)

Now using this last relation, Lemma 4.1, Eq. (66), Lemma 4.4, Eq. (92), and Eq. (108) leads to

|‖MMMe −MMMh ‖|1 ≤|‖MMMe − IhMMM ‖|1 + |‖ IhMMM−MMMh ‖|1≤|‖MMMe − IhMMM ‖|1 +Ck′ |‖ IhMMM−MMMe ‖|1
≤ (1 + Ck′) |‖MMMe − IhMMM ‖|1≤ Ck(1 + Ck′)hµ−1

s ‖MMMe ‖Hs(Ωh)≤ Ck′′hµ−1
s ‖MMMe ‖Hs(Ωh),

(109)

where µ = min {s, k + 1}, and Ck′′ = Ck(1 + Ck′). This shows that the convergence of the error estimate is
optimal in hs.

4.3.4. Error estimate in L2-norm

Since the linearized problem (85) is adjoint consistent, an optimal order of convergence in the L2-norm
is obtained by applying the duality argument.

To this end, let us consider the following dual problem

−∇T(jjj∇MMM(MMMe)∇ψψψ) + jjjTMMM(MMMe,∇MMMe)∇ψψψ = eee on Ω,

ψψψ = ggg on ∂Ω,
(110)

which is assumed to satisfy the elliptic regularity condition since jjj∇MMM is positive definite, with ψψψ ∈ H2m(Ωh)×
H2m(Ωh) for p ≥ 2m and

‖ ψψψ ‖Hp(Ωh)≤ C

(
‖ eee ‖Hp−2m

(Ωh)
+ ‖ ggg ‖

H
p− 1

2
(∂Ωh)

)
, (111)

if eee ∈ Hp−2m(Ωh)×Hp−2m(Ωh).
Considering eee = MMMe −MMMh ⊂ L2(Ωh) × L2(Ωh) the error and ggg = 0, multiplying Eq. (110) by eee, and

integrating over Ωh, result in∫
Ωh

[jjj∇MMM(MMMe)∇ψψψ]
T∇eeedΩ +

∫
Ωh

[
jjjTMMM(MMMe,∇MMMe)∇ψψψ

]T
eeedΩ−

∑
e

∫
∂Ωe

[jjj∇MMM(MMMe)∇ψψψ]
T

eeennndS =‖ eee ‖2L2(Ωh),

(112)
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with

‖ ψψψ ‖H2(Ωh)≤ C ‖ eee ‖L2(Ωh) . (113)

Since JψψψK = J∇ψψψK = 0 on ∂IΩh and JψψψK = −ψψψ = 0 on ∂DΩh, we have by comparison with Eqs. (82-83), that{∫
Ωh

[jjj∇MMM(MMMe)∇ψψψ]
T∇eeedΩ +

∫
∂IΩh∪∂DΩh

[jjj∇MMM(MMMe)∇ψψψ]
T JeeennnK dS = A(MMMe; eee,ψψψ),∫

Ωh
[jjjMMM(MMMe,∇MMMe)eee]

T∇ψψψdΩ = B(MMMe; eee,ψψψ),
(114)

since jjj∇MMM is symmetric. Therefore, Eq. (112) reads

‖ eee ‖2L2(Ωh)= A(MMMe; eee,ψψψ) + B(MMMe; eee,ψψψ). (115)

From Eq. (81), one has

A(MMMe;MMMe −MMMh, Ihψψψ) + B(MMMe;MMMe −MMMh, Ihψψψ) = N (MMMe,MMMh; Ihψψψ), (116)

since MMMe is the exact solution and Ihψψψ ∈ Xk, and Eq. (115) is rewritten

‖ eee ‖2L2(Ωh)= A(MMMe; eee,ψψψ − Ihψψψ) + B(MMMe; eee,ψψψ − Ihψψψ) +N (MMMe,MMMh; Ihψψψ). (117)

First, using Lemma 4.3, Eq. (89), Lemma 4.4, Eq. (92), and Eq. (109), leads to

| A(MMMe; eee,ψψψ − Ihψψψ) + B(MMMe; eee,ψψψ − Ihψψψ) | ≤ C |‖ eee ‖|1 |‖ ψψψ − Ihψψψ ‖|1
≤ Ck |‖ eee ‖|1 hs ‖ ψψψ ‖H2(Ωh)

≤ Ck′′hµs ‖MMMe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh),

(118)

with µ = min {s, k + 1}. Then proceeding as for establishing Lemma 4.7 and using the a priori error estimate
(108-109), see details in [24], lead to

| N (MMMe,MMMh; Ihψψψ) | ≤ Ck′′Cyh2µ−3
s ‖MMMe ‖2Hs(Ωh)|‖ Ihψψψ ‖| . (119)

Finally, using Lemma 4.4, Eq. (92), remembering JψψψK = 0 in Ω, we deduce that

|‖ Ihψψψ ‖| ≤|‖ Ihψψψ −ψψψ ‖|1 + |‖ ψψψ ‖|≤ Ckhs ‖ ψψψ ‖H2(Ωh) + ‖ ψψψ ‖H1(Ωh)≤ Ck(hs + 1) ‖ ψψψ ‖H2(Ωh) . (120)

Combining Eqs. (118-120), Eq. (117) becomes

‖ eee ‖2L2(Ωh) ≤ Ck′′hµs
(
1 + hµ−3

s ‖MMMe ‖Hs(Ωh)

)
‖MMMe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh), (121)

with µ = min {s, k + 1}, or using Eq. (113), the final result for k ≥ 2 (µ ≥ 3)

‖ eee ‖L2(Ωh)≤ Ck′′′hµs ‖MMMe ‖Hs(Ωh) . (122)

This result demonstrates the optimal convergence rate of the method with the mesh-size for cases in which
k ≥ 2.
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5. Numerical examples

We present 1-, 2-, and 3-dimensional simulations to verify the DG numerical properties for electro-thermal
problems on shape regular and shape irregular meshes. First the method is compared to analytical results
and continuous Galerkin formulation on simple 1D-tests, then the method is applied on 2D-tests to verify
the optimal convergence rates. Finally, a 3D unit cell model is presented. In the applications, the Dirichlet
boundary conditions have been enforced strongly for simplicity.

5.1. 1-D example with one material

The first test is inspired from [5], where the boundary condition induces an electric current density, with
a constrained temperature on the two opposite faces, as shown in Fig. 2. The target of this test is to find
the distribution of the temperature, electric potential, and their corresponding fluxes, when considering the
material properties, i.e. lll,kkk, and α, as reported in Table 1. The simulation is performed using a quadratic
polynomial approximation, with 12 elements, and the value of the stabilization parameter is B = 100.
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Figure 2: One-material electro-thermal problem and the boundary conditions

Table 1: Material parameters for the one-material electro-thermal problem

Material lll [S/m] kkk [W/(K ·m)] α [V/K]
Bismuth telluride (BBBi2TTTe3) diag(8.422×104) diag(1.612) 1.941×10−4

As it can be seen in Fig. 3(a), the electric potential distribution is close to linear but the temperature
distribution is almost quadratic with a maximum value of 47 [◦C] due to the volumetric Joule effect. This
shows that this electro-thermal domain acts as a heat pump. Then Fig. 3(b) presents the distribution of
the thermal flux which is almost linear with an electric current of about 3.2× 106 [A/m2]. The results of the
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Figure 3: (a) The distributions of the electrical potential and temperature in the electro-thermal domain for one
material, (b) the distribution of the thermal flux in the electro-thermal domain for one material. Ref.-curves are
extracted from [5].

present DG method agree with the analytical approximation provided in [5] –the difference being due to the
approximations required to derive the analytical solution.

Then the same test is simulated with the same boundary conditions, polynomial degree approximation,
and value of B, but with successively 3, 9, and 21 elements. Figure 4 presents the comparison of the results
obtained with a Continuous Galerkin (CG) and the Discontinuous Galerkin (DG) formulations. As the
distributions are almost parabolic, three elements already capture the solution, which does not make this
test fit to study the convergence rate. Figure 5 illustrates the comparison of the thermal flux (one value
per element is reported) with different mesh sizes between the CG and DG formulations and shows that the
same thermal flux distribution is recovered. We also note from Figs. 4(a and b) and Figs. 5(a and b), that
the results of the present DG formulation are in agreement with those obtained by the CG method.

5.2. 1-D example with two materials

By applying the same kind of boundary conditions but for a combination of two materials –matrix (i.e.,
polymer) which is a non-conductive material and conductive fillers (i.e., carbon fiber)– as shown in Fig. 6,
we can study the effect of the DG formulation in case of material interfaces. The electrical and thermal
material properties are considered constant and reported in Table. 2, for the carbon fiber and the polymer
matrix.
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Figure 4: Comparison between the distributions of the temperature in the electro-thermal domain for different
numbers of elements between (a) the DG formulation, and (b) the CG formulation
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(b) Continuous Galerkin

Figure 5: Comparison between the distributions of the thermal flux in the electro-thermal domain for different
numbers of elements between (a) the DG formulation, and (b) the CG formulation
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Figure 6: Electro-thermal composite domain and the boundary conditions

Table 2: Composite material phases parameters

Material lll [S/m] kkk [W/(K ·m)] α [V/K]
Carbon fiber diag(100000) diag(40) 3 ×10−6

Polymer diag(0.1) diag(0.2) 3 ×10−7

Second order polynomial approximations, 12 elements, and the value of B = 100, are still considered in
this test. An electric potential difference of 20 [V] is applied, which is higher than in the previous test in
order to reach a similar increase in temperature. Figure 7(a) shows the distributions of the voltage and of
the temperature in this electro-thermal composite domain, and Fig. 7(b) the distribution of the thermal
flux. We can see that the temperature, electric potential, and thermal flux fields are almost constant in
the filler (the conductive material), since its electrical conductivity is high, and transient gradually in the
polymer matrix (non conductive material). The resulting electric current is of about 1.96× 103 [A/m2].
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Figure 7: (a) The distributions of the electrical potential and temperature in the electro-thermal composite domain,
and (b) the distribution of the thermal flux in the electro-thermal composite domain
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Figure 8: The internal energy of the electro-thermal composite domain for different values of the stabilization pa-
rameter B

Then, we carry out the study of the stabilization parameter effect on the quality of the approximation in
Fig. 8, where the internal energy per unit section is presented in terms of the stabilization parameter. The
test is simulated with different values of the stabilization parameter B =1, 10, 25, 50, 100, 250, 500, 1000,
and 5000. Although for the lower value of the stability parameter, the energy is overestimated, sign of an
instability, the energy converges from below for stabilization parameters B ≥10, which proves that if B is
large enough, the method is stable.
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Figure 9: The temperature distributions in the electro-thermal composite domain for different values of electrical
conductivity of the matrix material

Figure 9 compares the results obtained on the composite domain for different electrical conductivity
values of the matrix material, all the other parameters being the same as before. This figure shows the
difference in the maximum temperature reached when different values of the electrical conductivity are
applied. This result indicates that the present DG formulation can be used for composite materials with
high or low contrast.

5.3. 1-D The variation of electric potential with temperature difference

The following test converts heat energy into electricity, in Bismuth Telluride with the set up of Fig. 10
and the material parameters as presented in Table 1.
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Figure 10: Electro-thermal unit cell and applied temperature difference as boundary condition
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Figure 11: The variation of electric potential with temperature difference

The result in Fig. 11 shows the relation between the electric potential and temperature difference. It
can be seen that the output electric potential, according to Seebeck coefficient, increases as the temperature
difference increases. This proves that our formulation is effective and works in the two directions, production
of electricity from temperature difference, as showed on this test and production of temperature difference
by applying electric current, as showed in the previous examples.

5.4. 2-D study of convergence order
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Figure 12: L-shaped electro-thermal problem and the boundary conditions
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Figure 13: The distribution in the L-shaped electro-thermal problem of (a) the electrical potential, and (b) the
temperature

In order to generate 2D gradients, we consider an L-shaped domain with the boundary condition illus-
trated in Fig. (12), and with the material properties reported in Table. 1. To prove the optimal rate of
convergence in the L2-norm and H1-norm, a uniform hs refinement is considered. A second order polyno-
mial approximation is considered with B = 100. The resulting distributions of temperature and electrical
potential are illustrated respectively in Fig. 13(a) and in Fig. 13(b).

First, the convergence rate of the energy error |‖MMMe −MMMh ‖| –error in the H1-norm– with respect to the
mesh size is reported in Fig. 14(a). The reference solution is obtained with a refined mesh of hs/L = 1/32. It
can be seen that as the mesh is refined the error in the energy decreases quadratically for quadratic elements,
once the mesh size is small enough. Thereby that confirms the prior error estimate derived in Section 4.3.3.
Second, the error in the L2-norm in terms of the mesh size hs is illustrated in Fig. 14(b). The computed
order of convergence is k + 1 for k = 2, which is optimal, once the mesh size is small enough, in agreement
with the theory predicted by Section 4.3.4.
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Figure 14: Error with respect to the mesh size: (a) in the H1 norm, (b) in the L2 norm

5.5. 3-D unit cell simulation
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Figure 15: Electro-thermal unit cell and boundary condition

The third test illustrates the electrical thermal behavior of a composite material i.e., carbon fiber re-
inforced polymer matrix, which is heated by pplying an electric current. The studied unit cell and the
boundary conditions are illustrated in Fig. 15, and the materials properties are reported in Table 2. A finite
element mesh of 90 quadratic bricks is considered (the test is thus run in 3D). The initial temperature of
the cell is 25 [◦C].
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Figure 16: The distributions in the unit cell of (a) the electrical potential, and (b) the temperature

Figure 16 presents the distributions of the temperature and of the electric potential in the unit cell.
When the electric potential of 10 [V] is applied on one side, the temperature of the other side increases from
25 [◦C] to 50.06 [◦C]. This shows the applicability of the present formulation when different (irregular) mesh
sizes are used simultaneously.

6. Conclusions

In this work, starting from the continuum theory for electro-thermal coupled problems, based on contin-
uum mechanics and thermodynamic laws, a weak discontinuous Galerkin (DG) form has been formulated
using conjugated fluxes and fields gradients.

As the weak discontinuous form is derived in terms of those energy conjugated fluxes and fields gradients,
the resulting DG finite element method is consistent and stable. The numerical properties of the DG method
for nonlinear elliptic problems, such as the consistency and uniqueness of the solution have been analyzed in
2D by reformulating the problem in a linearized fixed point form, following the methodology set by previous
works [17, 18] for non-linear elliptic problems, herein particularized for thermo-electrical problems.

The numerical verifications have been undertaken to demonstrate the theoretical results. In particular,
the convergence rates in the L2-norm and the H1-norm with respect to the mesh size are optimal and agree
with the error analysis that was derived in the theory.

Finally, a unit cell problem has been solved numerically to illustrate the capability of the algorithm.
In further work, the method will be extended to thermo-electrical-mechanics with a view to the study of

hybrid shape memory composites by using the electric current to stimulate the shape memory polymers.
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Appendix A. Stiffness matrix

For the stiffness matrix, by recalling the internal forces, Eq. (58), we have

∂FFFa
int

∂MMMb
h

=
∑

e

∫
Ωe

∇NNNaT ∂jjj(MMMh,∇MMMh)

∂MMMh
NNNbdΩ +

∑
e

∫
Ωe

∇NNNaT ∂jjj(MMMh,∇MMMh)

∂∇MMMh
∇NNNbdΩ

+
∑

e

∫
Ωe

NNNa ∂iii

∂MMMh
NNNbdΩ.

(A.1)

For the terms related to the interface ∂IΩh
2, Eqs. (60, 61, and 62), we have

∂FFFa±
I1

∂MMMb±
h

=
1

2

∑
s

∫
(∂IΩ)s

(
±NNNa±) n̄nn−

T ∂jjj±(MMMh,∇MMMh)

∂MMM±h
NNNb±dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±NNNa±) n̄nn−

T ∂jjj±(MMMh,∇MMMh)

∂∇MMM±h
∇NNNb±dS,

(A.2)

∂FFFa±
I2

∂MMMb±
h

=
1

2

∑
s

∫
(∂IΩ)s

∇NNNa±T

ZZZ±(MMMh)n̄nn−
(
±NNNb±)dS +

1

2

∑
s

∫
(∂IΩ)s

∇NNNa±T

Z±(MMMh) JMMMhnnn
KNNNb±dS, (A.3)

where Z± = ∂ZZZ±(MMMh)

∂MMM±h
is a matrix of size (2d× 2d× 2), which results in a 2d× 2 matrix after multiplying it

by JMMMhnnn
K, and (Z JMMMhnnn

K)IK =
∑2d

J=1 (ZIJK JMMMhnnn
KJ), and

∂FFFa±
I3

∂MMMb±
h

=
∑

s

∫
(∂IΩ)s

(
±NNNa±) n̄nn−

T

〈
ZZZ(MMMh)B

hs

〉
n̄nn−(±NNNb±)dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±NNNa±) n̄nn−

T

Z±(MMMh)
B
hs

JMMMhnnn
KNNNb±dS.

(A.4)

Appendix B. General properties for finite element space

Lemma Appendix B.1 (Interpolation inequality). For MMM ∈ Hs(Ωe) × Hs(Ωe) there exists a sequence
MMMh ∈ Pk(Ωe) × Pk(Ωe)and a positive constant Ck

D depending on s and k but independent of MMM and hs, such
that

1. for any 0 ≤ n ≤ s

‖MMM−MMMh ‖Hn(Ωe)≤ Ck
Dhµ−ns ‖MMM ‖Hs(Ωe), (B.1)

2. for any 0 ≤ n ≤ s− 1 + 2
r

‖MMM−MMMh ‖Wn
r (Ωe)≤ Ck

Dh
µ−n−1+ 2

r
s ‖MMM ‖Hs(Ωe), if d = 2 , (B.2)

2The contributions on ∂DΩh can be directly deduced by removing the factor (1/2) accordingly to the definition of the average
flux on the Dirichlet boundary and ZZZ(M̄MM), which is constant with respect to MMMh, instead of ZZZ(MMMh) .
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3. for any s > n + 1
2

‖MMM−MMMh ‖Hn(∂Ωe)≤ Ck
Dh

µ−n− 1
2

s ‖MMM ‖Hs(Ωe), (B.3)

where µ = min {s, k + 1}.

The proof of the first and third properties can be found in [26], and the proof of the second property in
the particular case of d = 2 can be found in [27, 28], see also the discussion by [18].
Remarks
i) The approximation property in (2) is still valid for r =∞, see [29].
ii) For MMM ∈ Xs, let us define the interpolant IhMMM ∈ Xk by IhMMM|Ωe = MMMh(MMM|Ωe), which means IhMMM satisfies
the interlation inequality property provided in Lemma Appendix B.1, see [23].

Lemma Appendix B.2 (Trace inequality). For all MMM ∈ Hs+1(Ωe) × Hs+1(Ωe), there exists a positive
constant CT , such that

‖MMM ‖rWs
r(∂Ωe)≤ CT

(
1

hs
‖MMM ‖rWs

r(Ω
e) + ‖MMM ‖r−1

Ws
2r−2(Ωe)‖ ∇

s+1MMM ‖L2(Ωe)

)
, (B.4)

where s = 0, 1 and r = 2, 4, or in other words

‖MMM ‖2L2(∂Ωe)≤ CT

(
1

hs
‖MMM ‖2L2(Ωe) + ‖MMM ‖L2(Ωe)‖ ∇MMM ‖L2(Ωe)

)
,

‖MMM ‖4L4(∂Ωe)≤ CT

(
1

hs
‖MMM ‖4L4(Ωe) + ‖MMM ‖3L6(Ωe)‖ ∇MMM ‖L2(Ωe)

)
.

(B.5)

The first equation, s = 0 and r = 2, is proved in [8], and the second one, r = 4 and s = 0, is proved in
[30].

Lemma Appendix B.3 (Trace inequality on the finite element space). For MMMh ∈ Pk(Ωe) × Pk(Ωe) Then
there is a constant Ck

K > 0 depending on k, such that

‖ ∇lMMMh ‖L2(∂Ωe)≤ Ck
Kh
− 1

2
s ‖ ∇lMMMh ‖L2(Ωe) l = 0, 1, (B.6)

where Ck
K = supυ∈PK(Ωe)

hs‖∇MMMh‖2L2(∂Ωe)

‖∇MMMh‖2
L2(Ωe)

is a constant which depends on the degree of the polynomial approxi-

mation only with hs = |Ωe|
|∂Ωe| .

We refer to [31] for more details.

Lemma Appendix B.4 (Inverse inequality). For MMMh ∈ Pk(Ωe) × Pk(Ωe) and r ≥ 2, there exists Ck
I > 0,

such that

‖MMMh ‖Lr(Ωe)≤ Ck
Ih

d
r−

d
2

s ‖MMMh ‖L2(Ωe) , (B.7)

‖MMMh ‖Lr(∂Ωe)≤ Ck
Ih

d−1
r −

d−1
2

s ‖MMMh ‖L2(∂Ωe) , (B.8)

‖ ∇MMMh ‖L2(Ωe)≤ Ck
Ih−1

s ‖MMMh ‖L2(Ωe) . (B.9)

The proof of these properties can be found in [32, Theorem 3.2.6]. Note that Eqs. (B.7-B.8) involve the
space dimension d.
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Appendix C. Sh maps the ball Oσ(IhMMM) into itself

Let yyy ∈ Oσ(IhMMM) ⊂ Xk+

and Sh(yyy) = MMMyyy be a solution of the problem given by Eq. (86). Then using
Lemma 4.2, Eq. (88), Lemma 4.3, Eq. (90), Lemma 4.7, Eq. (104), and the definition of the ball (100), we
successively find that

Ck
1 |‖ IhMMM−MMMyyy ‖|2 −Ck

2 ‖ IhMMM−MMMyyy ‖2L2(Ωh)

≤ A(MMMe; IhMMM−MMMyyy, IhMMM−MMMyyy) + B(MMMe; IhMMM−MMMyyy, IhMMM−MMMyyy)

≤ A(MMMe; IhMMM−MMMe, IhMMM−MMMyyy) + B(MMMe; IhMMM−MMMe, IhMMM−MMMyyy) +N (MMMe,yyy, IhMMM−MMMyyy)

≤ Ck |‖ IhMMM−MMMe ‖|1 |‖ IhMMM−MMMyyy ‖| +CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s σ |‖ IhMMM−MMMyyy ‖|

≤ (Ckhεs + CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s )σ |‖ IhMMM−MMMyyy ‖| .

(C.1)

Let us define Ck′(Ck,Cy,CM) a constant, that can depend on Ck, Cy and CM, then, as 0 < ε < 1
4 , the last

expression can be rewritten for k ≥ 2:

Ck
1 |‖ IhMMM−MMMyyy ‖|2 −Ck

2 ‖ IhMMM−MMMyyy ‖2L2(Ωh)≤ Ck′σhεs |‖ IhMMM−MMMyyy ‖| . (C.2)

Then, in order to estimate ‖ IhMMM−MMMyyy ‖L2(Ωh), we consider the auxiliary problem defined in Lemma 4.5.

Choosing ξξξ = δMMMh = IhMMM−MMMyyy, there exists φφφh such that, |‖ φφφh ‖|≤ Ck ‖ IhMMM−MMMyyy ‖L2(Ω) with

‖ IhMMM−MMMyyy ‖2L2(Ωh) = A(MMMe; IhMMM−MMMyyy,φφφh) + B(MMMe; IhMMM−MMMyyy,φφφh)

≤ A(MMMe; IhMMM−MMMe,φφφh) + B(MMMe; IhMMM−MMMe,φφφh) +N (MMMe,yyy;φφφh)

≤ Ck |‖ IhMMM−MMMe ‖|1|‖ φφφh ‖| +CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s σ |‖ φφφh ‖|

≤ (Ckσhεs + CkCy ‖MMMe ‖Hs(Ωh) σhµ−2−ε
s ) ‖ IhMMM−MMMyyy ‖L2(Ωh)

≤ Ck′σhεs ‖ IhMMM−MMMyyy ‖L2(Ωh) if k ≥ 2.

(C.3)

Substituting Eq. (C.3) in Eq. (C.2) gives

Ck
1 |‖ IhMMM−MMMyyy ‖|2 ≤ Ck′σhεs |‖ IhMMM−MMMyyy ‖| +Ck

2 ‖ IhMMM−MMMyyy ‖2L2(Ωh)

≤ Ck′σhεs |‖ IhMMM−MMMyyy ‖| +Ck
2(Ck′)2σ2h2ε

s if k ≥ 2.
(C.4)

Hence, we get

|‖ IhMMM−MMMyyy ‖|≤ Ck′σhεs if k ≥ 2, (C.5)

and for a mesh size hs small enough and a given ball size σ, IhMMM −MMMyyy −→ 0, hence Sh maps Oσ(IhMMM) to
itself.

Appendix D. The continuity of the map Sh in the ball Oσ(IhMMM)

For yyy1, yyy2 ∈ Oσ(IhMMM) ⊂ Xk+

, let MMMyyy1
= Sh(yyy1), MMMyyy2

= Sh(yyy2) be the solutions of the linearized problem
stated by Eq. (86), which satisfy

A(MMMe; IhMMM−MMMyyy1
, δMMMh) + B(MMMe; IhMMM−MMMyyy1

, δMMMh)

= A(MMMe;ηηη,δMδMδMh) + B(MMMe;ηηη, δMMMh) +N (MMMe,yyy1; δMMMh) ∀δMMMh ∈ Xk,
(D.1)
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and

A(MMMe; IhMMM−MMMyyy2
, δMMMh) + B(MMMe; IhMMM−MMMyyy2

, δMMMh)

= A(MMMe;ηηη, δMMMh) + B(MMMe;ηηη, δMMMh) +N (MMMe,yyy2; δMMMh) ∀δMMMh ∈ Xk,
(D.2)

where ηηη = IhMMM−MMMe. By subtracting Eq. (D.1) from Eq. (D.2), we have

A(MMMe;MMMyyy2
−MMMyyy1

, δMMMh) + B(MMMe;MMMyyy2
−MMMyyy1

, δMMMh) = N (MMMe,yyy2; δMMMh)−N (MMMe,yyy1; δMMMh). (D.3)

Choosing ζζζ1 = MMMe − yyy1 ∈ X and ζζζ2 = MMMe − yyy2 ∈ X, the right hand side of Eq. (D.3) can be rewritten as
follows:

N (MMMe,yyy2; δMMMh)−N (MMMe,yyy1; δMMMh) =

∫
Ωh

∇δMMMT
h

(
R̄RRjjj(ζζζ2,∇ζζζ2)− R̄RRjjj(ζζζ1,∇ζζζ1)

)
dΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y 〈
R̄RRjjj(ζζζ2,∇ζζζ2)− R̄RRjjj(ζζζ1,∇ζζζ1)

〉
dS

+

∫
∂IΩh

r
MMMeT

− yyyT
2nnn

z
〈(jjj∇MMM(MMMe)− jjj∇MMM(yyy2))∇δMMMh〉dS

−
∫
∂IΩh

r
MMMeT

− yyyT
1nnn

z
〈(jjj∇MMM(MMMe)− jjj∇MMM(yyy1))∇δMMMh〉dS

+

∫
∂IΩh

r
MMMeT

− yyyT
2nnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(yyy2))

〉
JδMMMhnnn

K dS

−
∫
∂IΩh

r
MMMeT

− yyyT
1nnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(yyy1))

〉
JδMMMhnnn

K dS.

(D.4)

By applying Taylor series, Eqs. (72-75), to rewrite the right hand side, every term will be either in yyy1 − yyy2

or in ∇(yyy1 − yyy2). So proceeding as to establish Lemma 4.7 and using Lemma 4.1, Eq. (66), lead to [18]

| N (MMMe,yyy2; δMMMh)−N (MMMe,yyy1; δMMMh) | ≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy1 − yyy2 ‖| |‖ δMMMh ‖| . (D.5)

Choosing δMMMh = MMMyyy2
−MMMyyy1

, and using Eq. (88), Eq. (D.3) becomes:

Ck
1 |‖MMMyyy2

−MMMyyy1
‖|2 −Ck

2 ‖MMMyyy2
−MMMyyy1

‖2L2(Ωh) ≤ A(MMMe;MMMyyy2
−MMMyyy1

,MMMyyy2
−MMMyyy1

)

+ B(MMMe;MMMyyy2 −MMMyyy1 ,MMMyyy2 −MMMyyy1)

≤ N (MMMe,yyy2;MMMyyy2 −MMMyyy1)−N (MMMe,yyy1;MMMyyy2 −MMMyyy1).

(D.6)

Similarly, setting δMMMh = MMMyyy2
−MMMyyy1

in Eq. (D.5), Eq (D.6) becomes:

|‖MMMyyy2
−MMMyyy1

‖|2 ≤ Ck
1Cy ‖MMMe ‖Hs(Ωh) hµ−2−ε

s |‖ yyy2 − yyy1 ‖| |‖MMMyyy2
−MMMyyy1

‖| +Ck
2 ‖MMMyyy2

−MMMyyy1
‖2L2(Ωh) .

(D.7)

Since ‖MMMyyy2
−MMMyyy1

‖2
L2(Ωh)

≤|‖MMMyyy2
−MMMyyy1

‖| ‖MMMyyy2
−MMMyyy1

‖L2(Ωh), this last relation becomes

|‖MMMyyy2 −MMMyyy1 ‖| ≤ Ck
1Cy ‖MMMe ‖Hs(Ωh) hµ−2−ε

s |‖ yyy2 − yyy1 ‖| +Ck
2 ‖MMMyyy2 −MMMyyy1 ‖L2(Ωh) . (D.8)
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In order to estimate ‖MMMyyy2 −MMMyyy1 ‖2L2(Ωh)
, we consider ξξξ = MMMyyy2 −MMMyyy1 in Lemma 4.5. Therefore, there exists

a unique φφφh satisfying Eq. (95) ∀δMMMh ∈ Xk. In particular for δMMMh = MMMyyy2
−MMMyyy1

, this implies

‖MMMyyy2
−MMMyyy1

‖2L2(Ωh) = A(MMMe;MMMyyy2
−MMMyyy1

,φφφh) + B(MMMe;MMMyyy2
−MMMyyy1

,φφφh)

= N (MMMe,yyy2;φφφh)−N (MMMe,yyy1;φφφh)

≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy2 − yyy1 ‖||‖ φφφh ‖|

≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy2 − yyy1 ‖| ‖MMMyyy2

−MMMyyy1
‖L2(Ωh),

(D.9)

where we have used Eq (D.3), Eq. (D.5), and Eq. (96). Therefore, substituting Eq. (D.9) in Eq. (D.8)
yields

|‖MMMyyy1
−MMMyyy2

‖| ≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy1 − yyy2 ‖| . (D.10)
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[23] P. Houston, J. Robson, E. Süli, Discontinuous Galerkin finite element approximation of quasilinear
elliptic boundary value problems I: The scalar case, IMA journal of numerical analysis 25 (4) (2005)
726–749.

[24] L. Homsi, Development of non-linear Electro-Thermo-Mechanical Discontinuous Galerkin formulations,
Ph.D. thesis, University of Liege, Belgium, 2017.

[25] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer, 1983.
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