
DEVELOPMENT OF INVERSION TECHNIQUES IN
ASTEROSEISMOLOGY
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ABSTRACT

Stars are born, evolve and die. A small sentence, a simple statement implying great
consequences for our vision of the Universe. Throughout the history of mankind, we have
attempted to grasp the nature of the objects in the night, basing our reasoning on religious
or philosophical considerations, or scienti�c arguments. We have come a long way since the
days of unalterable perfect spheres, understanding that stars generate their energy through
nuclear fusion and are the chemical engines at the origin of the most of the heavy elements
of the Universe, even those composing our bodies. As a result, we can state, thanks to
stellar evolution theory, that we are all stardust.

Stellar evolution has encountered many successes during the 20th century and is now
considered one of the most well constrained theory in astrophysics. These successes are
due to improvements of theoretical modelling and continuous confrontations to observations.
It is of course impossible to witness the evolution of a star directly, since the timescales
involved are far greater than any human life. It is also impossible to analyse directly the
internal structure of stars since their opacity makes it impossible for any photon to escape
directly from the inner regions of the star.

The problem of the timescales of stellar evolution is solved by looking at many di�erent
stars. Indeed, the night sky o�ers a snapshot of the lifetime of di�erent objects of di�erent
masses, ages and chemical compositions. Studying clusters allowed for the �rst tests of the
theory of stellar evolution and improved greatly the way we compute stellar models. In
opposition, studying the internal structure of individual stars was for long very complicated.
Fortunately, the stars are not only subject to changes on large timescales. In fact, a vast
number of them present pulsations, a dynamical phenomenon similar to earthquakes. As
seismologists on earth use seisms to constrain the internal structure of the earth, so do
asteroseismologists constrain the internal structure of stars by listening to their pulsations.

In this work, we will focus on developing and applying speci�c techniques to extract
relevant structural information out of stellar oscillation spectra. We will base our approach
on so-called linear inversion techniques using the variational analysis of stellar pulsation
equations. First, we will show how these methods can be adapted to extract speci�c indi-
cators focusing the information of the oscillation spectra on individual quantities related to
speci�c physical aspects of stellar structure. We will show how these quantities can provide
additional constraints in the modelling of solar-like stars and help us build more accurate
models of stellar structure by testing their physical ingredients. A�er having presented the
theoretical developments, we will present a few applications to solar-like stars, like the
16Cygni binary system and a few targets of the Kepler LEGACY sample. We will show the
crucial role of inversion techniques in further reducing the uncertainties on fundamental pa-
rameters of stars such as mass, radius and age, which play a crucial role in multiple domains
of astrophysics.

Besides those speci�c cases, we will take a long look at our star, the Sun, and present
new developments in the �eld of global helioseismology. The results presented in this chap-
ter indicate that the solar modelling problem seem to stem from inaccuracies in various
physical ingredients other than the chemical abundances of heavy elements. With these
results, we demonstrate the need for a full re-investigation of the solar problem. Conse-
quently, a collaborative e�ort of the community is required if asteroseismology is, as argued
by many authors, to play a key role in astrophysics by determining precise and accurate
stellar masses, radii and ages.



RESUME

Les étoiles naissent, évoluent et meurent. Cette phrase, en apparence innocente, a
de fortes implications sur notre vision de l’Univers. Au cours de l’histoire de l’humanité,
nous avons tenté de saisir la nature des objets célestes, à l’aide d’arguments religieux,
philosophiques ou de raisonnements scienti�ques. Beaucoup de chemin a été parcouru
depuis les jours où les étoiles étaient vues comme des sphères parfaites et immuables. Au-
jourd’hui, nous savons que les étoiles produisent leur énergie par fusion thermonucléaire en
leur coeur et sont ainsi les moteurs chimiques à l’origine de presque tous les éléments lourds
de l’Univers, y compris ceux constituant le corps humain. Ainsi, nous pouvons a�rmer grâce
à la théorie de l’évolution stellaire que nous sommes tous des poussières d’étoiles.

Durant le 20ième siècle, l’évolution stellaire a rencontré de nombreux succès et est
désormais considérée comme une des théories les mieux établie en astrophysique. Ces
succès sont dus aux améliorations constantes des modèles théoriques et à leur confrontation
aux observations. Il est bien entendu impossible de suivre directement l’évolution d’une
étoile, car les échelles temporelles associées dépassent largement la durée de vie humaine.
De même, il est impossible d’analyser directement la structure interne d’une étoile, car leur
opacité empêche les photons de s’échapper directement des couches internes et d’ainsi nous
transmettre leurs informations.

Le problème des échelles de temps peut être résolu par l’observation d’une multitude
d’étoiles. En e�et, le ciel nocturne o�re la possibilité d’analyser simultanément un instant de
la vie de milliers d’étoiles de masses, d’âges et de compositions chimique di�érents. Ainsi,
l’étude d’amas d’étoiles a déjà permis de fortes améliorations des modèles stellaires. Au
contraire, l’étude de la structure interne d’étoiles individuelles s’est longtemps révélée bien
plus ardue. Fort heureusement, un grand nombre d’étoiles présentent des variations sur
des échelles de temps très courtes, associées à leur pulsations, similaires aux séismes que
nous connaissons. Ainsi, comme les sismologues usent des séismes pour étudier la structure
interne de notre planète, les astérosismologues sondent la structure interne des étoiles en
écoutant leurs pulsations.

Dans ce travail, nous nous concentrerons sur le développement et l’application de
techniques spéci�ques visant à extraire un maximum d’informations utiles des spectres
d’oscillations stellaires. Notre approche fera usage de techniques d’inversions linéaires se
basant sur l’analyse variationnelle des équations de pulsations stellaires. Dans un premier
temps, nous montrerons comment ces méthodes peuvent être adaptées a�n de concen-
trer toute l’information du spectre d’oscillation dans des indicateurs spéci�ques reliés à des
aspects précis de la structure stellaire. Nous montrerons que ces quantités servent alors
de contraintes additionnelles aux modèles stellaires et permettent d’améliorer grandement
l’exactitude de ces modèles et de tester leurs ingrédients physiques. Après avoir présenté
les développements théoriques, nous décrirons l’application de ces méthodes au système
binaire 16Cygni ainsi que quelques cibles de l’échantillon du Kepler LEGACY. Nous montrerons
le rôle crucial des inversions dans la réduction des incertitudes sur les paramètres fondamen-
taux des étoiles tels que la masse, l’âge et le rayon, qui jouent un rôle central dans d’autres
domaines de l’astrophysique.

A coté de ces quelques études spéci�ques, nous reviendrons longuement sur notre étoile,
le Soleil, et présenterons de nouveaux développements dans le domaine de l’héliosismologie
globale. Les résultats présentés dans le présent manuscrit semblent indiquer que le
problème des modèles solaires résulte d’erreurs dans un ensemble d’ingrédients physiques
autres que les abondances des éléments lourds. Grâce à ces résultats, nous démontrons la
nécessité d’une ré-étude complète du problème solaire. En conséquence, un e�ort collabo-
ratif de la communauté est requis a�n de permettre, comme le prétendent divers auteurs,
à l’astérosismologie de jouer son rôle de référence pour d’autres champs de l’astrophysique
dans la détermination des masses, âges et rayons stellaires.
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connaissances en physique stellaire et en astérosismologie.

I also wish to thank all members of the jury, for taking the time to read this manuscript. Especially,
I wish to thank the external members for their trip to Liège to take part in the defence. Thank you
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1. INTRODUCTION, CONTEXT AND OVERVIEW

1.1 A brief history of stellar seismology

Stellar variability was observed for the �rst time 400 years ago, when Fabricius noticed the
recurring luminosity variations of Mira Ceti. Yet, it is only in 1927 that Eddington discussed
the potential of stellar pulsations to test the physical conditions of stellar structure. Two
decades later, the theory of stellar pulsations, the forefather of modern asteroseismology,
was established in Liège by Paul Ledoux (Ledoux and Walraven (1958), Ledoux and Smeyers
(1966)).

During the next 50 years, the �eld evolved at a steady pace. Solar oscillations were
observed for the �rst time in 1960 and 1962 (Leighton (1960), Leighton, Noyes, and Simon
(1962)). However, their nature was only con�rmed in 1975 (Deubner (1975)) and their
origin discussed by Stein and Leibacher (1974). The large frequency separation (see
section 3.2), de�ning the regular properties appearing in the power spectra of stellar
acoustic oscillations, theorised by Vandakurov (1967), was observed by Claverie et al.
(1979). Meanwhile, the ability to classify individual solar pulsation modes (Scu�aire (1974b))
paved the way for more developed seismic investigations. In the meantime, the e�ects of
rotation on solar pulsations were observed and discussed (Rhodes, Ulrich, and Deubner
(1979), Ulrich, Rhodes, and Deubner (1979), Deubner, Ulrich, and Rhodes (1979)).

The late 80s saw the beginning of the development of inversion techniques in helio-
seismology, �rst to determine the rotational pro�le of the Sun (Kosovichev (1988)), then
its acoustic structure (Kosovichev and Fedorova (1991), Christensen-Dalsgaard, D. Gough,
and Toomre (1985), Antia and Basu (1994b)). These investigations helped to re�ne our
views of solar structure and the issues they unveiled are still at stake today. For example,
Spiegel and Zahn (1992) provided a theoretical description of the transition region between
the convective and radiative zone of the Sun, called the tachocline. In this region, it is
believed that turbulence, rotation and potentially the magnetic �eld come into play and a
full physical description of this region still lacks today. The importance of microscopic
di�usion was demonstrated with helioseismic inversions (Basu, Christensen-Dalsgaard,
Schou, et al. (1996)) and solar models showed that the solution of the famous solar neutrino
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problem was to be found in theoretical physics (Bahcall and Peña-Garay (2004)). All these
successes led to the de�nition of the framework of the standard solar model (Bahcall,
Huebner, et al. (1982)), now widely applied to study stars other than the Sun.

However, while helioseismology was providing striking examples of the potential of
stellar pulsations, asteroseismology of solar-like stars was having more di�cult beginnings.
The very low amplitude of solar-like oscillations hindered their detection and con�rmation
from ground-based observations. The �rst con�rmed observations of solar-like oscillations
were made on Procyon in 1999, nearly ten years a�er their �rst observations (T. M. Brown,
Gilliland, et al. (1991)). Other pulsations were detected on η Boo (Kjeldsen, Bedding, Baldry,
et al. (2003)), β Hyi (Bedding, Butler, et al. (2001)) and α Cen (Bouchy and Carrier
(2001)). Detailed seismic modelling was only possible for α Cen (see Miglio and Montalbán
(2005)) since other stars did not show enough individual modes to derive strong seismic
constraints from the observations.

In 1999, the WIRE mission was recycled into observing stellar pulsations a�er its initial
technical di�culties. This spacecra� was followed in 2003 by the Canadian MOST satellite,
the �rst mission specially dedicated to asteroseismic observations. However, the real
breakthrough was achieved by the CoRoT mission (Baglin et al. (2009)) launched in 2006,
followed soon a�er by the Kepler mission (Borucki et al. (2010)) launched in 2009. These
satellites, dedicated to both exoplanetology and asteroseismology, provided a tremendous
amount of data for giants, subgiants and main-sequence stars. The combination of high
quality photometry to long duration follow-ups allowed the detection of non-radial solar-
like oscillations in thousands of stars (see �gure 1.1 for an illustration). The major successes

Figure 1.1: Con�rmed targets of solar-like oscillations from the CoRoT (le�) and Kepler
(right) missions, reprinted from Chaplin and Miglio (2013).

of these missions include amongst others, the detection of the so-called mixed modes in
solar-like pulsators (see section 3.1.2) which can be used to probe the core of evolved
stars. The detection of non-radial oscillations in giants (De Ridder et al. (2009)) and
their theoretical analysis by M.-A. Dupret, Belkacem, et al. (2009) paved the way for
ensemble asteroseismology, Galactic archeology, as well as detailed studies of the transport
of angular momentum during stellar evolution.

The quality of the data allowed us to test the accuracy of detailed seismic modelling
and established asteroseismology as the golden path to provide fundamental parameters
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of stars to other �elds of astrophysics such as exoplanetology and Galactic archeology.
The CoRoT and Kepler missions are o�en said to have paved the way for the “space

photometry revolution” and this breakthrough will soon be followed by the forthcoming
TESS and Plato2.0 missions. However, as we will see later in this manuscript, seismic
stellar modelling is not limited by the precision of the data anymore, but rather by
the accuracy of the physical description of stellar structure. While it is of primordial
importance to determine fundamental parameters through seismic studies, the primary
goal of the space photometry revolution is above all to raise questions on our depictions
of stellar structure and evolution using asteroseismology.

1.1.1 Seismic modelling of solar-like stars

The advent of the space photometry missions caused a signi�cant change of scenery in
asteroseismology. Where before the targets were few and the observations imprecise,
stellar modellers now have high quality data for thousands of stars. For example, the very
best dwarfs exhibiting solar-like oscillations have been compiled in the so-called Kepler
LEGACY sample, which counts 66 stars for which precise individual frequencies can be
identi�ed. The number of individual frequencies for these stars vary from around 20 to 60
detected frequencies. The mean error vary from star to star and are found in between 0.05
and 0.003 µHz. The amount of data and its precision triggered the development of various
approaches to exploit the information it contained. Fortunately, thanks to the experience
acquired in helioseismology, the development of asteroseismic modelling techniques did
not start from scratch. In fact, a lot of the properties of solar-like oscillations had been
theoretically studied before the advent of the space photometry missions.

The use of seismic data to constrain stellar models is of course much less straight-
forward than in the solar case since, for most stars, fundamental parameters such as
mass, radius and age are completely unknown to the modeller. Relating these parameters
to seismic constraints was, and still is, a struggle (see for example Pijpers (2006) for a
review of methods used in helio- and asteroseismology). Indeed, seismic data only probes
the acoustic structure of stars, which implies that relating seismic data to structural
constraints will always be dependent on various assumptions on the physical processes
acting on stellar structure and evolution, such as, for example, the equation of state or
the opacity tables used to build the stellar model, but also the hydrodynamical processes
thought to act during the evolution of the observed star. Ultimately, this means that
while seismic constraints are essential to ensure an accurate and precise reproduction of
stellar structure (see for example the papers by Yveline Lebreton on “à la carte stellar
modelling” for a clear review of the importance of seismic constraints (Lebreton, Goupil,
and Montalbán (2014a), Lebreton, Goupil, and Montalbán (2014b)), the outcome of seismic
modelling will be dependent on the physical ingredients used in the numerical models
and on the hypotheses made on the evolution of the star.

Moreover, the use of solar-like oscillations to constrain structural models is also
hindered by the presence of the so-called surface e�ect problem (see section 3.9). Directly
using the frequencies in a minimization approach will lead to biased results that do not
reproduce the inner structure of the star. Therefore, stellar seismologists use the results of
theoretical analyses to determine which seismic constraints should be used to accurately
reproduce the inner stellar structure. As we will see in section 3.2, the regularity of
solar-like oscillation spectra allows us to de�ne speci�c seismic indices, which can be
used as constraints in a minimization technique. Currently, seismic �tting can be very
simple, for example through the use of scaling laws based on the assumption of homology
of all stars (Mosser, Belkacem, et al. (2010), Kallinger et al. (2010)), or very elaborate, for
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example through the use of individual speci�c frequency combinations in highly e�cient
minimization techniques. Various modellers will have their recipe to derive their seismic
model of a given star, some preferring the small frequency separations or the ratios of
the small frequency separation over the large frequency separation to ensure a minimal
dependency in the surface layers. Some alternative approaches have been developped,
like the phase matching technique (I. W. Roxburgh (2015a)) or the ε �tting technique
(I. W. Roxburgh (2016a,b)). The minimization techniques may also vary, some relying on
local Levenberg-Marquardt approaches (see Miglio and Montalbán (2005), Miglio, Montalbán,
and Maceroni (2007)), others preferring global MCMC techniques (Silva Aguirre, Basu,
et al. (2013)), genetic algorithms (Metcalfe, Monteiro, et al. (2010)) or more recently neural
networks (Verma, Hanasoge, et al. (2016)).

While the methods do vary a lot in their speci�c treatment of seismic information,
the outcome of each approach and their roots are still very similar. In fact, each of these
techniques fall into the category of the so-called “forward modelling approach”, which
was de�ned by Douglas Gough as “the execution of the forward problem using models
with a few adjustable parameters and the calibration of those parameters by �tting theory
to observations (D. Gough (1985))”. The main problem with this approach is that it is
limited to the parameter space de�ned beforehand. For example, one usually uses up to 5
parameters to describe the entire complexity of the structure and evolution of a given
observed star. Although forward modelling is essential and allows asteroseismology to
deliver constraints to other �elds of astrophysics, it has its intrinsic �aws and has to be
complemented by other methods to ensure the most e�cient use of seismic information.

Besides the classical forward modelling technique, other approaches have been derived
to determine speci�c characteristics of stars. For example, the so-called glitch �tting
techniques rely on the fact that very sharp changes in stellar structure such as ionisation
zones of abundant elements, such as helium, or the transition region from convective
to radiative transport of energy will leave speci�c oscillating features in the frequency
spectrum of the star (Houdek and D. O. Gough (2007), Monteiro, Christensen-Dalsgaard,
and Thompson (1994, 2000), and Verma, Antia, et al. (2014)). By identifying those features,
one can link the period of the oscillatory pattern to the acoustic depth at which the sharp
transition is located. By using stellar models to reproduce the intensity of the oscillating
feature associated with helium ionisation, one can also get an estimate of its abundance in
the convective envelope. This is of primary importance since helium is a key element of
stellar structure and cannot be constrained in solar-like stars by spectroscopy. However,
since stellar models are used to calibrate the amplitude of the glitch, it should be noted
that the derived abundance will be to some extent model-dependent.

1.1.2 Seismic inversions

In the previous sections, we have introduced seismic modelling and de�ned the “forward
modelling approach”. However, in the strict mathematical sense of the problem, this can
already be considered as an inversion. The inversion problem is that of the inference of
a given parametric model including given physical assumptions based on experimental
results. Therefore, the interested reader who uses sources outside the �eld of solar
and stellar seismology (such as Tarantola (2005) or Vogel (2002)) might be confused to
�nd analyses techniques that would be called “forward approaches” to be quali�ed as
“inversion techniques”.

In most cases, seismic inversion techniques will refer to the determination of the
pro�le of a given thermodynamical quantity based on asymptotic or variational integral
relations between relative frequency di�erences and structural corrections, or between
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rotational splittings and the rotational pro�le of the star. Non-variational inversions have
also been developed (I. W. Roxburgh (2010), I. W. Roxburgh (2015b)) and can be applied
to asteroseismic targets. Unfortunately, their use has been up to now rather limited and
convergence di�culties have been mentionned by their developers.

Consequently, the most common inversion techniques are linked to the variational
formulation used along with linear (see this work and the multiple references within) or
non-linear (see Marchenkov, I. Roxburgh, and S. Vorontsov (2000), Antia (1996) or Corbard
et al. (1999)) regularization techniques. As we stated in Sect. 1.1, inversion techniques were
�rst developed in order to determine the solar rotation pro�le (see Thompson et al. (1996))
using the kernel formulation of Ledoux (1949).

In addition, asymptotic inversions based on the Duvall asymptotic integral relations
were performed by Kosovichev and Fedorova (1991), and Christensen-Dalsgaard, Duvall, et
al. (1985). In 1988, Gough & Kosovichev already foresaw that the variables in the variational
relations could be changed, implying that additional quantities besides the adiabatic sound
speed and the density could be probed with inversions. Later, Dziembowski, Pamyatnykh,
and Sienkiewicz (1990) published the full integral expression between frequency di�erences
and structural thermodynamical quantities based on the variational principle of stellar
oscillations (Lynden-Bell and Ostriker (1967)). From there on, the scene was set for
inversions to play their crucial role in the development of helioseismology and in achieving
its successes (see Basu (2016), Christensen-Dalsgaard (2002), Kosovichev (2011) and
references therein for thorough reviews on helioseismology). Today, inversion techniques
are also used in local helioseismology (Gizon and Birch (2005)), to study the upper layers
of the solar convective envelope.

The main advantage of inversions is that they do not rely on a given set of parameters1

and thus o�er additional tests of solar and stellar structure that can help re�ne the physical
ingredients of numerical models. However, the ill-posed nature of the problem and the
various hypotheses of the variational formalism still mean that inversion techniques
are far from straightforward. The main question, a�er the successes of variational
helioseismic inversions, was whether these techniques could be adapted to improve our
use of asteroseismic data and provide additional tests beyond the stringent limitations of
the classical forward modelling approaches. Such attempts were made by D. O. Gough
and Kosovichev (1993b), D. O. Gough and Kosovichev (1993a), Basu (2003), Takata and
Montgomery (2002), but were not pursued. Until very recently, the only inversion
techniques successfully applied to observed asteroseismic targets are the fully non-linear
techniques of Roxburgh and Voronstov (I. W. Roxburgh (2015b) and I. Roxburgh and S.
Vorontsov (2003)).

1.2 Framework and objectives

Due to the current observational context and stalemates in stellar modelling, further
investigating the possibilities of implementing inversions in asteroseismology became
relevant. The goal of this thesis was to develop new approaches to probe various
structural characteristics of stars using variational seismic inversion techniques applicable
to the limited amount of data in asteroseismology. Indeed, linear structural inversions
were de�ned for the Sun, which counts hundreds of thousands of observed oscillation
modes. In the best cases of Kepler observations, having 50 individual frequencies is
already considered outstanding. Moreover, not knowing the fundamental parameters of
the observed star such as the mass or the radius leads to additional di�culties that are

1Although they do rely on various hypotheses that we will describe in detail in this manuscript.
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not present in helioseismology.
Ultimately, this work tries to improve the modelling capabilities of the asteroseismic

community and provide additional constraints on the models of solar-like stars. Many
questions are raised and a lot still remain unanswered. With the results presented here, we
hint at the limitations of linear inversion techniques, at the problem of the independency
of seismic constraints, at the biases of seismic forward modelling and at the capabilities
of asteroseismology to provide very accurate fundamental parameters.

However, determining accurate fundamental parameters can only be achieved by
improving stellar models. In this work, we try to show that structural inversions can
be used to such an end. We will show how the methods are validated in hare-and-
hounds exercises and can be applied to current observed asteroseismic targets. We
also re-investigate the solar metallicity problem and demonstrate the importance of the
modelling of the base of the convective envelope, besides breaking the ten-year-old
stalemate on the choice of the abundance tables for stellar and solar modelling. Our
results point at the limitations of the standard solar model and advocate for signi�cant
investigations to improve numerical stellar models to avoid hiding physical inaccuracies
behind compensatory e�ects.
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2. STELLAR MODELS AND THEIR PHYSICAL INPUTS

In this chapter we present a brief introduction to stellar modelling. Thanks to the increase
of computational power during the 20th century, stellar astrophysicists are now able to
compute evolutionary sequences of numerical models without much e�ort. This revolution
has allowed us to test stellar physics on a large scale by comparing the models to stellar
clusters. In the last decade, the observation of stellar oscillations on a large number
of stars paved the way for the study of individual targets using asteroseismology. In
this manuscript, we will only recall the basic elements of stellar models and focus more
on physical aspects rather than numerical techniques (We refer to textbooks such as
those of Kippenhahn, Weigert, and A. Weiss (2012) or Maeder (2009) for more in-depth
presentations).

The structure of this chapter is divided in three main subjects. First, we present
the timescales associated with stellar physics and how they are used in the computation
of stellar evolutionary models. We then present the equations used to describe stellar
structure and evolution. We conclude with a brief discussion related to the physical
ingredients of stellar models and their associated uncertainties.

2.1 Timescales of stellar evolution

The question of timescales is central both for stellar evolution and the theory of stellar
pulsations. In this section, we brie�y present the timescales associated with the physical
phenomena occuring in stellar interiors. As we will see, their orders of magnitude
are relevant to both the successes and recurring problems in our description of stellar
structure.
The dynamical timescale: The dynamical time is the timescale associated with dynamical
phenomena occuring in stellar interiors. It is of the order of magnitude of the free fall
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time of the star. Mathematically, it is calculated with the following formula:

tdyn =

√
R3

GM
, (2.1)

with R the radius of the star, M its mass and G the gravitational constant.

A good example of a dynamical phenomenon are stellar oscillations and one can easily
show that the timescale of acoustic waves is the dynamical timescale. When looking at the
typical values of tdyn for the Sun, one �nds the typical order of magnitude observed for
periods of solar oscillations (i. e. around 20 minutes.). Other, perhaps more spectacular,
examples of dynamical phenomena include Supernovae explosions and initial collapse of
interstellar clouds.
The Kelvin-Helmholtz timescale: This timescale is related to the cooling of the star if
all sources of nuclear energy were cut o�. It is considered to be a thermal timescale
and is de�ned as:

tK−H =
GM2

LR
, (2.2)

with L the luminosity of the star.

This timescale is much larger than the dynamical timescale presented before, typically
for the Sun, one has an order of magnitude of 3× 107 years. This timescale is also
associated with the initial stellar contraction phases, where the gravitional energy is used
to increase the temperature in the central regions. It can thus also be linked to the Virial
theorem describing proto-stellar contractions.

The thermal relaxation timescale: This timescale is locally de�ned for each layer of the
star and is related to the cooling of each of these layers. It is de�ned as:

tth,i =
∫

∆mi

cV T dm
L

, (2.3)

with cV the speci�c heat at constant volume of the layer, and T its temperature.

The relaxation timescale varies extensively with depth and can be, in upper regions,
of the order of the dynamical timescale. In these regions, dynamical phenomena such as
pulsations cannot be separated from thermal phenomena. This has strong implications for
stellar pulsations since one o�en uses the adiabatic approximation, completely neglecting
the thermal e�ects.
The nuclear timescale: The nuclear timescale is associated with the burning of chemical
elements through nuclear fusion reactions and thus to changes in the chemical compo-
sition. As the longest phase of the life of stars is the so-called main sequence, where
they burn hydrogen into helium in their core, the nuclear timescale is associated with
hydrogen burning and is de�ned as:

tnuc =
Enuc

L
, (2.4)

with Enuc the energy generated by the nuclear fusion of hydrogen into helium. This
timescale is much larger then all other timescales presented before.

Typically, one �nds for the Sun an order of magnitude of 1010 years. This means that
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chemical composition variations can be neglected when studying stars using dynamical
phenomena such as pulsations.

The fact that the nuclear timescale is completely di�erent from the others is extremely
important for stellar evolutionary models, since it allows us to consider that we move from
one equilibrium con�guration to the other, applying restricted changes in the chemical
composition along the evolutionary sequence. It is no surprise that the evolutionary
phases that are associated with similar values of the thermal and nuclear timescales, such
as the helium �ash at the end of the main sequence of low mass stars, are associated with
numerical problems and to this day only a few evolutionary codes are able to evolve
models through these phases using speci�c numerical techniques.

2.2 Equations of stellar structure

Before introducing the equations of stellar pulsations and the theoretical background of
seismic inference and its application to observations, a small introduction to the equations
of stellar structure is necessary. As such, stellar structure is described by the classical
set of partial di�erential equations of �uid mechanics, supplemented by the equations
of energy transfer and energy generation through nuclear reactions. A stellar model
is ultimately the solution of all these equations and although stars can be structurally
completely di�erent, they are still described by the same general system of equations that
we will derive in the next section. However, the diversity of physical phenomena occurring
in stellar interiors means that although we know the basic equations, we cannot, to this
day, build completely consistent and perfectly trustworthy models of stellar structure.
The problems associated with extra-mixing of chemical elements and angular momentum
transfer are striking examples of the limitations and weaknesses of our understanding of
stellar modelling.

2.2.1 The general case

To fully understand the hypotheses hiding behind stellar models, it is useful to start from
the general equations of hydrodynamics and see what simpli�cations are made to reach
an essentially simple system of di�erential equations describing stellar structure. Thus,
we will start with a more general description.

The �rst equation used is the conservation of mass:

∂ρ

∂ t
+~∇ · (ρ~v) = 0, (2.5)

where ρ is the local density of the �uid and ~v the local velocity vector. This means
that we do not consider any form of mass loss in the stellar structure. However, in
the upper layers of the star, the radiation pressure does induce a mass loss which is
at the origin of the solar wind for example, and can cause signi�cant changes in the
evolution of massive stars and of course change the surface abundances observed in such
objects. This phenomenon has to be included in the boundary conditions of equation
2.5 when relevant. For example, if we look at the Sun, we �nd that the solar wind
accounts approximately for 10−14M�/year, thus around 10−4M� for its entire stay on the
main sequence. It seems negligible when considering that a 10−2M� precision on mass
determinations for a solar-like star other than the Sun is currently the very best we can
expect for binary systems, let alone isolated stars (see for example Pourbaix and Bo�n
(2016) for the αCen binary system, where a precision of 5×10−3M� is achieved.).
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The second equation which intervenes is the conservation of momentum for an ideal
�uid

∂~v
∂ t

+~v ·~∇~v =−~∇ψ−
~∇P
ρ

, (2.6)

where ψ is the gravitational potential and P the local pressure of the �uid. We note that
we neglect here the magnetic �eld. The e�ects of rotation can be included in the de�nition
of the velocity vector, ~v. It is indeed well known that rotation plays a role in the way
chemical elements and angular momentum are mixed during stellar evolution. However,
the current failures to reproduce observations (Deheuvels, Doğan, et al. (2014) and Mosser,
Goupil, et al. (2012)) illustrates the large uncertainties on how angular momentum is
transported within stars and thus how rotational pro�les change during the evolution.
Neglecting the microscopic viscosity is justi�ed due to the very high Reynolds number
found at the temperatures of stellar interiors. However, this does not mean that turbulence
does not play a role in stellar structure, as we will see later.

The third equation is Poisson’s equation for the gravitational potential:

4ψ = 4πGρ. (2.7)

Equations 2.5, 2.6 and 2.7 only take into account dynamical e�ects. Consequently, we have
to include thermal e�ects, which are characterised by the energy conservation equation,
the fourth equation of stellar structure:

T
∂S
∂ t

+T~v ·~∇S = ε−
~∇ ·~F

ρ
, (2.8)

where T is the local temperature, S the entropy, ε the energy generation rate and ~F the
energy �ux. ε is a combination of gravitational and nuclear generation of energy, where
for the second source, one has to take into account the energy loss by neutrinos when
computing the energy of each nuclear reaction. The energy �ux is related to the physical
phenomena transporting energy through layers of stellar material. The most common
phenomena are radiation and convection, although conduction plays a signi�cant role in
the degenerate core of more evolved stars. In this brief introduction, we will only present
radiation and convection since they are the dominant mechanisms found in the models of
main-sequence solar-like stars. We thus have the following decomposition for the energy
�ux

~F = ~Frad +~Fconv, (2.9)

with ~Frad being the radiative energy �ux and ~Fconv the convective energy �ux.
The case of radiation can be quickly treated. Due to the small mean free path of

photons in most layers of stellar material, the �ux can be approximated by that of a
di�usive transport and written:

~Frad =−4ac
3

T 3

κρ

~∇T, (2.10)

where a is the radiation density constant, c the speed of light, and κ is the “mean” opacity,
which is usually the Rosseland mean of spectral opacities de�ned as follows

1
κ
=

∫
∞

0
1

κν

∂Bν (T )
∂T dν∫

∞

0
∂Bν (T )

∂T dν

, (2.11)
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with κν the spectral opacity at a given frequency in the radiation spectrum and Bν the
Planck function for a given temperature and frequency. As can be seen, the Rosseland
mean opacity is a harmonic mean which attributes more weight to the regions of low
opacity in its calculation.

While the di�usion approximation holds very well for the internal structure of stars, it
is absolutely not valid for stellar atmospheres, where the mean free path of the photon
becomes much larger. In those regions, a full treatment of the radiation transfer is
necessary. In low-mass stars, such as those we will study in this thesis, the e�ects of
radiation pressure are quite limited in the interior. Consequently, most of the uncertainties
on the thermal strati�cation of the radiative regions of these stars are linked to the
opacity calculations. For more massive stars, these uncertainties are magni�ed through the
important role of radiation pressure which can cause heavy elements to “levitate” inducing
local accumulations. These accumulations can be strong enough to change radiative layers
into fully mixed convective layers, thus a�ecting the chemical abundances and strongly
in�uencing the evolution of those stars.

This parenthesis leads us to the second component of the energy �ux, the convective
�ux. Convective transport of energy is basically linked to macroscopic motions of the �uid
itself. The main issue is the timescale and vigorousness characterizing this phenomenon
in stellar interiors. Typically, the Reynolds number, describing the degree of turbulence
of these motions, are of the order of 1010, far beyond what is achievable by numerical
simulations to this day. Due to the small timescales and high non-linearity of these
motions, it is impossible to properly treat convection in stellar interiors and an analytical,
phenomenological approach dating back to Ludwig Prandtl (1925) is o�en used. This
approximation is called the mixing-length theory (MLT) and links an average of the
convective �ux to local thermodynamical quantities in the case where radiative losses are
negligible as follows:

< Fconv >≈ ρcPT

√
P
ρ

α
2
MLT (∇−∇ad)

3/2, (2.12)

where cP is the speci�c heat at constant pressure, ∇ the temperature gradient of the layer
and ∇ad the adiabatic gradient of the layer. The quantity αMLT is the so-called mixing
length parameter which determines the extent of the mixing by convection through the
relation

l = αMLT HP(r), (2.13)

hence de�ning l as the radial distance travelled by the �uid element before its disintegration
and HP = dr

d lnP the pressure scale height and r the radial position. We emphasise the word
“radial” because turbulence is of course a three-dimensional phenomenon and this aspect
is totally neglected in the MLT formalism. Moreover, as we will recall in the next section,
turbulence is generated by a number of eddies of di�erent wavelength, transporting the
energy from the macroscopic to the microscopic scales. Again, this aspect is absent from
MLT theory, which reduces the whole spectrum to one single characteristic scale, l. The
e�ects of convection on the mean �ow are treated up to the �rst order in the turbulent
closure problem, while non-linear coupling has been shown to be of utmost importance
when describing a turbulent medium. The Boussinesq approximation is used to describe
the radial displacement of the �uid element. In other words, it assumes among others
pressure equilibrium in the derivation of the buyoancy force, which is in disagreement
with values of αMLT for standard solar models, found to be around 1.8, thus of the order
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of the pressure scale height. This is particularly problematic in the region near the surface,
where the velocity of convective elements is of the order of the local sound speed (in
other words, where the Mach number is large). During their travel through the media, the
radiative losses of the elements are approximated but no continuous exchange of matter
and energy is considered during the displacement. Although extremely simple and full of
intrinsic �aws, the MLT approach is found to perform rather well for very turbulent deep
layers of stars.

Other approaches, like the Full Spectrum of Turbulence method, have also been
implemented in stellar evolution codes (like the CESTAM code in Paris (Marques, Goupil,
et al. (2013)) or the latest version of the Cles evolution code (Scu�aire, Théado, et al.
(2008))). This approach is described in Canuto, Goldman, and Mazzitelli (1996). It attempts
to take into account the fact that convective motions will be characterised by a spectrum
of eddies of various characteristic lengths, whereas the MLT reduces this spectrum to one
single eddy. In practice, the formalism can be reduced to an expression very similar to
that of the classical MLT. It is well known that both theories are not accurate for upper
layers of stars were convection becomes clearly non-adiabatic. Moreover, both theories
treat convection as a local phenomenon although turbulent convection is intrisically a
non-local process. Consequently, a more accurate (although still imperfect) description
of convection can only be obtained by hydrodynamical simulations, typically large eddy
simulations (LES), where the turbulence is fully treated until a certain grid resolution under
which a turbulence closure model is used. Some of these simulations are now averaged
and “patched” onto stellar models. These models are then used to analyse the e�ects of
upper layers on pulsation frequencies, but also to calibrate the mixing length parameter,
which hides all the complexity of turbulence in the MLT formulation. 3D simulations are
very useful to analyse the e�ect of turbulent pressure, which leads to an expansion of the
super�cial layers and thus an increase in radius which is far from negligible for helio- and
asteroseismic studies.

Besides the inherent problems linked to the physical phenomenon itself, we must
stress that determining properly boundaries of convective regions is also far from obvious.
Typically, stellar models consider sharp transitions between fully mixed convective regions
and partially mixed radiative regions. This can lead to strong uncertainties due to processes
like overshooting, undershooting and semi-convection and sometimes to some confusion
in the way to properly characterise convective regions in stellar evolution codes (see
Gabriel, Noels, et al. (2014)). Usually, the classic criterion used to derive the onset of
convection is the Schwarzschild criterion (Schwarzschild (1906)),

∇rad > ∇ad , (2.14)

stating that the so-called radiative gradient is superior to the local adiabatic gradient,
de�ned as

(d lnT
d lnP

)
S, with S the entropy. This implies that the border of a convective region

will be set by the Schwarzschild criterion at a point where ∇rad = ∇ad on the convective
side of the border and ∇rad < ∇ad on the radiative side of the border. The radiative
gradient is de�ned in equation 2.10 as the temperature gradient required in the medium
to transport all the energy through radiation. If the Schwarzschild criterion is ful�lled,
macroscopic motions will occur and transport the energy outwards. Such situations occur
in massive stars, where the the CNO cycle of nuclear reactions occurs in a very narrow
region in the centre which in turn leads to the apparition of a convective core, and in outer
envelopes of cool stars where the increase in opacity blocks the transport by radiation.

The last equation we need to introduce to properly treat stellar structure is the
equation of state. This equation relates the behaviour of the matter to thermodynamical
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variables and chemical composition. This equation is written:

P = P(T,ρ,χ), (2.15)

U =U(T,ρ,χ), (2.16)

κ = κ(T,ρ,χ), (2.17)

if we choose T and ρ as independent variables and use χ to characterise the chemical
composition and U is the internal energy of the stellar plasma. In practice, the equation
of state can be computed using two di�erent approaches: the physical or the chemical
approach. The �rst one is based on the treatment of individual particles (nucleons and
electrons) through their Coulomb potential and thus includes a systematic treatment of
non-ideal e�ects. This approach does not make any hypothesis on the ions in the gaz. The
chemical approach is based on the consideration of atoms and ions and includes non-ideal
e�ects in a simple heuristic manner. This is what is found in the CEFF (Christensen-
Dalsgaard and Daeppen (1992)), FreeEOS (Irwin (2012)), MHD (Hummer and Mihalas (1988),
Mihalas, Dappen, and Hummer (1988), Daeppen et al. (1988), Mihalas, Hummer, et al. (1990))
and SAHA (Baturin et al. (2013)) equations of state. The physical approach is used to
compute the OPAL equation of state (Rogers and Nayfonov (2002) and Rogers, Swenson,
and Iglesias (1996)).

Although the physical approach can be thought to be more realistic, the chemical
approach o�ers the advantage to be a very versatile tool for which the chemical composition
can be quickly changed and for which supplementary thermodynamic quantities can be
easily and consistently computed due to analytical formulas. For example, when the OPAL
equation of state was released (Rogers, Swenson, and Iglesias (1996)), it was found that
it did not satisfy some basic thermodynamic relations. This led to a recalculation of the
OPAL tables in 2002 (Rogers and Nayfonov (2002)).

2.2.2 Equilibrium structure and evolution equations

The equations de�ned in section 2.2.1 do not constitute the equations actually solved
when computing stellar models. It is of course unrealistic to think that we could solve
every equation, taking into account every time dependence and physical e�ect within a
general geometry to describe stellar structure. We know from section 2.1 that various
timescales are found in stellar structure and evolution and that we can, to some extent,
separate dynamical, thermal and chemical e�ects.

In practice, the structure is described by an average equilibrium structure. Due to
the hypothesis of hydrostatic equilibrium, if one neglects the e�ects of rotation and of a
magnetic �eld, the geometry of an isolated star can be considered spherical. Assuming
hydrostatic equilibrium1 means that dynamical e�ects can be separated and the time
derivatives eliminated from dynamical equations. During its main sequence, the star is
also in thermal or secular equilibrium, meaning that all energy produced within the core
by nuclear reaction is transported outwards such that the energy gains and losses in the
core compensate each other. This means that we end up with the following system of

1Which is a completely relevant hypothesis for most evolutionary phases with the exception of the initial
collapse of the molecular cloud and the supernovae phases.
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equations:

∂ r
∂m

=
1

4πr2ρ
, (2.18)

∂P
∂m

=
−Gm
4πr4 , (2.19)

∂ l
∂m

= ε, (2.20)

∂T
∂m

=
−GmT
4πr4P

∇, (2.21)

where equation 2.20 is only equation 2.8 written in another form, with l the local value
of the luminosity at a radius r and ∇ being the temperature gradient de�ned as d lnT

d lnP ,
determined according to the transport of energy, in other words equation according to
2.10 in a purely radiative zone and for example according to the equations of the MLT for
convective regions. These equations describe stellar structure and the remaining time
derivatives are related to changes of chemical composition, which of course induce changes
in the temperature and pressure throughout the star. Hence, the last equations needed to
compute evolutionary models are related to changes in chemical composition:

∂Xi

∂ t
=

mi

ρ

(
∑

j
ri, j−∑

k
ri,k

)
, i = 1, ..., I, (2.22)

with Xi being the mass fraction of each nuclei i of mass mi undergoing nuclear reactions
de�ned by the production and destruction rates of the chemical species, respectively ri, j

and ri,k. Computing an evolutionary sequence with most stellar evolution codes means that
the model is evolved from one state of thermal and hydrostatic equilibrium to another one.
As stated before, only a few stellar evolution codes are able to compute the evolution of a
model through the helium �ash or other phases of evolution where instabilities develop.

2.3 Ingredients of stellar models

In this section, we will brie�y discuss some more tedious aspects of stellar structure. Our
goal is not to provide a full description of these problems, which are still a matter of
debate in the community, but rather to present a short overview of some physical aspects
of stellar structure not always included in the recipe of stellar models we described earlier.
We will separate our discussion between macroscopic aspects, linked to the description of
the hydrodynamics of the stellar interior, and the microscopic aspects, linked to processes
occurring at small scales that have a signi�cant impact on stellar models.

2.3.1 Uncertainties on macroscopic processes

Describing stellar structure requires numerous approximations on the large scale e�ects
acting on the �uid �ows. Indeed, analysing in details all macroscopic processes acting on
small timescales like turbulence, magnetic �elds, rotation or instabilities during an entire
stellar evolution and describing their interactions with each other is almost impossible.
Therefore, one relies on a number of assumptions on these processes. In this section, we
will brie�y describe some of these processes and their importance and refer to additional
references for the interested reader.

The �rst obvious ingredient of the macrophysic aspects of stellar models is convection.
As described before, the most commonly used description for the motions of the �uid
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in convective layers is the local mixing length theory (MLT, Böhm-Vitense (1958)). This
description uses a single free parameter to determine the distance over which an element
will be moved before dispersing its characteristics within its surroundings. While the
mixing-length theory holds well in lower regions, it completely fails in upper regions
of the stellar structure. In those layers, the hypothesis of adiabaticity is not valid since
the thermal timescale describing the heat exchange between the �uid element and its
surroundings is of the same order as the dynamical timescale describing its motions.
This means that the temperature gradient in upper regions of the convective envelope
described by the MLT formulation is undoubtedly wrong. A �rst amendment to these
errors can be done when taking into account the full spectrum of turbulence, as done
in Canuto, Goldman, and Mazzitelli (1996). This method described as the FST approach,
o�ers theoretically a better modelling of the non-adiabatic convective zones by taking
into account various eddies as contributing to the convective �ux rather than a single
eddy characterised by the mixing length. This formalism allows us to derive the root
mean squared turbulent pressure, the root mean squared turbulent velocity as well as the
turbulent viscosity. In a �rst paper in 1991, Canuto & Mazzitelli presented a model for
convection where the turbulent mixing length scale was the depth in the convective region.
This model did not require a free adustable parameter, like the MLT model and provided
acceptable results for a solar calibration. In 1996, the model was further improved by
taking into account a self-consistent rate for the energy input (here buyoancy) into the
turbulent cascade. However, this self-consistent model of convection required a free
adjustable parameter, in a similar fashion to the MLT approach, and is o�en refereed to as
the FST (full spectrum of turbulence) or CM (Canuto-Mazziteli) model of convection in the
litterature, including the present manuscript.

The problem of overshooting is another central problem of astrophysics, intrinsically
linked to the borders of convective regions. This problem results from the Schwarzschild
criterion used to derive the boundary of the convective zone. In fact, this criterion
provides a dynamical boundary, in other words, the region where the acceleration of the
�uid element is 0. However, due to its inertia, an element will not necessarily stop there
since its velocity is not 0 at the point where the criterion is satis�ed. The real border of a
convective layer is actually found where the velocity of convective elements is 0 and thus
there is no convective �ux. In practice, it is very di�cult to derive such a limit, although
upper boundaries for the overshooting regions have been derived (see I. W. Roxburgh
(1989)). Consequently, in the absence of a proper theory characterizing this convective
penetration, o�en called over- or undershooting depending on the situation, one relies on
parametric formulations.

In �gure 2.1, we compare temperature gradients in the superadiabatic zone for solar
models between the MLT, FST and a 3D LES simulation2. As stated before, the LES
simulations provide the most reliable description of these regions but the computation
time and the limited range of physical parameters does not make them suitable for “à la
carte” stellar modelling yet. We can see that the FST provides a much higher temperature
gradient in the upper region and that the MLT formalism performs better with respect
to the LES simulation for this model. Other formulations, separating convection into
a combination of a mean �ow to which perturbations are added can be found in Yang
and Li (2007). This method, based on Reynolds-stresses models, has been tested using
helioseismic data and found to improve the agreement with observed solar frequencies by
30%. However, the major weakness of this approach is the number of free parameters
introduced (6 in Yang and Li (2007)) to take into account the various correlations between

2We mention that the model for the LES is not perfectly solar but has a slightly higher mass of 1.02M�.
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turbulent stresses necessary to close the analytical model.
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Figure 2.1: Illustration of the di�erence in temperature gradients for FST (green) and MLT
(red) formalisms for standard solar models, compared to a patched 3D simulation (courtesy
of T. Sonoi) in blue.

Another macroscopic element of stellar models is rotation. Although it is o�en not
implemented in stellar evolutionary codes, it is known to have a strong impact on physical
properties of stellar models (see the serie of papers Meynet and Maeder (1997), Maeder
(1997), Maeder and Zahn (1998), Maeder (1999), Meynet and Maeder (2000), Maeder and
Meynet (2000), Maeder and Meynet (2001), Meynet and Maeder (2002), Maeder (2002),
Meynet and Maeder (2003), Meynet and Maeder (2005), Hirschi, Meynet, and Maeder (2004),
Hirschi, Meynet, and Maeder (2005) for an extensive description of the impact of rotation
on stellar structure and evolution). For instance, strong di�erential rotation would cause
the apparition of shear instabilities, thus inducing additional mixing in stellar interiors.
Many of the remaining uncertainties focus on the evolution of angular momentum in stellar
interiors. For a better understanding, let us recall the �rst consequence of rotation which
is a modi�cation of the mechanical equilibrium, which leads to a change in the geometry
of the star and to the fact that equipotentials are now closer to each other at the poles
than at the equator due to the breaking of spherical symmetry.

In a simpli�ed description, this mechanical change leads to a thermal imbalance between
polar and equatorial regions (due to Von Zeipel’s theorem), which in turn triggers the
development of a meridional circulation. In a more complete picture, the e�ects of winds,
accretion and tides have to be taken into account since they will change the total angular
momentum of the star and thus shape the structure of the meridional circulation. Moreover,
the circulation has to be coupled to horizontal turbulence and magnetic �elds. The study
of this �ow is one of the most long lasting problem in astrophysics since it appeared at
the beginning of the 20th and a �rst self-consistent explanation was �rst provided in Zahn
(1992) but the speci�c properties of the coupling with additional processes is still under
study. We also mention that some models without a large scale meridional circulation have
also been proposed in the past (see for example I. W. Roxburgh (1964a), I. W. Roxburgh
(1964b), Sharp, Smith, and Moss (1977) or Busse (1981)). We refer to the paper by Zahn (1992)
or to the book by André Maeder (Maeder (2009)) for a full description of the phenomenon
and only list the consequences of the existence of such a circulation.
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The �rst consequence is that the circulation advects angular momentum and chemical
species, changing the strati�cation of the star and its rotation pro�le signi�cantly during
the evolution. Indeed, it can be shown that meridional circulation will induce di�erential
rotation by its advection of angular momentum. However, it will also indirectly trigger
shear induced turbulence, which will lead to a reduction of the �ow. This turbulence will
mostly act on the horizontal strati�cation of the �uid, as is observed in geophysics. It
has been shown by Zahn (1992) that in this case, the e�ects of shear induced turbulence
could be treated as a di�usive process in the radial direction (other approaches have
also been presented, see e.g. Pinsonneault et al. (1989)). The problem is actually even
more complicated since the apparition of the instabilities will also be in�uenced by the
interaction of the circulation with the magnetic �eld and the angular momentum loss
through the stellar winds, particularly in the case of massive stars. We illustrate the
interplay between all these processes in �gure 2.2, from Mathis and Zahn (2005), which
emphasises better than any long sentences the physical complexity of the problem faced
by stellar modellers.

Figure 2.2: Illustration of the interaction between various macroscopic processes in stellar
interiors (reprinted from Mathis and Zahn (2005))

In the helioseismic case, additional processes are also needed to reproduce the rotation
pro�le of the Sun, illustrated in �gure 2.3 for various latitudes. It was found that basic
angular momentum conservation and meridional circulation are insu�cient. One usually
quotes the impact of gravity waves, presented in Kumar, Talon, and Zahn (1999) and
Charbonnel and Talon (2005) or the in�uence of the magnetic �eld (Eggenberger, Maeder,
and Meynet (2005)). However, all three processes can be invoked and combined to
reproduce the rotation pro�le of the Sun and so far, helioseismology has not been able to
discriminate between them. Recently, the unveiling of the rotation of the core of subgiants
and red giants (Deheuvels, Garcı́a, et al. (2012), Deheuvels, Doğan, et al. (2014), Mosser,
Goupil, et al. (2012)) has further con�rmed that our current state of stellar modelling did
not reproduce at all the observed properties in terms of mixing. The problem had already
been mentionned for speci�c cases where chemical peculiarities are also observed (see
Richard, Michaud, Richer, et al. (2002)). Moreover, the question of rotation is actually
closely related to lithium depletion (Zahn (2005), Richard, Michaud, and Richer (2005),
Vick et al. (2010), Vick et al. (2011), Vick et al. (2013)), which is still not reproduced even
by the standard models of the Sun.

Because of their impact on strati�cation, these interactions between rotation, turbulence
and magnetic �elds will not only a�ect the transport of angular momentum, but also
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Figure 2.3: Illustration of the 2D rotation pro�le as obtained with various inversion
techniques (reprinted from Schou, Antia, et al. (1998))

the transport of chemical species. This will of course impact the evolutionary track of
stellar models of all masses, ages and chemical compositions. Currently, this “extra-mixing”
problem is central to stellar modellers, �rst of all to understand the physical structure
of stars but also to allow stellar models to ful�ll their key role as references for the
determination of fundamental parameters, such as ages, in other �elds of astrophysics
such as exoplanetology or Galactic archeology.

2.3.2 Uncertainties on microscopic ingredients

As can be seen from section 2.2.1, stellar evolution is not only a hydrodynamical problem,
but also a matter of atomic or subatomic physics. It should also be noted that mixing
processes are important for stellar evolution because they will change the course of the
microscopic processes driving stellar structure and evolution. Since stellar evolution is
due to nuclear reactions occuring in the central regions, it means that the evolution will be
strongly dependent on the nuclear reaction rates. Fortunately, these ingredients have been
quite reliably calculated in the past years and are not expected to change signi�cantly in
the near future. The last important change was linked to the 14N(p,γ)15O reaction which
is a key component of the so-called CNO cycle and in�uences the evolution of massive
stars (see for example Stancli�e et al. (2016) for a recent study) but also later evolutionary
stages (Pietrinferni, Cassisi, and Salaris (2010)).

Another fundamental ingredient of stellar models is the equation of state. Currently,
three main equations of state are used for solar-like stars, the OPAL equation of state (Rogers
and Nayfonov (2002)), the Ce� equation of state (Christensen-Dalsgaard and Daeppen
(1992)) and the FreeEOS equation of state (Irwin (2012)). Other possibilites are available,
like the MHD equation of state (Hummer and Mihalas (1988), Mihalas, Dappen, and Hummer
(1988), Daeppen et al. (1988), Mihalas, Hummer, et al. (1990)) or the series of SAHA equations
of state (Baturin et al. (2013)). All of these have been calibrated for the Sun and tested
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using helioseismology. While it can be argued that there is always room for improvement,
the equation of state still remains quite robust for solar conditions and is not considered
the main contributor to uncertainties in numerical models of solar-like stars. However, the
situation is very di�erent for cold stars, where additional corrections have to been taken
into account, or for more peculiar objects, like white dwarfs, where cristallization may
play an important role and these phase transitions have to be treated correctly in very
peculiar conditions. In the more extreme case of neutron stars, relativistic e�ects have
to be taken into account and reconciling general relativity and thermodynamics is not a
straightforward task. In the present work, where we focus on solar-like stars, the equation
of state will not be seen as a major problem, but it should still be kept in mind that
changes in this fundamental ingredient can have an impact, although limited, on the stellar
models presented here. As an illustration, we compare in �gure 2.4 relative di�erences of
the adiabatic exponent, Γ1 =

∂ lnP
∂ lnρ
|S, for the OPAL, Ce� and FreeEOS equations of state in

a standard solar model. As can be seen, the di�erences remain limited although larger
discrepancies can occur for non-solar conditions.
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Figure 2.4: Relative di�erences in Γ1 for a standard solar model built with the Ce�,
FreeEOS and OPAL equations of state.

The most problematic microscopic ingredient is the opacity. In practice, various
opacity tables are available, including the OPAL (Iglesias and Rogers (1996)), OP (Seaton
(2005)), OPAS (Mondet et al. (2015)) or OPLIB (Colgan et al. (2016)) tables. The particularity
of the OPAS tables is that they are only computed for a very limited range of physical
conditions, corresponding to the radiative zone of the Sun. Thus, three possibilities are
o�ered to stellar modellers. The main di�culty associated with opacities is the complexity
of their determination. Correctly accounting for all the levels of transitions of all atoms in
all ranges of density and temperature and properly accounting for the coupling beetween
electronic levels constitutes a very tedious problem requiring years of calculations (as can
be seen from the timelapse between the publication of two di�erent opacity tables). The
dominant aspect of this problem for stellar modelling is that the opacities have a strong
impact on stellar structure. They condition the behaviour of the temperature gradient
in the interior , thus strongly impact the sound speed gradient in radiative regions and
the extension of convective regions. Consequently, they strongly impact the structural
diagnostics derived from seismic modelling. As we will see in chapter 7, they play a
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central role in the “solar metallicity problem”, and the remaining di�erences between
theoretical calculations and the experimental results seem to indicate that the problem
is not closed despite the recent publication of updated opacity tables. Historically, new
opacities have been linked to small revolutions in stellar physics, like the explanation of
the pulsations of β Cephei stars (A. N. Cox et al. (1992) and Dziembowski and Pamiatnykh
(1993)). Additional changes in the nickel opacity are also predicted to explain the behaviour
of B type stars (see S. Salmon et al. (2012)). Therefore, opacity tables still remain the
microphysics ingredient of stellar models that is the most likely to change in the future.
We further discuss this ingredient in chapter 7, due to its key role in the current solar
modelling problem.

Besides the opacity problem, some uncertainties on microscopic di�usion are also
present in stellar models. While gravitational settling and thermal di�usion are well known,
di�erences remain between various “recipes” of microscopic di�usion (see Turcotte et al.
(1998)). Treating microscopic di�usion properly is quite complicated, since ideally, it should
be done by following each individual element and see to which depth it sinks in the
star during its evolution. The movement of each element depends, of course, on its
ionisation state since its interaction with the medium will not be the same depending on
whether it is fully ionised or not. Another crucial aspect of microscopic di�usion is the
potential impact of radiative acceleration. This problem is closely linked to opacities since
in this case one has to be able to properly take into account the transfer of momentum
from photons to given ions which will counterbalance their settling during the evolution.
Besides the obvious di�culty of this modelling and its intrinsic uncertainties, this aspect
is also particularly di�cult to model because of the unavailability of the data to stellar
modellers (with the notable exception of the OP opacities). In fact, most opacity tables
are given as the so-called Rosseland mean opacity, but not as spectral opacities which
are required to properly treat this e�ect. However, an approximate formula to take their
e�ects into account has been derived by LeBlanc and Alecian (2004). In �gure 2.5, we
illustrate the di�erences found in Turcotte et al. (1998) when comparing various treatments
of microscopic di�usions for standard solar models. For more massive stars, including the
e�ects of radiative acceleration is even more complicated. During the evolution of the
model, they will induce strong local accumulations of certain chemical elements on very
short timescales that are very di�cult to treat with the current stellar evolution codes.

For massive stars, the increase in radiation pressure signi�cantly magni�es the impact
of the radiative accelerations compared to solar-like stars. This can lead to the apparition
of local convective zones as well as to inversions of the mean molecular weight gradient
which in turn will lead to thermoaline convection, thus connecting partially mixed zones
and leading to an additional mixing between intermediate convective zones. Therefore the
impact of these microphysical ingredients on stellar structure and evolution is manifold,
since they can lead to the apparition of macroscopic phenomena (see Denissenkov (2010),
Richard, Michaud, and Richer (2001), J. M. Brown, P. Garaud, and Stellmach (2013), Deal,
Richard, and Vauclair (2016)).
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Figure 2.5: Di�erences in iron and oxygen di�usion velocities depending on the various
assumptions used. The dot-dashed line is based on the Thoul, Bahcall, and Loeb (1994)
di�usion routine, the dotted line assumes complete ionisation and no radiative force acting
on the elements, the dashed line assumes partial ionisation of the elements where required
by the thermodynamical conditions but does not include radiative accelerations. The solid
line includes radiative accelerations and does not assume complete ionisation throughout
the structure (reprinted from Turcotte et al. (1998)).





3. INTRODUCTION TO STELLAR OSCILLATIONS

3.1 Pulsation equations

In the previous chapter, we introduced the equilibrium structure of a star, which is
dynamically de�ned by the hypothesis of hydrostatic equilibrium. However, this does not
mean that no dynamical phenomena will occur inside stars, even on the main sequence.
Although they are ignored in evolutionary codes because of the timescale di�erences,
dynamical perturbations can be seen in the form of pulsations for many stars in the HR
diagram.

In this chapter, we will describe the equations associated with non-radial stellar
oscillations using the linear adiabatic approximation. While these approximations will be
commented and references for other works will be mentioned, we will mostly focus on a
description oriented towards inversion equations and not dig in all the subtleties hiding
behind the derivation of each equation presented here.

3.1.1 Small perturbation method

As shown in Section 2.2.2, the structure of a star is approximated by static models,
considered to represent what we call the equilibrium, “unperturbed” structure. Stellar
oscillations are then treated as small perturbations that are superimposed to this equilibrium
con�guration of the star. The perturbations are considered to be very small, such that
one only needs to take the linear terms into account in the mathematical development
and can neglect higher orders. When calculating perturbations of �uid equations, one has
the choice to use either the Eulerian description or the Lagrangian one. Namely, Eulerian
perturbations describe the changes in the �uid at a �xed spatial position and are usually
denoted by a ′, while the Lagrangian perturbations are “attached” to the perturbed �uid
particle and usually denoted by the symbol δ . The equilibrium variables are denoted
with the subscript 0 to avoid further confusion in the equations. Both descriptions are
equivalent to describe stellar pulsations and are in fact mathematically linked. If we
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consider the physical quantity f (~r) and its Eulerian perturbations, one writes:

f (~r0, t) = f0(~r0)+ f
′
(~r0, t), (3.1)

for Lagrangian perturbations, one has:

f (~r, t) = f0(~r0)+δ f (~r0, t), (3.2)

and these de�nitions are linked as follows:

δ f (~r0, t) = f
′
(~r0, t)+~ξ ·~∇ f0(~r0), (3.3)

with ~ξ =~r−~r0, de�ned as the displacement vector, ~r the perturbed position and ~r0
the equilibrium position. One then develops the structural equations in terms of these
perturbations to obtain a system which describes linear stellar pulsations. It should be
noted that considering �rst order perturbations implies intrinsically that the oscillations
have small amplitudes. This is of course justi�ed for the solar-like oscillations we will
study in practice, but is not justi�ed for oscillations of very high amplitudes.

3.1.2 Equations of linear adiabatic non-radial oscillations

In this section, we will apply the formalism of linear perturbations to the dynamical
equations describing stellar structure. We will present the main steps to obtaining the
system of equations associated with the eigenvalue problem of stellar oscillations. Since
the derivation of this system implies additional hypotheses, we provide a few additional
comments on each of these supplementary approximations.

Basic equations

The �rst equation we need is the continuity equation:

ρ
′
+~∇ · (ρ0

~ξ ) = 0, (3.4)

we also develop the conservation of momentum equation:

ρ0
∂ 2~ξ

∂ t2 =−~∇P
′−ρ0~∇ψ

′−ρ
′~∇φ0, (3.5)

and Poisson’s equation for gravitation:

4ψ
′
= 4πGρ

′
. (3.6)

As in section 2.2.2, in addition to the above equations which are the perturbations of
dynamical equations, we also have to add the perturbed equation of conservation of
energy. In other words, this could mean that we would fully consider heat transfer
between the oscillations and the �uid. However, in practice, the heat transfer is o�en
neglected and the oscillations are considered adiabatic. This is justi�ed by the fact that
the oscillations occur on a timescale much shorter than the thermal relaxation timescale.
In other words, the Lagrangian perturbation of entropy is neglected and the following
relation between pressure and density is used to close the system of equations of stellar
oscillations:

P
′
+~ξ ·~∇P0 = c2(ρ

′
+~ξ ·~∇ρ0). (3.7)
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with c2 =
Γ1,0P0

ρ0
, the squared adiabatic sound speed abd Γ1,0 =

(
∂ lnP
∂ lnρ

)
S

the �rst adiabatic

exponent. While this is valid for the deeper regions of stars where the speci�c heat is
extremely high, it is not valid in the upper regions of stars where the thermal timescale
can be of the same order of the dynamical timescale. This is of uttermost importance for
solar-like oscillators, as it leads to what is o�en called “surface e�ects” in the litterature.
It is a central problem of asteroseismology which also partially originates from the fact
that we do not properly describe the coupling between oscillations and convection in the
atmosphere1. Non-adiabatic e�ects are also necessary if one wishes to derive instability
strips in the HR diagram since they have to be taken into account to know whether
the oscillations will be damped or not. For solar-like oscillations, taking into account
non-adiabatic e�ects also allows to derive the damping rates of the oscillations, which can
then be compared to the linewidths of the modes in the power spectrum. We will come
back to this when describing various pulsators and the various excitation mechanisms for
stellar pulsations.

Equations 3.4, 3.5, 3.6 and 3.7 constitute the system of partial di�erential equations
that are solved to compute linear adiabatic stellar oscillations in a non-rotating star.
Including rotation increases the complexity of the problem since spherical symmetry is
then broken. To some extent, perturbative analyses of a certain order can be used for slow
to intermediate rotators but for very fast rotators such as δ Scuti, a fully two-dimensional
resolution of the problem is required. In this section, we only focus on slow rotators for
which the spherical symmetry is not broken; an introduction to the e�ects of rotation will
be presented in section 3.3.

The displacement vector ~ξ can be separated into a radial and a horizontal component

~ξ = ξr~er +~ξh. (3.8)

Introducing this decomposition in the equations 3.4, 3.5, 3.6 and 3.7 and separating the
gradients into radial gradients and horizontal gradients leads to some simpli�cations due
to the fact that equilibrium variables are only dependent of the radial distance r, as a
consequence of spherical symmetry. The system is then the following:

ρ
′
+

1
r2

∂

∂ r
(ρ0r2

ξr)+ρ0~∇h ·~ξh = 0, (3.9)

ρ0
∂ 2ξr

∂ t2 =−∂P
′

∂ r
−ρ

′ dψ0

dr
−ρ0

∂ψ
′

∂ r
, (3.10)

ρ0
∂ 2~ξh

∂ t2 =−~∇hP
′−ρ0~∇hψ

′
, (3.11)

1
r2

∂

∂ r
(r2 ∂ψ

′

∂ r
)+

∆hψ
′

r2 = 4πGρ
′
, (3.12)

P
′
+ξr

dP0

dr
=

Γ1,0P0

ρ0
(ρ
′
+ξr

dρ0

dr
). (3.13)

We can now see that the angular derivatives only appear in the ~∇h operator. It can be
demonstrated that the solutions of this separable system will be of the form:

F(r,θ ,φ , t) =
√

4π f (r)Y m
` (θ ,φ)e−iωt , (3.14)

1The other source of the problem is the crude modelling of the upper regions by the MLT theory, causing
an erroneous description of the propagation of the oscillations even if these were fully adiabatic. The neglect
of the turbulent pressure also causes an inaccuracy in the radius and thus is a major contributor to the
surface e�ects.
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with Y m
` (θ ,φ) the spherical harmonic of degree ` and azimuthal order m. These functions

are the eigenfunctions of the Legendrian operator, ∆h, since they verify the following
property:

∇
2
hY m

` (θ ,φ) =−`(`+1)Y m
` (θ ,φ). (3.15)

The temporal dependency is of course a periodic function since we are looking for periodic
oscillations. A�er a few algebra, the system can be simpli�ed and is written

ω
2
[

ρ
′
+

1
r2

d
dr

(
r2

ρ0ξr
)]

=
`(`+1)

r2

(
P
′
+ψ

′
)
, (3.16)

ω
2
ρ0ξr =

dP
′

dr
+ρ

′ dψ0

dr
+ρ0

dψ
′

dr
, (3.17)

1
r2

d
dr

(
r2 dψ

′

dr

)
− `(`+1)

r2 ψ
′
= 4πGρ

′
. (3.18)

It is important to notice that this separation of variables and the form of the obtained
system is a consequence of the hypotheses we have made. If the e�ects of rotation or
magnetism are taken into account or if the star is not isolated, the separation of variables
is not applicable anymore 2. It is o�en useful to rewrite this system using the de�nitions
of two characteristic frequencies, namely S2

` , the squared Lamb frequency and N2, the
squared Brunt-Vaisälä frequency.

S2
` =

`(`+1)c2

r2 , (3.19)

N2 = g0

(
1

Γ1,0

d lnP0

dr
− d lnρ0

dr

)
, (3.20)

The system is now written

dP
′

dr
+ρ0

dψ
′

dr
+g0

P
′

c2 = (ω2−N2)ρ0ξr, (3.21)

P
′

ρ0c2 (1−
S2
`

ω2 )−
`(`+1)

ω2r2 ψ
′− g0ξr

c2 +
1
r2

d
(
r2ξr

)
dr

= 0, (3.22)

1
r2

d
dr

(
r2 dψ

′

dr

)
− `(`+1)

r2 ψ
′
= 4πG

(
P
′

c2 +
ρ0N2

g0
ξr

)
, (3.23)

A quick analysis of the system informs us that there is no explicit dependence on m,
the azimuthal order. Consequently, there is a 2`+1 degeneracy in the solutions of this
eigenvalue problem given that −` < m < `. Again, this stems from the spherical symmetry
of the problem and any e�ect breaking this hypothesis will introduce an m dependency in
the solutions.

Boundary conditions

From the end of section 3.1, we can see that we have a system of equations of the fourth

order, with the following unknowns ξr, P
′
, ψ

′
and dψ

′

dr . Consequently, we have to provide
four boundary conditions. Detailed derivation of these boundary conditions can be found
in Unno et al. (1989). We will �rst deal with the central boundary conditions. These can

2Before the breaking of the spherical symmetry that can be induced by each of these phenomena.
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be obtained by expanding the solution near r = 0. We obtain that ξr ∝ r`−1, ψ
′
and P

′
∝ r`.

If `= 0, then ξr ∝ r. From these relations, one can show that

dψ
′

dr
≈ `

r
ψ
′
, (3.24)

ξr = `ξh. (3.25)

These two equations provide the �rst two boundary conditions. Two other conditions
are then applied at the surface. They can take various forms, depending on the authors
and the options of the oscillation codes. Typically, these are free surface conditions for the
equation of motion (e.g. δP = 0) and a continuous connection to the analytical solution of
Poisson’s equation in the absence of matter. The main issue with these boundary conditions
is that they are certainly limited, due to the breakdown of the adiabatic approximation in
the surface layers.

Physical nature of the modes
The solutions of the stellar oscillation equations can be obtained through numerical tech-
niques, using various sets of pulsations variables and discretization techniques. However,
to gain some physical insight on the nature of the modes, it is interesting to look into
some more approximate developments.

First, we start by noticing that the perturbation of the gravitional potential will have
a small e�ect on the pulsations, especially for high ` and n modes, i.e. with many nodes.
Thus, the perturbation of the gravitational potential can be considered negligible. This
approach is called the Cowling approximation and can be mathematically justi�ed by
the fact that the perturbation of the gravitational potential is an integral of the density
perturbation which is directly linked to the eigenfunctions. By eliminating it from the
equations, the system is reduced to the second order

dξr

dr
=−

(
2
r
+

1
Γ1HP

)
ξr +

1
ρc2

(
S2
`

N2 −1
)

P
′
, (3.26)

dP
′

dr
= ρ

(
ω

2−N2)
ξr +

P
′

Γ1HP
, (3.27)

This �rst approximation is justi�ed up to a good accuracy. Following Gabriel and Scu�aire
(1979), the problem can be even more simpli�ed with the following change of variables

v = f1r2
ξr, (3.28)

w = f2
P
′

ρ
, (3.29)

with f1 and f2 de�ned as follows

f1 = exp
(∫ r

0

1
Γ1

d lnP
dr

dr
)
, (3.30)

f2 = exp
(
−
∫ r

0

N2

g
dr
)
. (3.31)

The system 3.26-3.27 can then be rewritten

dw
dr

=
(
ω

2−N2) f2

r2 f1
v, (3.32)

dv
dr

=

(
S2
`

ω2 −1
)

r2 f1

c2 f2
w. (3.33)
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This system can then be reduced to a second order di�erential equation by eliminating
either v or w. Each case leads to

d
dr

(
1

1− S`
ω2

c2 f2

r2 f1

dv
dr

)
+
(
ω

2−N2) f2

r2 f1
v = 0, (3.34)

or

d
dr

(
1

N2−ω2
r2 f1

f2

dw
dr

)
+

(
S2
`

ω2 −1
)

r2 f1

c2 f2
w = 0. (3.35)

From these equations, we can see that the function will be oscillatory only if ω < S`
and ω < N simultaneously or if ω > S` and ω > N at the same time (see Scu�aire (1974a)
for a more thorough description of the spatial properties of various oscillation modes).
The modes will behave exponentially between the regions where these conditions are
met. They are said to be trapped in the cavities de�ned by the conditions for which
the solution is an oscillating function. The modes of low frequency are called g modes
while the modes of high frequency are called p modes. This analysis can be used to plot
so-called propagation diagrams, which are useful for understanding the behaviour of the
modes and the regions they are probing most e�ciently.

Pressure modes

Pressure modes are de�ned by the condition

ω
2 > S2

` , (3.36)

and

ω
2 > N2, (3.37)

meaning that they are the high frequency modes propagating in the upper regions of the
star. Their re�exion point is characterised by the point where the oscillation frequency is
equal to the Lamb frequency. Moreover, since the Brunt-Väisälä frequency is rather small
in upper regions, and that S2

`/ω2 can be neglected in equation 3.34 or 3.35, this basically
means that the behaviour of the pressure modes is determined through the local adiabatic
sound speed, c2. Pressure modes are actually acoustic waves for which the restoring force
is generated by pressure gradients.

Gravity modes

Gravity modes are low frequency modes de�ned by

ω
2 < S2

` , (3.38)

and

ω
2 < N2. (3.39)

These non-radial oscillation modes propagate in deep regions of stars and can be useful
for probing their internal structure. Similarly to what is done for the pressure modes,
one can then consider in equation 3.34 or 3.35 that N2−ω2 ≈ N2. Their restoring force
is buoyancy, which only acts on non-radial density perturbations thereby generating
non-radial oscillations. Gravity modes do not propagate in convective regions, which
makes them di�cult to observe for low mass stars having an extended convective envelope.
However, these modes have been used in γ Doradus stars to constrain the overshooting
parameter (Bouabid (2011)).
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Mixed modes
In some particular cases, equations 3.36 and 3.37 are satis�ed in the upper regions and
equations 3.38 and 3.39 are satis�ed in the deep regions. Such oscillation modes are
called mixed modes. Their physical behaviour is linked to the width of the evanescent
region between the envelope and the core: some pressure modes, coming from the upper
regions, can tunnel into the core and propagate as gravity waves. These modes have been
observed in intermediate-mass stars and in subgiants and red giants. Their discovery
by CoRoT and Kepler led to the ability to distinguish stars in the RGB from those in the
so-called red clump, which are burning helium in their core (Beck, Bedding, et al. (2011),
Bedding, Mosser, et al. (2011), Montalbán et al. (2013)). They have also been used to gain
information on the rotational pro�le of the core and upper layers of subgiants and red
giants (Deheuvels, Doğan, et al. (2014), Mosser, Goupil, et al. (2012)), thus demonstrating
the failure of stellar models to reproduce adequatly the transport of angular momentum
during stellar evolution. Recently, some attempts have been made to explain these results
(Belkacem, Marques, Goupil, Sonoi, et al. (2015), Belkacem, Marques, Goupil, Mosser, et
al. (2015), Pinçon, Belkacem, and Goupil (2016)). Further progress has been made in
understanding their characteristics thanks to the development of an asymptotic expansion
of these modes (Takata (2016)).

3.2 Asymptotic properties of pressure and gravity modes

Although the crude approximation we have made in the preceding section can provide
some physical insight in the behaviour of the modes, less approximate developments can
be used to derive interesting properties of oscillations in a speci�c range of ` and n. In this
section we will present analytical results for what is called the asymptotic approximation
of stellar oscillations. A full description of the mathematical developments can be found in
Tassoul (1980).

The basic equations of this analysis is the second order system given by equations 3.26
and 3.27 which is obtained by applying the Cowling approximation to the full fourth-order
system of stellar pulsations. The system is then rewritten as a function of a modi�ed
displacement function

X = c2√
ρ~∇ ·~ξ . (3.40)

By neglecting the variation of the gravity, g and density, ρ when compared to the perturbed
thermodynamical quantities, one can obtain a second order di�erential equation for X

d2X
dr2 =−K(r)X , (3.41)

with

K(r) =
1
c2

[
S2
`

(
N2

ω2 −1
)
+ω

2−ω
2
c

]
, (3.42)

where we de�ned the acoustic cut-o� frequency, ωc as

ω
2
c =

c2

4HP

(
1− dHP

dr

)
, (3.43)

If K(r) is positive, the solution will be an oscillating function. However, if K(r) is negative,
the solution will show an exponential behaviour. In the surface layers, the dominant term
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of K(r) will be (ω2−ω2
c ) because S2

` becomes negligible. Consequently, the behaviour of
the mode will be dictated by the di�erence (ω2−ω2

c ). If ω < ωc the mode will show an
exponential decay in the upper regions and thus be trapped in the star. If, in contrast, ω

is larger than ωc, it will show an oscillating behaviour in the atmosphere and thus will
lose its energy very quickly.

The analytical solution to equation 3.41 is found by using the JWKB approximation
(standing for Je�reys, Wentzel, Kramers, and Brillouin) which was used in quantum
mechanics and applied by Unno et al. (1989) in the context of stellar pulsations. The
fundamental hypothesis is that the solution will vary faster than the equilibrium quantities.
In other words, X(r) varies more rapidly than K(r) and can be described by a function of
the form

X(r) = a(r)eiφ(r), (3.44)

where φ(r) varies much faster than a(r) and one can derive a local wavelength of the form

n =
dφ

dr
. (3.45)

This solution can be inserted in equation 3.41 and one can �nd that the behaviour of
the solution will again be sinusoidal or exponential depending on the sign of K(r). A�er
some additional mathematical developments and the proper treatment of the boundary
conditions at the re�exion points, one can derive the asymptotic form of the eigenfunctions
and show that the frequencies of modes trapped between two turning points r1 and r2
must satisfy the following relation∫ r2

r1

K1/2(r)dr =
(

n− 1
2

)
π. (3.46)

3.2.1 Asymptotic expression of pressure modes

For pressure modes which have ω2� |N|2, it can be shown that equation 3.46 reduces to
the so-called Duvall law (Duvall (1982))∫ R

rt

(
1− (`(`+1))2c2

ω2r2

)
dr
c

=
(n+α(ω))π

ω
, (3.47)

with α(ω) depending on the surface regions, rt being the lower turning point where
S`(rt) = ω and R the upper turning point where ωc(R) = ω , which is valid for moderate
values of `.

This relation can be further simpli�ed by noticing that for low ` modes, rt ≈ 0 and
the argument of the integral in equation 3.47 is approximately dr

c . This implies a simple
behaviour of the frequencies of pressure modes to the leading order

ωn,`

2π
≈
(

n+
`

2
+

1
4
+α

)
∆ν , (3.48)

which introduces the de�nition of the large frequency separation

∆ν =
∫ R

0

(
dr
c

)−1

≈ ν`,n−ν`,n−1. (3.49)

From this �rst order analysis, one would expect a uniform spacing in n de�ned by the
large frequency separation. However, this is only a very crude analysis and Tassoul (1980)
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and D. O. Gough (1986) have shown that the asymptotic developments have to be pushed
up to second order in 1/ω to retrieve the deviations from the degeneracy expected from
equation 3.48. The asymptotic expression of the oscillation frequency is then given by

νn,` =

(
n+

`

2
+

1
4
+α

)
∆ν− (A`(`+1)−δ )

∆ν

ν2
n,`

, (3.50)

with

A =
1

4π2∆ν

(
c(R)

R
−
∫ R

0

dc
dr

dr
r

)
. (3.51)

In �gure 3.1, we show that the frequencies are indeed, to a �rst degree of approximation
regularly spaced.

Figure 3.1: Power spectrum of 16CygA using the entire Kepler data set, illustrating the
regularity in frequency of solar like oscillations. The symbols are used to identify the
modes of various ` (reprinted from Davies et al. (2015)).

From equation 3.50 we de�ne so-called small frequency separation

δν = νn,`−νn−1,`+2 ≈−(4`+6)
∆ν

4π2νn,`

(
c(R)

R
−
∫ R

0

dc
dr

dr
r

)
. (3.52)

In this expression, the term c(R) is o�en neglected and the small frequency separation
is considered to probe the internal layers of the star. The large and small frequency
separations are o�en combined to build the asteroseismic HR diagram (or JCD diagram)
used to estimate the average properties of an observed target. Such a diagram is illustrated
for theoretical models in �gure 3.2. The large frequency separation is indeed related
to the mean density of the star while the small frequency separation is a probe of the
evolutionary stage (Christensen-Dalsgaard (1993a)). In practice however, both of these
quantities are a�ected by surface e�ects, and I. W. Roxburgh and S. V. Vorontsov (2003)
have demonstrated that using frequency ratios was more e�cient to suppress the e�ects
of the upper layers that would bias analyses based on pressure modes. Moreover it can be
shown that the accuracy of equation 3.52 is not always satis�ed. Asymptotic developments
up to the fourth order can be found in I. W. Roxburgh and S. V. Vorontsov (1994b) and
developments for intermediate and high ` acoustic oscillations can be found in Brodsky
and S. V. Vorontsov (1993) and I. W. Roxburgh and S. V. Vorontsov (1996).



46 Chapter 3. INTRODUCTION TO STELLAR OSCILLATIONS

Figure 3.2: Asteroseismic HR diagram for models of various masses. Each line corresponds
to one evolutionary track associated with a given mass and set of physics (reprinted from
Christensen-Dalsgaard (1993b)). The small and large frequency separations are noted D0
and ∆ν0 instead of δν and ∆ν .

3.2.2 Asymptotic expression of gravity modes

Since gravity modes do not propagate in convective regions, their asymptotic behaviour
is mostly described by the nulls in the Brunt-Väisälä frequency. Thus, various cases have
to be considered and we refer to Tassoul (1980) for a description of each of them. In
this section, we will brie�y describe the characteristics of a model with a radiative core
surrounded by a convective envelope. In this particular case, it can be shown that the
asymptotic expression of the period of low degree, high order gravity modes is

Pk =
π2√

`(`+1)
∫ rC

0
N
r dr

(2n+ `+α), (3.53)

where in the example we have chosen the situation of a radiative core, hence the value
0 for the lower border and rC would be the position of the convective envelope of the
star. Asymptotically, the g modes are equally spaced in period, which means that one can
derive a period spacing, denoted ∆P

∆P = Pk+1−Pk. (3.54)

In practice of course, the period spacing of observed gravity modes will not be constant.
It has been shown that the structure of the period spacing can be used to constrain
the chemical composition gradient of deep regions in intermediate-mass stars (Miglio,
Montalbán, Noels, et al. (2008), Bouabid (2011)).

3.3 E�ects of rotation

We have seen in section 3.1 that for a non-rotating star, the solutions are degenerate and
all the frequencies can be characterised by two quantum numbers only, their degree, `
and their radial order, n. However, if the rotation of the star is taken into account, we
will see that rotation will break the symmetry of the system and the solutions have to be
characterised by three quantum numbers, `, n and the azimuthal order, m. The e�ects of
slow rotation can be treated as a perturbation of spherically symmetric solutions and to
the �rst order for a rigid rotation, the frequencies are given by

ν
m
n,` = ν

0
n,`+mβn,`Ω, (3.55)
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with Ω the rotation rate of the star, νm
n,` the frequency including the e�ect of rotation,ν0

n,`
the frequency of the non-rotating star, and βn,` the Ledoux constant related to rotation. If
one considers a di�erential rotation in radius, the rotational splitting will be symmetrical
and one can apply a variational analysis leading to an integral relation between the splitting
and the rotational pro�le. If the horizontal variations of the rotational pro�le are taken
into account, the rotational splitting is not constant anymore. This integral relation was
used in the solar case to carry out inversions of the solar rotation pro�le. To this day,
various mechanisms have to be invoked to reproduce the inverted solar rotation pro�le
(Kosovichev (1988), Kosovichev, Schou, et al. (1997), Schou, Christensen-Dalsgaard, and
Thompson (1994)). The two-dimensional integral relation is

δωn,`,m =
mRm

n,`∫ R
0 ρ0

[
ξ 2

r,0 + `(`+1)ξ 2
h,0

]
r2dr

, (3.56)

with Rm
n,` de�ned as follows

Rm
n,` =

∫
π

0
sinθdθ

∫ R

0

(
|ξr|2Pm

` (cosθ)2 + |ξh|2
[
(
dPm

`

dθ
)2 +

m2

sin2
θ

Pm
` (cosθ)2

]
−Pm

` (cosθ)2 [ξ ∗r ξh +ξrξ
∗
h ]−2Pm

` (cosθ)
dPm

`

dθ

cosθ

sinθ
|ξh|2

)
Ω(r,θ)ρ0(r)r2dr, (3.57)

which is o�en written in the so-called kernel form

δωn,`,m = m
∫ R

0

∫
π

0
Kn,`,m(r,θ)Ω(r,θ)rdrdθ , (3.58)

with Kn,`,m the rotational kernel associated with the splitting. A review on the various
methods used for rotational inversions can be found in Schou, Christensen-Dalsgaard, and
Thompson (1994).

As stated before, some rotation inversions have been carried out for subgiants and
red giants, showing trends in their surface and core rotation that also points towards
unknown mechanisms of angular momentum redistribution.

The �rst order approximation is well suited for the Sun, or other typical slow rotators,
but if one wishes to study stars rotating faster, it is of course insu�cient. It is possible to
push further the perturbative developments, leading to higher order expressions. However,
it is also possible to develop fully two-dimensional pulsation codes taking into account
the complex geometry of the pulsation modes in fast rotators (D. R. Reese, Prat, Barban,
van’t Veer-Menneret, et al. (2012), D. R. Reese, Prat, Barban, van ’t Veer-Menneret, et al.
(2013), Ouazzani, M.-A. Dupret, and D. R. Reese (2012)). Recently, even a non-adiabatic
version of these codes has been developed, but the problem of fast rotators is the absence
of regularity in the oscillation spectra. This means that mode identi�cation is almost
impossible and while trends and local regularities can be found, there is to this day no
clear solution to this problem.

3.4 Pulsation mechanisms

In this section, we will brie�y list the various physical mechanisms that can lead to
the excitation of stellar pulsations. This section limits itself to the minimal amount of
information needed and thus consistutes more an informative summary rather than an
extended description of each mechanism.
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E�cient driving means that some energy of the medium can be injected in the
oscillations. It can be demonstrated that driving will occur in a given shell of stellar
material if in the work integral

η =

−π

ω

∫M
0 R

(
1
σ

(
dδL
dm −δε

)
δT
T

)
dm∫M

0 |~ξ |2dm
, (3.59)

both
(

dδL
dm −δε

)
> 0 and δT

T > 0. Meaning that heat is increased at the hot phase of

the cycle. Formally, it implies that the occurence of oscillations will result from the
balance between driving and damping e�ects in the star. However, pulsations will only be
vibrationally unstable if the eigenmodes also have large amplitudes in the driving region.
In addition, if the thermal timescale is much shorter than the pulsation period, heat will
not be directly transferred through stellar material and cannot be used to drive pulsations.

3.4.1 The κ mechanism

The κ mechanism is probably the most well-known pulsation mechanism, being responsible
for the variability of classical pulsators. To understand how the energy is transferred to
the oscillations, one has to write, in this case, the Lagrangian variation of the radiative
luminosity

δLr

Lr
=

dr
d lnT

d
dr

(
δT
T

)
− δκ

κ
+4

δT
T

+4
δR
R

. (3.60)

Usually, the opacity decreases under compression and the pressure perturbation
increases outwards. Moreover, the variation of opacity with pressure is rather small, such
that most of the time, the e�ects of opacity are rather small and linked to damping rather
than mode excitation (see eq. 3.59). However, in partial ionisation zones, the opacity will
behave “abnormaly”. There, an opacity peak is present and can trigger the driving of
pulsations. Driving only occurs if the opacity peak coincides with the transition region,
where the thermal timescale and the oscillation period (related to the dynamical timescale)
are of the same order of magnitude. This mechanism can occur in the ionisations of
any chemical species, being helium, hydrogen or more massive elements. Most of the
self-excited pulsators are actually driven by the κ mechanism (see Pamyatnykh (1999) for
a description of the instability domains of these pulsators in the H-R diagram.).

3.4.2 Convective blocking

In this case, the Lagrangian perturbation of luminosity must be written as both the
perturbation of the radiative and convective contributions, denoted Lr and Lc respectively,
to the total luminosity. In other words, one has

δL
L

=
δLr

L
+

δLc

L
. (3.61)

The analysis of the excitation of pulsation is much more complicated when coupled with
convective motions, since the interaction between convection and oscillation is very poorly
modelled. At the base of the upper convective zone, the contribution of radiation to the
energy transport will quickly decrease as convection takes over. The gradient of the
perturbation of the radiative �ux can be written as

dδLr

dm
≈ 4πr2

(
dFr

dr

)
δLr

Lr
. (3.62)
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It can be shown that, at the base of a convective envelope, δLr is positive under a
compression. Since the radiative �ux is decreasing in this region, dδLr

dm is negative and the
�ux variation can e�ciently drive pulsations modes if the base of the convective envelope
is located at the transition region. The driving is however controlled by convection, which
quickly takes over as the dominating transport mechanism. It has been shown that while
the timescale of the convective transport is indeed longer than the pulsation period at
the base of the convective zone, it is only so on a very limited region and one needs to
use a time dependent convection treatment rather than the more crude frozen convection
formalism. This pulsation mechanism could be responsible for the pulsation of γ Doradus
stars (see M.-A. Dupret, Grigahcène, et al. (2005) and Guzik, Kaye, et al. (2000)).

3.4.3 The ε mechanism

It can be shown that the rate of production of thermonuclear energy, ε , is extremely
sensitive to temperature (see Kippenhahn, Weigert, and A. Weiss (2012)). Looking back at
equation 2.8, we can see that it will indeed increase rapidly under compression. However,
the main problems with this driving mechanism are linked to the nuclear timescales, which
are extremely long compared to the dynamical ones and the fact that eigenfunctions have
generally very low amplitude in the core. As a consequence, the driving of gravity or
acoustic modes is only expected for a few intermediate reactions or in very speci�c cases,
for example where the nuclear reactions occur in thin shells. Another problem with this
driving mechanism comes from radiative damping. In fact, for this mechanism to operate,
the driving due to compression must dominate the radiative damping which is very high
in the stars identi�ed as possible pulsators driven by the ε mechanism. Some examples of
possible pulsations have been proposed in the litterature (Chené et al. (2011), Cody (2012)).

3.4.4 Stochastic excitation

The driving mechanisms we described in the previous sections are linked to so-called
self-excited pulsations. However, the type of oscillations we will further discuss in this
thesis are externally driven and damped, and constitute what is called solar-like oscillations.
These pulsations show very small amplitudes but have been observed for an extensive
number of targets and have provided a lot of information on stellar structure and evolution.

Stochastic oscillations are generated in the super-adiabatic region of the star by the
e�ects of turbulent convection. A simple image would be to say that the convective plumes
act on the surface of the star like small �ngers on a drum. Given the right resonant
frequency, they can excite normal modes that will propagate inside the stellar structure. In
a Fourier power spectrum, stochastic oscillations will appear as a speckle-like lorentzian
pro�le, which can be demonstrated to result from both convective driving and damping.
The main di�culty in the non-adiabatic modelling of solar-like oscillations is the fact
that they are intrisically coupled to the modelling of turbulence and the way it interacts
with pulsations. Indeed, it is the interaction between time dependent convection and
pulsations that will provide the e�ective damping rates and driving of the oscillations. The
di�culties encountered in this modelling are closely related to what is called the surface
e�ect problem that will be further discussed in section 3.9. We refer to the review of
Chaplin and Miglio (2013) or classical textbooks for a more thorough description of these
processes. The interested reader can also see Belkacem, Goupil, et al. (2011) for further
insights on the non-adiabatic properties of solar-like oscillations.
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3.5 Observed pulsators in the HR diagram

In this section, we will brie�y present some of the most well-known pulsating stars in the
HR diagram. Each family is represented in �gure 3.3. The main purpose of this section is
to show the variety of pulsating stars that can be found. We redirect the interested reader
to review papers related to each type of pulsator in each subsection. In this thesis, we
will only deal with main-sequence, solar-like oscillators, for they are the ones for which
classical linear inversion techniques are the most well suited. A more thorough description
of each type of pulsator can be found in Unno et al. (1989), Christensen-Dalsgaard (2003),
Aerts, Christensen-Dalsgaard, and Kurtz (2010), J. P. Cox (1980) or in dedicated reviews.

Figure 3.3: Hetzsprung-Russel diagram showing the various classes of pulsating stars
observed in the universe (reprinted from Christensen-Dalsgaard (2003))

3.5.1 Solar-like stars

The Sun is the most well-known pulsating star, with hundreds of thousands of observed
pulsating modes. As such it de�nes a whole class of pulsating stars using the same
excitation mechanism. The quality of the observed data has made the Sun an excellent
laboratory for theoretical physics and stellar evolution. The observed oscillation modes
are pressure modes, excited by turbulence in the upper layers of the convective zone,
working like thousands of small �ngers hitting the surface of a drum. The typical oscillation
period is of the order of a few minutes.

A particular characteristic of solar-like oscillations is their relatively low amplitudes
making them relatively hard to observe on stars other than the Sun. Their amplitudes
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scale with L/M. They have also been observed by the satellite CoRoT in a β Cephei
(Belkacem, Samadi, et al. (2009)) and B and O type stars (Degroote et al. (2010) and
Neiner et al. (2009)). An example of solar like oscillations is given in Fig 3.1, where one
can see a typical example of the regularity present in the spectrum of such pulsators. The
power of the spectrum is maximal around a given frequency, denoted νmax, the frequency
of maximum power, which follows an empirical relation (Kjeldsen and Bedding (1995))

νmax ≈
M/M�

(
√

Te f f /5777)(R/R�)2
3.05(mHz). (3.63)

Another important frequency for solar-like pulsations is the acoustic cuto� frequency,
denoted νc, which marks the upper limit of the resonant cavity for pressure modes.
Beyond this frequency, one does not speak about eigenmodes but rather travelling waves.
Attempts to provide a physical basis for the empirical relation 3.63 have been presented
in Belkacem, Goupil, et al. (2011).

Before the advent of space missions dedicated to asteroseismology, the very low
amplitude of solar-like oscillations meant that only a few of these pulsators had been
observed. Since the era of CoRoT and Kepler, the sample has now increased and the quality
of the seismic data is unparalleled, paving the way for accurate seismic modelling of a
large number of solar-like oscillators (Chaplin and Miglio (2013) and Christensen-Dalsgaard
(2012)). The sample should increase even more in the coming years thanks to K2, Tess
and Plato.

3.5.2 Subgiants and red giants

With the advent of the CoRoT mission, one of the �rst big results of the mission was the
detection of solar-like oscillations in stars beyond the main sequence. Observations of
oscillation modes had been made by ground-based facilities, but CoRoT paved the way
for the detection of an unprecedented wealth of seismic data, showing precise individual
modes that could be used for detailed seismic modelling for thousands of giants.

A�er the main sequence, the core contraction leads to an increase of the frequency of
gravity modes. Simultaneously, the expansion of the envelope leads to a decrease of the
frequency range of pressure modes. In the case of subgiants and red giants, the frequency
range of both g and p modes become similar and a p mode can “tunnel” into the core in
the form of a g mode. This mechanism of so-called avoided crossing leads to the formation
of mixed modes, probing e�ciently both the envelope and the core. These modes have
been successfully used to analyse the rotation of the core of subgiants and red giants (e.g.
Deheuvels, Doğan, et al. (2014), Mosser, Goupil, et al. (2012), Beck, Montalban, et al. (2012))
and to distinguish between helium burning giants and those who had not reached that
evolutionary stage yet (Bedding, Mosser, et al. (2011), Montalbán et al. (2013)).

In addition to these discoveries, the advent of space photometry led to the birth of
ensemble asteroseismolgy as well as Galactic archeology, thus showing the enormous
potential of seismology of evolved stars. To this day, the �eld is still rapidly evolving with
new theoretical developments resulting from the comparison of models with observations.

3.5.3 Other well-known pulsators
γ Doradus stars
γ Doradus stars are main-sequence stars with masses around 1.5M�, of spectral type A0
to F5. They show oscillations due to high radial order gravity modes of low degree with
periods ranging from 0.3 to 3 days.
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δ Scuti stars
The δ Scuti stars are stars of spectral type A or F . They show mostly low order p modes
as well as gravity modes. They are known to show hundreds of “modes” with frequencies
between 20 minutes and 8 hours. The main problem of these stars is their high rotation
velocities and the non-linear behaviour of the modes, thus preventing their identi�cation.

Rapidly oscillating Ap stars
Rapidly oscillating Ap stars are main-sequence stars of around 2M�, located in the δ Scuti
instability strip. These stars show high order low degree pressure modes with periods of
5 to 20 minutes.

Slowly pulsating B dwarfs
Slowly pulsating B dwarfs are stars of spectral type B2 to B9, having masses from 3M�
up to 8M�. They show high order gravity modes with periods ranging from 1 to 3 days.

β Cephei stars
β Cephei stars are massive stars, from 7M� to 20M�, of spectral type B0 to B3. Their
oscillation periods are of about 2 to 8 hours, due to both low order gravity and pressure
modes.

The classical instability strip: Cepheids, RR Lyrae
Cepheids and RR Lyraes are pulsating stars showing periods of about 1 to 50 days and 8
to 12 hours respectively. The pulsations are radial modes of low order excited by the κ

mechanism. While these stars are presented as typical pulsators, especially the Cepheids
due to the use of their period luminosity relation in distance calculations, they don’t show
much potential for asteroseismology due to the limited number of observed modes (one
or two).

SdB stars
Type B subdwarfs are evolved stars on the so-called horizontal branch. These stars
are burning helium in their core and have the peculiarity of having lost most of their
hydrogen envelope. They can exhibit gravity modes with periods ranging from 0.5 to 3
hours and low order p modes of the order of a few minutes. They have su�ciently rich
oscillation spectra to be used in detailed asteroseismic studies. Their evolutionary path is
unknown. One hypothesis advances that the loss of their envelope could be explained by
their belonging to a binary system. Accordingly, their seismic study is quite important to
constrain both stellar evolution theory and our picture of binary systems.

White dwarfs
Pulsating white dwarfs have been known since the 1970s. They exhibit high order gravity
modes which probe the upper regions of the star. Their periods depend on the star type
and go from 5 to 80 minutes for DOV stars, 2 to 15 minutes for DBV stars and 0.5 to 25
minutes for DAV stars. In the case of these evolved targets, asteroseismology is an e�cient
tool to probe the chemical composition of each layer of material and put constraints on the
equation of state of these stars. It should be noted that they have also been the amongst
the �rst stars other than the Sun for which asteroseismic inversions have been considered
Takata and Montgomery (2002).

3.6 The variational principle

The derivation of the variational principle of adiabatic stellar oscillations is a consequence
of fundamental developments in the larger context of �uid dynamics. It should be noted
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that in the pionneering work of Chandrasekhar (1964) or Lynden-Bell and Ostriker (1967),
these authors speak of gaseous spheres and the derivation of the variational principle is
done under very general conditions.

Historically, the variational principle stems from stability analyses and the interest in
such properties can be found in the Adam’s prize essay “A Treatise on the Stability of
a Given State of Motion” by Edward John Routh in 1877. In this section, we will start
with the functional analysis of the Navier-Stokes equations and gradually move on to the
speci�c case of adiabatic stellar oscillations. The results we present are similar to those
of Lynden-Bell and Ostriker (1967).

3.6.1 Functional analysis of �uid �ows

In section 3.1, we described the particular case of adiabatic stellar oscillations. However,
to illustrate the very general nature of the variational principle, it is interesting to use
the general Navier-Stokes equations for a perturbed perfect �uid. We will thus use the
system of equations 3.4, 3.5, 3.6 and 3.7 , for which we introduce small perturbations and
consider Fourier modes to describe the oscillations. In other words, the perturbations are
written: δ f = f

′
expiωt , with ω the frequency of the Fourier mode. Simple algebra leads

to the following system of equations:

ρ
′
=−∇ · (ρ0

~ξ ), (3.64)

−ω
2~ξ +2iω(~v0 ·~∇+~Ω×)~ξ +(~v0 ·~∇)2~ξ +~Ω× (~Ω×~ξ ) =−~∇φ

′
+

ρ
′

ρ2
0

~∇P0−
~∇P

′

ρ0
, (3.65)

∆φ
′
= 4πGρ

′
, (3.66)

for which we have introduced the perturbations of density, pressure, gravitational potential
and the displacement vector, ρ

′
, P

′
, φ

′
and ~ξ . These functions only depend on the position

inside the �uid,~r, because of the separation of variables induced by the Fourier development.
Now besides these perturbations, we have considered one of the most general case of a
�uid �ow with an advective current, ~v0 in the corotating frame, the rotation of the �uid
being at a constant velocity ~Ω. The rest of the quantities, P0 and ρ0 are the equilibrium
pressure and density. One could also introduce a magnetic �eld in these equations and
see its e�ect on the frequencies. This has been done in Clement (1964) and leads to similar
equations. The only hypothesis of physical importance that has never been removed is
that of adiabatic oscillations. In every variational study, the energy equation has been
decoupled from the dynamical ones by considering an adiabatic relation in the form of
equation 3.7 between pressure and density. We will further comment on this in the next
section.

To derive the variational principle, one needs, as stated in the title, to perform a
functional analysis of the equations of �uid �ows. Therefore, we start by considering a
Hilbert space, H , of the vector functions of displacement �elds inside the �uid. We add
that the functions of this space must satisfy the boundary conditions of the eigenvalue
problem under study and that their �rst derivatives must be piecewise continuous. We
start by de�ning the scalar product on the Hilbert space as

<~ξ , ~ψ >=
∫

V

~ξ ∗ ·~ψρ0dV, (3.67)

for each ~ξ and ~ψ ∈H . We can now rewrite the pulsation equation in a symbolic form
where we isolate three operators

−ω
2A (~ξ )+ωB(~ξ )+C (ξ ) = 0. (3.68)
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These operators are de�ned as follows

A (~ξ ) =−~ξ , (3.69)

B(~ξ ) =−(2i~v0 ·~∇)~ξ −2iΩ×~ξ , (3.70)

C (~ξ ) = C1(~ξ )+C2(~ξ )+C3(~ξ )+C4(~ξ )+C5(~ξ )

=−~∇φ
′
+

ρ
′

ρ2
0

~∇P0−
~∇P

′

ρ0
− (~v0 ·~∇)2−~Ω×~Ω×~ξ . (3.71)

3.6.2 Symmetry of linear adiabatic non-radial oscillations

The symmetry of pulsation operators is a crucial mathematical property to derive the
variational principle and consequently, to be able to perform inversions. In this section, we
will present a demonstration of this property for the general case presented in Lynden-Bell
and Ostriker (1967). We will also comment on some simpli�cations applied during the
analysis of symmetry and their implications for inversion techniques. To demonstrate the
symmetry of the operators presented in Eq. 3.69-3.71, one has to prove that

∫
~ξ ∗ ·F (~ψ)ρ0dV =

[∫
~ψ∗ ·F (~ξ )ρ0dV

]∗
, (3.72)

with F being each of the operators associated with pulsations and ~ψ and ~ξ being any
vector functions de�ned on the hilbert space associated with linear adiabatic oscillations.
For A , the demonstration is trivial and stems from the symmetry of the classical scalar
product between vectors. Indeed, one has

∫
ρ0
~ξ ∗ ·~ψdV =

[∫
ρ0
~ξ ·~ψ∗dV

]∗
. (3.73)

The demonstration of the symmetry of the B operator is somewhat longer and requires
a few more developments. The starting expression is the following

∫
~ξ ∗ ·B1(~ψ)dV =−

∫
~ξ ∗ · (2i~v0 ·~∇)~ψρ0dV, (3.74)

we then use an integration by parts using the following formula

ρ0
~ξ ∗ · (~v0 ·~∇)~ψ = ∇ ·

(
(~ξ ∗ ·~ψ)ρ0~v0

)
−ρ0~ψ · (~v0 ·~∇)~ξ ∗−~ψ ·~ξ ∗~∇ · (ρ0~v0) , (3.75)

which is easily demonstrated by expanding the equation into components as follows

ρ0ξ
∗
i v0, j

∂ψi

∂x j
=

∂ (ρ0v0, jξ
∗
i ψi)

∂x j
−ψi

∂ (ρ0v0, jξ
∗
i )

∂x j
. (3.76)

The �rst term can be written ∇ · ((ρ0
~ξ ∗ · ~ψ)~v0) which will give a surface integral due

to Gauss’s Theorem. However, the velocity of the steady �ow, ~v0, is always parallel
to the normal of the unperturbed surface. Therefore, this surface integral is exactly 0.
Similarly, the second term can be separated in two contributions, the �rst one including
the term ∇ · (ρ0~v0), being 0 for the reasons we invoked before, the second one being
−ρ0~ψ · ((~v0 ·~∇)~ξ ∗), the one we seek.
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We then have the symmetry property satis�ed since

−
∫
~ξ ∗ · (2i~v0 ·~∇)~ψρ0dV = 2i

∫
ρ0~ψ · ((~v0 ·~∇)~ξ ∗)dV

=

[
−2i

∫
ρ0~ψ

∗ · ((~v0 ·~∇)~ξ )dV
]∗

. (3.77)

The same developments can be used to deal with the C4 term

−
∫

ρ0
~ξ ∗ · (~v0 ·~∇)(~v0 ·~∇)~ψdV =−

∫
∇ · ((~ξ ∗ · (~v0 ·~∇)~ψ)ρ0~v0)dV

+
∫

ρ0(~v0 ·~∇)~ξ ∗ · (~v0 ·~∇)~ψdV, (3.78)

where the �rst integral is actually an integral over the unperturbed surface of the star.
Again, since the velocity of the steady �ow is perpendicular to this surface, this contribution
is exactly 0. Consequently, C4 is symmetric. The demonstration is similar to that of B1
where one would write (~v0 ·~∇)~ψ intead of ~ψ in the developments.

For B2, the demonstration is trivial

−
∫

V
2iρ0~ψ · (~Ω×~ξ )dV =−

∫
V

2iρ0

[
~ψ,~Ω,~ξ

]
dV = 2i

∫
V

ρ0

[
~ξ ,~Ω, ~ψ

]
dV, (3.79)

since using the de�nition of the mixed product leads to

[
~ψ,~Ω,~ξ

]
i, j,k

= ξi(Ω jψk−Ωkψ j) =−
[
~ξ ,~Ω, ~ψ

]
i, j,k

. (3.80)

Demonstrating the symmetry of the other terms of C requires a little bit more
developments. First, we start with C1 by expressing the perturbation of the gravitational
potential undergone by a mass element due to the displacement induced by oscillations.
One �nds

dφ
′
=−( Gdm

|~r−~r′−~ξ |
)+(

Gdm
|~r−~r′ |

)

=−~ξ ·~∇(
Gdm
|~r−~r′ |

), (3.81)

which can then be integrated over the unperturbed volume to yield

φ
′
=−

∫
V

~ξ ·∇(
Gρ0

|~r−~r′ |
)dV

=−
∫

S
(

Gρ0
~ξ

|~r−~r′ |
)dS+

∫
V
(
G∇ · (ρ0

~ξ )

|~r−~r′ |
)dV, (3.82)

we then use the de�nition of the scalar product to quickly demonstrate the symmetry of
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C1 ∫
ρ0(~r)~ψ(~r) ·~∇φ

′
(~r
′
)dV

′
=
∫

V
ρ0(~r)~ψ(~r) ·~∇

(∫
S

Gρ0(~r
′
)~ξ (~r

′
)

|~r−~r′ |
dS
′−
∫

V

G∇ · (ρ0(~r
′
)~ξ (~r

′
))

|~r−~r′ |
dV

′

)
dV

=
∫

S
ρ0(~r)~ψ(~r)

(∫
S

Gρ0(~r
′
)~ξ (~r

′
)

|~r−~r′ |
dS
′

)
dS

−
∫

S
ρ0(~r)~ψ(~r)

(∫
V

G∇ · (ρ0(~r
′
)~ξ (~r

′
))

|~r−~r′ |
dV

′

)
dS

+
∫

V
∇ · (ρ0(~r)~ψ(~r))

(∫
V

G∇ · (ρ0(~r
′
)~ξ (~r

′
))

|~r−~r′ |
dV

′

)
dV

−
∫

V
∇ · (ρ0(~r)~ψ(~r))

(∫
S

Gρ0(~r
′
)~ξ (~r

′
)

|~r−~r′ |
dS
′

)
dV. (3.83)

For C2 and C3 one has to introduce the de�nition of the eulerian perturbation of pressure
under the hypothesis of adiabaticity to obtain

−
∫ ~ξ ∗ · (∇ · (ρ0~ψ))~∇P0

ρ0
dV −

∫
~ξ ∗ ·~∇P

′
dV ≈

∫
V

∇ ·~ξ ∗P′dV −
∫ ~ξ ∗ · (∇ · (ρ0~ψ))~∇P0

ρ0
dV

=−
∫

V

P
′
(P̃
′
)∗

Γ1P0
dV +

∫
V

~ξ ∗ ·~∇P0
P
′

Γ1P0
dV −

∫ ~ξ ∗ · (∇ · (ρ0~ψ))~∇P0

ρ0
dV

=
∫

V

~ξ ∗ ·~∇P0(
P
′

Γ1P0
− ∇ · (ρ0~ψ)

ρ0
)dV −

∫
V

P
′
(P̃
′
)∗

Γ1P0
dV

=−
∫

V

P
′
(P̃
′
)∗

Γ1P0
dV +

∫
V
(~ξ ∗ ·~∇P0)(~ψ · (

~∇P0

Γ1P0
−
~∇ρ0

ρ0
))dV

=−
∫

V

P
′
(P̃
′
)∗

Γ1P0
dV −

∫
V

N2

ρ0|~∇φ0|2
(~ξ ∗ ·~∇φ0)(~ψ · ~∇φ0))dV. (3.84)

In this development, the �rst equality is not perfectly true since we neglected one
surface term stemming from the use of Gauss’s theorem in the integral of ~ξ ∗ ·~∇P

′
. However,

this surface term can be symmetrical depending on the boundary conditions used for the
oscillation equations. For the last term, C5, one has to write

−
∫

V
ρ0~ψ · (~Ω× (~Ω×~ξ ))dV =−

∫
V

ρ0|~Ω|2(~ψ ·~ξ )dV +
∫

V
ρ0(~Ω ·~ψ)(~Ω ·~ξ )dV, (3.85)

and the symmetry is quickly demonstrated. We have now shown that each term is
symmetric, using the de�nition of the Brunt-Väisälä frequency and the following identity:

~x =
<~x,~y >
|y|2

~y, (3.86)

if ~x and ~y are aligned. In other words, we assume here that the gradients of density,
pressure and gravitational potential are aligned. This property is however to be used
with caution for density and pressure gradients in fast rotating stars with non-cylindrical
rotation law.

If we now consider that ~ψ = ~ξ , we can write

ω
2 <~ξ ,A (~ξ )>= ω <~ξ ,B(~ξ )>+<~ξ ,C (~ξ )>, (3.87)
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using our notation of scalar product, where each term is symmetric.
This expression will then be used to derive the variational principle, the fundamental

property of pulsation equations necessary to inversion equations. However, the fact
that we neglected a surface term in these developments means that the surface regions
will not perfectly be represented and that the property of symmetry is valid within a
given accuracy, even for stellar models. However, since the neglected term is o�en very
small, the accuracy is still excellent. Another hypothesis in these developments is that of
adiabaticity of stellar pulsations, which is made from the start on and implies that surface
regions will never be properly treated. Indeed, the upper regions will never be sought for
using inversions since the hypotheses are well known to break down in these layers.

The main di�culty with non-adiabatic equations is that they are intrinsically asymmet-
rical. As we will in the next section, the symmetry of the equations is the mathematical
property that leads to the variational principle. Consequently, there is no variational
principle for non-adiabatic stellar oscillations although integral relations can still be derived.

3.6.3 The variational principle

We start from equation 3.87 and consider a pair (ω , ~ξ ) of solutions which is close to
another pair of solutions (ω0, ~ξ0), such that it can be written in a variational form with:

~ξ = ~ξ0 +δ~ξ , (3.88)

ω = ω0 +δω, (3.89)

with δ denoting the variational perturbation of ω and ~ξ , not to be mistaken with the
Lagrangian perturbations used for stellar pulsation equations. We search a condition such
that δω = 0, namely that the pair (ω0, ~ξ0) is a stationary solution of of Eq 3.87.

Therefore, we start by writing equation 3.87 for the pair (ω , ~ξ ) and use the expres-
sions 3.88-3.89 to simplify some terms thanks to the symmetry of the operators we
demonstrated in section 3.6.2. We then have the following expression

2ω0δω <~ξ0,A (~ξ0)>=−2ω
2
0 < δ~ξ ,A (~ξ0)>+2ω0 < δ~ξ ,B(~ξ0)>

+2 < δ~ξ ,C (~ξ0)>+δω <~ξ0,B(~ξ0)> . (3.90)

We then re-arrange the expression to isolate δω

δω =
−2ω2

0 < δ~ξ ,A (~ξ0)>+2ω0 < δ~ξ ,B(~ξ0)>+2 < δ~ξ ,C (~ξ0)>

2ω0 < ~ξ 0,A (~ξ0)>−<~ξ0,B(~ξ0)>
. (3.91)

This expression shows that the only way for δω to be 0 regardless of the perturbation
δ~ξ is to impose the condition

−ω
2
0A (~ξ0)+ω0B(~ξ0)+C (~ξ0) = 0. (3.92)

This means that ~ξ0 must be an eigenfunction and that eigenfunctions are a stationary
solution of Eq 3.87. In other words, this implies that a modi�cation of the eigenfunction,
~ξ0, does not imply a modi�cation of the eigenvalue, ω0 to the �rst order. This stationarity
property consistutes the variational principle of stellar adiabatic oscillations. It implies
that the calculation of the eigenvalue will always be superior to that of the eigenfunctions
of the oscillations. Moreover, equation 3.91 can always be used to check the quality of the
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calculation of computed oscillations. It is important to link this result to that of symmetry,
since symmetry is the fundamental mathematical property allowing the derivation of the
stationarity of the operator for eigenfunctions. In the following section, we will also see
how the variational principle is fundamental for linear stellar inversions, both structural
and rotational.

3.6.4 Integral relations between frequencies and structure

In the previous sections, we have dealt with proving the symmetry of the �uid operators
and the variational principle of linear adiabatic oscillations in the �uid equations. We
derived these properties for a very general case of the �ow. However, while in some
applications these general expressions should be applied, we have seen in chapter 3.1.2
that stellar oscillations could be computed using simpli�ed equations not including rotation,
magnetic �elds or even a velocity in the equilibrium �ow. In this section, we will show
how these simpli�ed equations can lead to a quite simple integral relation.

First, we re-write the �uid equations using the various simpli�cations applied when
calculating stellar oscillations. We obtain

−ρ0ω
2~ξ =−∇ · (ρ0

~ξ )

ρ0

~∇P0−ρ0~∇φ
′−~∇P

′
, (3.93)

where we already considered that the displacement vector is a Fourier mode written in
the form δ~r = ~ξ e−iωt . Again, we will only consider adiabatic oscillations. The eigenvalue
problem can again be written in a simpli�ed symbolic form for the �uid operator, denoted
here D

ω
2~ξ = D(~ξ ). (3.94)

Given the results of the previous section, this operator is obviously symmetric and satis�es
the variational principle. One then writes the scalar product of equation 3.94 with ~ξ to
get

ω
2 =

<~ξ ,D~ξ >

<~ξ ,~ξ >
. (3.95)

We then perturb all quantities in equation 3.95, namely the operator, the frequencies and
the displacement vector, as follows

ω
2 = ω

2
0 +δω

2, (3.96)

D = D0 +δD , (3.97)
~ξ = ~ξ0 +δ~ξ , (3.98)

We can then introduce these expressions in equation 3.95 and linearise the equation

< ~ξ0,δω
2~ξ0 >+< ~ξ0,ω

2
0 δ~ξ >=< ~ξ0,δD(~ξ0)>+< ~ξ0,D0(δ~ξ )>, (3.99)

where we have used the fact that ξ0 is an eigenfunction of D0. We can also use the
symmetry of D0 and equation 3.94, which leads to the variational principle of adiabatic
stellar oscillations, which in turn allows us to eliminate the terms with δ~ξ and simplify the
starting expression. Finally, we obtain a simple relation between frequency and structural
perturbations

δω
2 =

< ~ξ0,δD(~ξ0)>

< ~ξ0, ~ξ0 >
. (3.100)
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This symbolic expression is actually the only expression needed to compute structural
inversions and is a consequence of a series of mathematical properties of adiabatic stellar
oscillations. The �rst property is the symmetry of the operator, which leads to the
existence of the variational principle for stellar oscillations which in turn allows for a
formally simple relations between pulsation frequencies and acoustic structure. Equation
3.100 expresses the impact of perturbations on the �uid operator, in other words, how
the acoustic structure of the pulsating star a�ects the eigenfrequencies. If we now take the
example of an observed star and the numerical model used to represent its structure, this
mathematical relation means that as long as the numerical model is su�ciently good, any
frequency di�erence can be considered to only be caused by the inaccurate reproduction
of the acoustic structure of the star by the numerical model. Of course, the very de�nition
of “su�ciently good” is somewhat problematic and we will further investigate onto what
“su�ciently good” means in Part II. This topic is linked to the validity domain of equation
3.100, which is only a �rst order approximation.

Moreover, it is also clear that this expression is not valid for: rapidly rotating stars,
strongly magnetic stars or stars in close binary systems. Indeed, we neglected all these
e�ects in the derivation of this relation. Of course the intrinsic non-adiabaticity of stellar
oscillations will in practice cause equation 3.100 to be wrong, but the problem of surface
e�ects, as we call them, is in reality far worse. Firstly, the very crude modelling of the
surface regions will inevitably cause the perturbations of the �uid operators in these
regions to be of high amplitude, thus non-linear, but to make it worse, the hypothesis of
adiabaticity, a prerequisite for structural inversions, will make it impossible to probe the
upper layers since neither the frequencies, nor the eigenfunctions of the numerical model
will be realistic. In practice, this implies that we use empirical frequency corrections to
minimise these so-called surface e�ects.

A last comment can be made on the mathematical nature of equation 3.100. Behind
the notation of the scalar product is actually hiding an integral, meaning that equation
3.100 is an integral relation. This means that the problem of inferring corrections on
the acoustic structure of the stellar model will be an ill-posed problem and will require
speci�c techniques to be solved.

3.7 Inversion equations

In the previous sections, we have demonstrated that the symmetry of the operator
associated with linear adiabatic stellar oscillations could be used to derive a variational
principle for the pulsation equations. From this mathematical property, we have shown that
a relatively simple integral relation could be derived relating di�erences in the eigenvalues
of the problem, thus the oscillation frequencies, to corrections on the �uid operator, in
other words on the acoustic structure of the numerical model of the star. This means
that given the structural corrections, one can start to change the physical ingredients of
stellar models and see which can be used to reproduce the changes necessary to �t the
inverted acoustic properties. In this section, we will derive the analytical expressions used
in practice for structural inversions, introduce terms such as structural kernels, structural
pairs, but also present some additional insights on the complicated problem of surface
e�ects.
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3.7.1 Derivation of the structural kernels of the (ρ,c2) structural pair

We start this section by rewriting equation 3.100

δω
2 =

< ~ξ0,δD(~ξ0)>

< ~ξ0, ~ξ0 >
. (3.101)

While this equation directly shows the link between the di�erences in eigenvalues and
the di�erences in the �uid operator, it does not give a practical relation to infer the
corrections on the acoustic structure of the model. While the variational principle has
been known since Chandrasekhar (1964), it is only in Dziembowski, Pamyatnykh, and
Sienkiewicz (1990) that one �nds a rewriting of the equations of the linear perturbations
of frequencies allowing for a direct inversion. In this section, we will show how to derive
the integral relations allowing us to determine density, ρ , and squared adiabatic sound
speed, c2, corrections. We start by analysing the denominator of the right hand side of
equation 3.101, which is written

<~ξ ,~ξ >=
∫

ρ0
~ξ ∗ ·~ξ dV. (3.102)

We then have to separate radial and horizontal components using

~ξ = ξr~er +~ξh. (3.103)

Each of these components depend on the radial and the angular coordinates. For a
non-magnetic, isolated, slow-rotating star, we have seen that the model is, to a very
good approximation, spherically symmetric. We then use the decomposition onto spher-
ical coordinates, where f̃ , considered as a Fourier mode, represents any perturbed
thermodynamical quantity of the acoustic structure

f̃ =
√

4π f (r)Y m
` (θ ,φ)eiωt , (3.104)

~ξh =
√

4πξh(r)
(

∂Y m
`

∂θ
~eθ +

1
sinθ

∂Y m
`

∂φ
~eφ

)
eiωt . (3.105)

In this expression, ~eφ et ~eθ are the direction vectors associated with the θ and φ axes of
the spherical coordinates. We then have the same properties of the Lagrangian operator as
in the pulsation equations and the scalar product of two eigenfunctions can be expressed
as very simple expressions. For the radial component, one has

δ r2 =
∫ R

0

∮
|
√

4πξr(r)Y m
` |2r2

ρ0dΩdr, (3.106)

= 4π

∫ R

0
|ξr(r)|2r2

ρ0dr, (3.107)

with dΩ a solid angle element. A similar expression is derived for the horizontal component,
thanks to the properties of spherical harmonics

δh2 = 4π

∫ R

0
`(`+1)|ξh(r)|2r2

ρ0dr.

One then ends up with the well-known expression for the inertia of the mode in the
denominator of the right hand side of the integral relation between frequencies and
structure:

<~ξn,`,~ξn,` >= 4π

∫ R

0

[
|ξ̃r(r)|2 + `(`+1)|ξ̃h(r)|2

]
ρ0r2dr. (3.108)
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The numerator of the expression must now be dealt with, remembering that it stems
from the original eigenvalue problem equation, ω2

0
~ξ0 = D0(~ξ0), which is written in the

form 3.101 for small perturbations. Our goal is now to �nd δD0. Thus, we start from the
equation of momentum for adiabatic pulsations

ω
2~ξ =

∇ · (ρ0
~ξ )

ρ2
0

~∇P0 +~∇φ
′
+
~∇P

′

ρ0
. (3.109)

We now apply the scalar product over the functional space and apply a perturbation
to the model. This perturbation is considered at �xed radius, thereby preserving the total
volume of the star3. We will denote by δ this perturbation, which is not to be mistaken
for the Lagrangian perturbations used in the pulsation equations previously presented.
We can use the variational principle to proceed to a �rst elimination of some eigenfunction
perturbations

∫
V

ρ0δω
2|~ξ0|2dV =−

∫
V

ω
2
δρ0|~ξ0|2dV +

I︷ ︸︸ ︷∫
V

δ̄

[(
∇ · (ρ0

~ξ0)

ρ0

)∗
~ξ0 ·~∇P0

]
dV +

∫
V

ρ0
~ξ ∗0 ·~∇δ̄ φ

′
dV

+
∫

V
δρ0

~ξ ∗0 ·~∇(φ
′
)dV +

II︷ ︸︸ ︷∫
V

~ξ ∗0 ·~∇(δ̄P
′
)dV . (3.110)

In these developments, we introduce the notation δ̄ which implies a perturbation of the
thermodynamical quantity for which every occurence of δ~ξ has been eliminated. We now
can use the hydrostatic equilibrium to write that

~∇P0 =
dP0

dr
~er =−

Gm(r)ρ0

r2 ~er, (3.111)

m(r) =
∫ r

0
4πρ0r2dr, (3.112)

⇒ δ
dP0

dr
=−Gm(r)δρ0

r2 − Gρ0

r,2

[∫ r

0
4πδρ0r2dr

]
. (3.113)

Now if we consider terms I and II, use the de�nition of the adiabatic eulerian pressure
perturbation,

P
′
=−Γ1P0~∇ ·~ξ −~ξ ·~∇P0, (3.114)

and carry out an integration by parts, we can explicitely write every component as
follows

3It should be noted that such perturbations can be de�ned at �xed mass as in Christensen-Dalsgaard and
Thompson (1997)
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I + II =
∫

V

(
−δρ0

ρ2
0

dρ0

dr
dP0

dr
ξ

2
r,0−

δρ0

ρ0
Λ`ξr,0

dP0

dr
+

[
1
ρ0

dδρ0

dr
ξr,0 +

δρ0

ρ0
Λ`

]
ξr,0

dP0

dr

+
1
ρ0

[
dρ0

dr
ξr,0 +Λ`ρ0

]
ξr,0

dδP0

dr

)
|Y m

` |2dV −
∫

V
ξr,0

d
dr

(ξr,0
dδP0

dr
)|Y m

` |2dV

−
∫

V

ξh,0ξr,0

r
dδP0

dr
|r2~∇hY m

` |2dV +
∫

V
(~ξ0)

2 ·δ~∇(P0Γ1,0)dV,

=
∫

V

(
−δρ0

ρ2
0

dρ0

dr
dP0

dr
ξ

2
r,0 +

1
ρ0

dδρ0

dr
dP0

dr
ξ

2
r,0 +

1
ρ0

[
dρ0

dr
ξr,0 +Λ`ρ0

]
ξr,0

dδP0

dr

)
|Y m

` |2dV

−
∫

V
ξr,0

dξr,0

dr
dδP0

dr
|Y m

` |2dV −
∫

V
`(`+1)

ξh,0ξr,0

r
dδP0

dr
|Y m

` |2dV −

III︷ ︸︸ ︷∫
V

ξ
2
r,0

d2δP0

dr2 |Y
m
` |2dV

+
∫

V
(∇ ·~ξ0)

2(δc2
ρ0 +δρ0c2)|Y m

` |2dV, (3.115)

where we also introduced the following de�nitions

∇ ·~ξ =
1
r2

d(r2ξr(r))
dr

Y m
` (θ ,φ)+ξh(r)∇h · (~r∇hY m

` (θ ,φ)),

=
1
r2

d(r2ξr(r))
dr

Y m
` (θ ,φ)− `(`+1)

r
ξh(r)Y m

` (θ ,φ) = Λ`(r)Y m
` (θ ,φ) (3.116)

∇ · (ρ0
~ξ ) =

dρ0

dr
ξrY m

` (θ ,φ)+ρ0Λ`(r)Y m
` (θ ,φ), (3.117)

~ξ ∗ ·~∇( f (r)Y m
` (θ ,φ)) = ξr|Y m

` |2(θ ,φ)
d f (r)

dr
+ rξh f (r)|∇hY m

` (θ ,φ)|2, (3.118)

Now we consider the term III:

III =−
∫

V

2
r

dδP0

dr
ξ

2
r,0|Y m

` |2dV −
∫

V
8πGρ0δρ0ξ

2
r,0|Y m

` |2dV −
∫

V

Gδm(r)
r2

dρ0

dr
ξ

2
r,0|Y m

` |2dV

−
∫

V

Gm(r)
r2

dδρ0

dr
ξ

2
r,0|Y m

` |2dV. (3.119)

By recombining this expression and using the de�nition of the equilibrium pressure we
obtain a�er a few simpli�cations4

III = 2
∫

V
Λ`

dδP0

dr
|Y m

` |2dV −
∫

V

dρ0

dr
ξ

2
r,0

Gδm(r)
r2 |Y m

` |2dV +
∫

V
8πGρ0δρ0ξ

2
r,0|Y m

` |2dV

+2
∫

V
ξr,0

dξr,0

dr
Gρ0δm(r)

r2 |Y m
` |2dV +2

∫
V

ξr,0
dξr,0

dr
Gδρ0m(r)

r2 |Y m
` |2dV. (3.120)

Finally, one has to separate the integral over the angular coordinates and permute the
integrals in the mass perturbation using the following property

∫ R

0
f (r)

(∫ r

0
g(r

′
)dr

′
)

dr =
∫ R

0
g(r

′
)

(∫ R

r′
f (r)dr

)
dr
′
, (3.121)

4The perturbation of the gravitational potential can be easily transformed using Gauss’s theorem and
Poisson’s equation, considering continuity conditions which induce the elimination of the surface terms.
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so that one can move up the δρ term to the �rst integral. By further recombining the
third an fourth term of the equation by integrating by parts, one obtains

δω
2
∫ R

0
ρ0
[
ξr,0(r)2 + `(`+1)ξh,0(r)2]r2dr =−

∫ R

0
ω

2
δρ0

[
ξr,0(r)2 + `(`+1)ξh,0(r)2]r2dr

+2
∫ R

0
δρ0(ξr,0

dφ
′

dr
+

`(`+1)
r

ξh,0φ
′
)r2dr−2

∫ R

0
ξr,0Λ`δρ0Gm(r)dr+

∫ R

0
4πGρ0δρ0ξ

2
r,0r2dr

+2
∫ R

0
ξr,0

dξr,0

dr
Gδρ0m(r)dr−

∫ R

0
4πδρ0G(

∫ R

r
ξ

2
r,0

dρ0

dr
+2Λ`ρ0ξr,0dr̃)r2dr

+
∫ R

0
Λ

2
`(δc2

ρ0 +δρ0c2)r2dr. (3.122)

This expression can be written in a shorter way by isolating the perturbations of the
squared adiabatic sound speed and density:

δωn,`

ωn,`
=
∫ R

0

[
Kn,`

c2,ρ0

δc2

c2 +Kn,`
ρ0,c2

δρ0

ρ0

]
dr, (3.123)

where we have de�ned the Kn,`
c2,ρ0

, Kn,`
ρ0,c2 , the structural kernels of the (ρ,c2) structural pair.

It should be noted that these functions are only depending on unperturbed variables, thus
only on the theoretical model that is built to carry out the inversion. The mathematical
expression of the structural kernels is the following

Kn,`
c2,ρ0

=
c2ρ0Λ2

`(r)r
2

2En,`ω
2
n,`

, (3.124)

Kn,`
ρ0,c2 =

1
2En,`ω

2
n,`

(
−ω

2
ρ0
[
ξr,0(r)2 + `(`+1)ξh,0(r)2]r2 +2ρ0(ξr,0

dφ
′

dr
+

`(`+1)
r

ξh,0φ
′
)r2

−2ξr,0Λ`ρ0Gm(r)+4πGρ
2
0 ξ

2
r,0r2 +2ξr,0

dξr,0

dr
Gρ0m(r)

−4πρ0G(
∫ R

r
ξ

2
r,0

dρ0

dr
+2Λ`ρ0ξr,0dr̃)r2 +Λ

2
`c2

ρ0r2
)
, (3.125)

where En,` is the mode inertia, de�ned as

En,` = 4π

∫ R

0

[
|ξ̃ n,`

r (r)|2 + `(`+1)|ξ̃ n,`
h (r)|2

]
ρ0r2dr. (3.126)

These kernels are illustrated in �gure 3.4. They were the �rst structural kernels to be
derived and are still used today in helioseismology to carry out inversions of the radial
sound speed pro�le of the Sun (see chapter 7). However, from the (ρ,c2) structural pair,
one can derive additional kernels, for various other pairs, allowing much more e�cient
diagnostics than just inverting the sound speed pro�le. We will see in chapter 4 that
some general approaches can indeed be designed to change the structural variables in the
integral relation between structural corrections and frequency di�erences. In the following
sections, we will only present the more classical, well known structural kernels.

3.7.2 Derivation of the structural kernels of the (ρ,Γ1) structural pair

From the previous developments, it is very straightforward to derive the structural kernels
for the (ρ,Γ1) structural pair. One simply has to introduce the de�nition of the squared
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Figure 3.4: Kernels of the (ρ,c2) structural pair for the `= 0, n = 15 mode of a solar model.

adiabatic sound speed and its linear perturbation

c2 =
Γ1P0

ρ0
, (3.127)

δc2

c2 =
δΓ1

Γ1
+

δP0

P0
− δρ0

ρ0
, (3.128)

dδP0

dr
=−Gρ0δm(r)

r2 − Gm(r)δρ0

r2 , (3.129)

δP0 =
∫ R

r
(
Gρ0δm(r̄)

r̄2 +
Gδρ0m(r̄)

r̄2 )dr̄. (3.130)

We can now use the expression in equation 3.125 to obtain

δωn,`

ωn,`
=
∫ R

0
Kn,`

c2,ρ

δΓ1

Γ1
dr+

∫ R

0
(Kn,`

ρ,c2−Kn,`
c2,ρ

)
δρ0

ρ0
dr

+

I︷ ︸︸ ︷∫ R

0

Kn,`
c2,ρ

P0

[∫ R

r

G
r̄2 (δm(r̄)ρ0 +m(r̄)δρ0)dr̄

]
dr . (3.131)

In this equation, the term I must be slightly modi�ed to isolate density perturbations,
one simply uses the same techniques as in the derivation of the (ρ,c2) kernels,

I =
∫ R

0

Gm(r)ρ0

r2
δρ0

ρ0

∫ r

0

Kn,`
c2,ρ

P0
dr̄

dr+
∫ R

0
4πρ0r2 δρ0

ρ0

∫ R

r

Gρ0

r̄2 (
∫ r̄

0

Kn,`
c2,ρ

P0
dr̃)dr̄

dr.

(3.132)

The expression of the (ρ,Γ1) kernels are then simply obtained by introducing these
developments in the de�nitions of the (ρ,c2) kernels. One then has the following de�nitions

Kn,`
Γ1,ρ0

= Kn,`
c2,ρ0

, (3.133)

Kn,`
ρ0,Γ1

= Kn,`
ρ0,c2−Kn,`

c2,ρ0
+

Gmρ0

r2

∫ r

0

Γ1Λ2
` r̄2

2En,`ω2 dr̄+ρ0r2
∫ R

r

4πGρ0

r̄2

[∫ r̄

0

Γ1Λ2
` r̃2

2En,`ω2 dr̃
]

dr̄.

(3.134)



3.7 Inversion equations 65

We illustrate these kernels in �gure 3.5. Currently, they are used in helioseismology to
carry out inversions of the radial density pro�le of the Sun. They can also be used to
compute inversions of the acoustic radius and mean density of a star in the context of
asteroseismology, as oresented in section 5.2. Their main advantage is that the value of Γ1
is nearly 5/3 throughout the whole stellar structure, allowing the relative di�erences in Γ1
to be very small in comparison to density or squared adiabatic sound speed di�erences.
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Figure 3.5: Kernels of the (ρ,Γ1) structural pair for the ` = 0, n = 15 mode of a solar
model.

3.7.3 Derivation of the structural kernels of the (ρ,Y ) structural pair

From the (ρ,Γ1) structural pair, it is easy to derive additional kernels linked to the helium
mass fraction, denoted Y , by expanding the relative perturbations of Γ1 using the equation
of state. One has

δΓ1

Γ1
=

∂ lnΓ1

∂ lnP
|ρ,Y,Z

δP
P

+
∂ lnΓ1

∂ lnρ
|P,Y,Z

δρ

ρ
+

∂ lnΓ1

∂Y
|P,ρ,ZδY +

∂ lnΓ1

∂Z
|P,ρ,Y δZ. (3.135)

In many textbooks and papers, one o�en �nds that the metallicity term is to be neglected.
It is true that in most cases, the δZ term will be much smaller than the δY term and
since the state derivative of Γ1 is nearly zero in most of the stellar structure, this term
can be neglected. We illustrate all these state derivatives of Γ1 in �gure 3.6. However, we
will see in section 7.3 that this is not always the case in the framework of helioseismology
and that one can indeed, using the appropriate structural kernels, estimate the metallicity
of the solar convective envelope.

Another problem of equation 3.135 is that it introduces uncertainties due to the equation
of state. One can �nd an example in section 4.2 of problems induced by a non-linear
behaviour of these derivatives. In fact, implying that equation 3.135 is satis�ed implies
another degree of linearisation for non-acoustic variables. If one compare these derivatives
for various equations of state, one can see that the di�erences can be quite large depending
on the structural di�erences between the models (see the test cases of chapter 4.2). For
example, standard solar models will show resonably small di�erences in their equation of
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Figure 3.6: State derivatives of Γ1 with respect to various thermodynamic quantities such
as ρ , P, as well as with respect to Y and Z, used in the derivation of structural kernels.

state, as shown in �gure 2.4, but this is due to the �tting technique that allows the models
to be very close and to the fact the equations of state are optimised for the solar case.
In asteroseismology, larger di�erences between the model and the observed star can be
expected, for example, but not only, due to di�erences in fundamental parameters such as
mass, radius or age. These di�erences can lead to large variations, for example by shi�ing
the position of the ionisation zones, strongly altering the Γ1 derivatives. Consequently,
These this supplementary linearisation might be rendered invalid. However, we will
see that this does not necessarily mean that inversions cannot be performed using the
(ρ,Y ) kernels, but rather that helium abundance determinations using direct asteroseismic
inversions will be very di�cult.

Historically, the (ρ,Y ) kernels have been used to determine the density pro�le of the
Sun. However, it was shown by Basu and Christensen-Dalsgaard (1997a) that at the level
of accuracy expected in helioseismology, the biases induced by the introduction of the
linearisation of the equation of state were to be avoided, and the (ρ,Γ1) kernels were
used instead. Introducing equation 3.135 in the de�nition of the (ρ,Γ1) kernels, one gets

Kn,`
Y,Z,ρ0

=Kn,`
Y,ρ0

∂ lnΓ1

∂Y
|P,ρ,Z, (3.136)

Kn,`
Z,Y,ρ0

=Kn,`
Y,ρ0

∂ lnΓ1

∂Z
|P,ρ,Y , (3.137)

Kn,`
ρ0,Y,Z =Kn,`

ρ0,Γ1
+Kn,`

Γ1,ρ0

∂ lnΓ1

∂ lnρ
|P,Y,Z +

Gmρ0

r2

∫ r

0

Kn,`
Γ1,ρ0

P
∂ lnΓ1

∂ lnP
|ρ,Y,Zdr̄

+ρ0r2
∫ R

r

4πGρ0

r̄2

[∫ r̄

0

Kn,`
Γ1,ρ0

P
∂ lnΓ1

∂ lnP
|ρ,Y,Zdr̃

]
dr̄. (3.138)

These kernels are presented in �gure 3.7. One can notice the naturally small amplitude
of the Y kernels compared to the density kernels. This small amplitude was the main
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motivation for their use in helioseismic inversions. This choice has since been criticised
in helioseismology because the small di�erences in density observed in helioseismology
can be signi�cantly in�uenced by the e�ects of the equation of state introduced by the
decomposition of Γ1 (Basu and Christensen-Dalsgaard (1997a)). However, the problem
is not so important in the �eld of asteroseismology and the use of kernels associated
with the helium mass fraction is actually the most e�cient way to ensure accurate
asteroseismic inversions. In �gure 3.8, we illustrate the kernels associated with the
metallicity contribution, o�en neglected in the integral relation. As can be seen, the
amplitude of these kernels is similar to that of the Y kernels. Consequently, the neglect of
the δZ term relies on the fact that, usually, δZ� δY . This is of primary importance for
the solar case, where Y is constrained by helioseismology.
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Figure 3.7: Kernels of the (ρ,Y ) structural pair for the `= 0, n = 15 mode.
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Figure 3.8: Kernel associated with Z in the (ρ,Y ) pair for the `= 0, n = 15 mode.

3.8 Numerical inversion techniques

From the previous sections, we have seen that carrying out a structural inversion is
actually related to solving an integral relation of the form

δνn,`

νn,` =
∫ 1

0
Kn,`

s1,s2

δ s1

s1
dx+

∫ 1

0
Kn,`

s2,s1

δ s2

s2
dx, (3.139)

with s1 and s2 being thermodynamical quantities such as the density, the squared adiabatic
sound speed, or any other quantities for which structural kernels can be derived.
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While equation 3.139 is fairly short, it is the perfect example of a very complicated class
of mathematical problems, the so-called ill-posed problems. These are recurrently found
in fundamental or applied science, from the geophysical, helioseismic or asteroseismic
inversions, to the reconstruction of velocity maps in doppler tomography, medical imaging
or the determination of an instrumental response. Some very general considerations on
the mathematical nature of inverse problems can be found in the following textbooks
(Tarantola (2005), Vogel (2002)). In this section, we will only brie�y cover the topic of
inverse problems and present the method used in this work to solve them.

3.8.1 Ill-posed and well-posed problem

An ill-posed problem is generally de�ned in opposition to a well-posed problem. Following
Hadamard’s de�nition, a well-posed problem respects three conditions:

1. a solution exists,
2. this solution is unique,
3. this solution depends continuously on the data.
In the case of helio- and asteroseimic applications, the �rst condition is obviously

ful�lled, since the solution is actually observed. The second condition is however not met.
Indeed, an in�nite number of solutions can reproduce the observations, since these only
provide a �nite number of constraints on an unknown function. The third condition is
not met either since a small change in the observed frequencies can lead to signi�cant
changes in the inversion results, especially in asteroseismic applications were the problem
is even more complicated.

Consequently, the mathematical nature of inverse problems requires a regularisation.
This is done by using a priori assumptions on the behaviour of the solution to ensure
uniqueness. The type of assumptions can vary depending on the problem considered
and some inversion techniques are only applicable to a given physical phenomenon since
most of them rely on speci�c conditioning to �nd a solution. Even for the same physical
phenomenon, each inversion will be a unique problem for which the quality of the solution
might vary. For example, in asteroseismology, the number of frequencies, the precision
of their determination, the nature of the modes, the quality of the reference model will
signi�cantly a�ect the capability to carry out a structural inversion. As an example, trying
to gain information on a low mass solar-like star in the middle of the main sequence using
pressure modes will not be as di�cult as computing an inversion for a more massive
subgiant star with mixed modes. The complexity of the problem leads us to consider
inversions only for the best targets and to treat them individually and with great care.
In what follows, we will describe the linear inversion technique used in this work and
provide references for other methods for the interested reader.

3.8.2 The SOLA inversion technnique

The most famous inversion technique in the �eld of helio- and asteroseismology is probably
the SOLA method. SOLA stands for Substractive Optimally Localised Averages. This
method was developed by Pijpers and Thompson (1994) as a variation of the MOLA
method (Multiplicative Optimally Localised Averages). The MOLA inversion technique was
�rst presented in a paper by Backus and Gilbert (1967) and described for geophysical
applications. However, the philosophy of this method makes it very general and well-suited
for helioseismic and asteroseismic applications5. The general idea of the OLA methods is
to try obtain local averages of the structural pro�le.

5Even if the SOLA method is now favoured for the reasons we will see in this section.
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The problem with the helio and asteroseismic inversion is the following, if we look at
the relation between frequencies and structure

δνn,`

νn,` =
∫ 1

0
Kn,`

s1,s2

δ s1

s1
dx+

∫ 1

0
Kn,`

s2,s1

δ s2

s2
dx, (3.140)

we can see that we will have one equation per observed frequency. In this expression,
one seeks to determine the structural variable δ s1 and δ s2, given the knowledge of the
frequency di�erences, δν and the kernel functions, Kn,`

si,s j , which only depend on the
reference model. However, with each of these equations, we wish to determine two
continuous structural functions, s1 and s2. In other words, we only have a �nite number of
constraints to determine an in�nite number of unknown values. This means of course that
to some extent we will be limited in what we can obtain as corrections. If we could solve
perfectly the problem, we would try to change the arguments of one of the integrals into
a Dirac distribution while simultaneously eliminating the other argument. For example, if
one wishes to determine δ s1/s1 in x0, one needs to �nd the inversion coe�cients, denoted
here ci, such that

∑
i

ciKi
s1,s2

= δ (x− x0), (3.141)

∑
i

ciKi
s2,s1

= 0. (3.142)

This is of course impossible with a �nite number of observed frequencies and even in
helioseismology, one has to �nd a compromise. This is done by accepting that one will
not get the exact local value of the correction, but a local average. The localisation is done
by building a cost function that will be minimised. The �rst di�erence between MOLA and
SOLA comes from the fact that in the MOLA technique, one minimises the multiplication of
the structural kernels by the penalty function while in the SOLA method, one minimises
the di�erence between the kernels and a target function. Moreover, the MOLA method
uses a parabola as its penalty function while the SOLA method uses a Gaussian target
function. If we come back to the previous example, where one wishes to determine a
local correction on s1, we can introduce the proper terms found in the litterature on the
MOLA and SOLA methods. The terms used to refer to these combination of kernels are
the averaging and cross-term kernels, which are de�ned as follows

Kavg = ∑
i

ciKi
s1,s2

, (3.143)

Kcross = ∑
i

ciKi
s2,s1

, (3.144)

where the term averaging stands for the fact that it is this linear combination that is used
to match a certain target, measuring the local average of the structural quantity δ s j

s j
. The

cross-term kernel is related to the fact that there will always be at least two integrals in
the relation between frequencies and structure (unlike in rotation inversions). This means
that the correction will always be, to a limited degree, in�uenced by the second variable
in the integral relations since it will be impossible to fully cancel its contribution.

While the MOLA method was the �rst one to be invented and applied, it is now
supplanted by the SOLA method for two main reasons. First, the SOLA method is much
less costly in terms of numerical operations. Indeed, it is only necessary to initialise the
matrix with structural kernels once, while this matrix must be re-initialised at each point
for the MOLA method. Moreover, the use of kernels with a prede�ned �nite width in the
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SOLA function avoids an extreme localisation of the structural kernels which could result in
bad �ts. The structural kernels, being related to the eigenfunctions of the oscillations, are
indeed oscillating functions, and trying to obtain an average on a very small interval can
lead to an increase in the oscillatory behaviour in the averaging kernel. We illustrate this
in �gure 3.9 where one can see the progressive apparition of oscillations if one searches
for an excessively local correction.

Figure 3.9: Comparison of averaging kernels for the SOLA and MOLA method. The width
of the Gaussian target, illustrated with a dotted line, is 0.042 in subpanel a) and is then
decreased to 0.021 in subpanel b) and 0.01 in c). Subpanel d) shows the kernel one would
obtain with the MOLA method for similar magni�cations of the observational errors.
(Reprinted from Pijpers and Thompson (1994)).

In helioseismology, the very large number of observed frequencies allows for an
inversion of full structural pro�les, using the following de�nition of the target function

T (x,x0) = Axexp−
(

x− x0

∆(x0)
+

∆(x0)

2x0

)2

, (3.145)

with A being a normalisation constant and ∆(x0) = ∆Ac(x0)/c(rA), where rA = 0.2R� and
re�ects the fact that the modes won’t be able to probe with the same e�ciency all radii of
the solar structure (Thompson (1993)). Hence, in this de�nition, ∆A is the parameter used
to change the resolution of the kernels. In practice, it is known that pressure modes are
not very e�cient at probing the very deep layers of the Sun, below 0.1R�. The advantage
of the function de�ned in equation 3.145 is that it is exactly zero in the center, and thus
behaves similarly to the structural kernels in this region.

In conclusion, in helioseismology, the cost function to be minimised by the SOLA
method will be the following

S (ci(x0)) =
∫ 1

0
[Kavg(x,x0)−T (x,x0)]

2 dx+β

∫ 1

0
K2

cross(x,x0)dx+
µ

< σ2 >
∑

i
c2

i (x0)σ
2
i

+λ

[∫ 1

0
Kavg(x,x0)dx−1

]
+

N−1

∑
n=0

an ∑
i

ci(x0)ψn(νi)

Ei
. (3.146)



3.8 Numerical inversion techniques 71

In this expression, the �rst two integrals are easily recognised to be related to the
averaging and cross-term kernels. In other words, they are the terms containing the
structural kernels and control the quality of the �t. The third term is related to the
propagation of the observational errors. Indeed, the inversion assigns a coe�cient to each
individual frequency di�erence, meaning that the observational errors of each mode will
also be ampli�ed. Hence, one should properly take into account their contribution to the
uncertainties of the �nal result. The fourth term is related to the unimodularity constraint
on the averaging kernel, implying that its integral must be equal to 1. This constraint is
use to further stabilise the inversion process. The variable λ , associated with this term, is
not a free parameter of the inversion, unlike µ and β , but a Lagrangian multiplier.The ��h
and last term is related to the surface e�ects correction further described in section 3.9.

We mention here that the notation µ for the trade-o� parameter associated with the
ampli�cation of the error bars is not universal and chosen here to be consistent with
�gure 3.10. In the rest of the manuscript, we will follow the convention adopted in Backus
and Gilbert (1967) were µ is replaced by tan(θ), where θ is now a free parameter. This
convention is based on the mathematical analysis of the trade-o� curves and the de�nition
of the optimal value of the trade-o� parameter for MOLA inversions.

A quick look at equation 3.146 shows that some terms may have antagonising e�ects.
Indeed, �tting the target function may require the use of large inversion coe�cients.
However, one wishes to reduce their amplitude since this also induces a decrease in
precision. Similarly, damping the cross-term contribution can only be done by using
small coe�cients but will not always ensure an accurate �t to the target function. The
fact that we have to deal with these antagonising contributions means that inversions
with the SOLA method will always be a trade-o� problem between precision, cross-term
contribution and accuracy. To deal with this problem, one draws trade-o� curves that
show how the �t of the target function behaves with di�erent values of the parameter.
Some of these curves are illustrated in �gure 3.10. They are part of the classical analysis
of inversion techniques to allow the user to de�ne the smallest width of the target function
without inducing an inacceptable contribution from the cross-term or ampli�cation of the
errors.

In asteroseismology, carrying out inversions is much more complicated for two reasons.
First, the number of modes and the precision of their detection is strongly reduced since
for the best asteroseismic targets, one can have up to 55 individual frequencies usually
with larger error bars (see Davies et al. (2015), Lund et al. (2017), and I. W. Roxburgh (2017)
for an illustration for Kepler targets). This means that the trade-o� problem will be much
more di�cult than in the helioseismic case since one has much less seismic information to
work with.

Another problem of asteroseismic inversions is the importance of non-linearity. Indeed,
the SOLA method is a linear inversion technique and the equations which are used
are based on the linear approximation between frequency di�erences and structural
corrections. In asteroseismic cases, the ability to carry out a structural inversion is thus
also linked to the ability to carry out an accurate forward modelling of the observed
target, using all the available information in the litterature.

Even if the target is properly modelled and a structural inversion can be performed, the
small number of frequencies does not allow us to carry out inversions of a full structural
pro�le, although a few corrections at some radii can be determined. However, SOLA
inversions can still be used to compute inversions of integrated quantities, allowing us
to focus all the seismic information in the modes into the determination of custom-made
seismic indicators based on structural considerations.
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Figure 3.10: Trade-o� curves for the SOLA inversion technique for solar structural
inversions, the parameter µ is associated with the observational errors, β with the
cross-term and ∆A with the width of the target function. The trade-o� curves are plotted
for both the SOLA and MOLA techniques. The ordinate is the 1σ error value of the inverted
result and the abscissa, ∆qu, is the interquartile interval of the averaging kernels associated
with the inversion. (Reprinted from Rabello-Soares, Basu, and Christensen-Dalsgaard
(1999)).

The �rst main change in this inversion process is that the target is not a localised
function anymore, but rather a “well-de�ned” function that can be �tted by the structural
kernels. Indeed, the small number of frequencies implies that not all target functions can
be �tted by the structural kernels. Ultimately asteroseismic inversions are built based on
the same principle as helioseismic inversions and the de�nition of the cost function is
nearly the same. For a given integrated quantity, A , one would have

SA =
∫ 1

0
[Kavg(x)−TA ]2 dx+β

∫ 1

0
K2

crossdx+
µ

< σ2 >
∑

i
c2

i (x0)σ
2
i +λ

[
∑

i
ci− k

]
.

(3.147)

In this expression, we simply introduced TA which is the target function of the inversion
associated with the integrated quantity. It is simply de�ned as follows

δA

A
=
∫ 1

0
TA

δ sA

sA
dx, (3.148)

where sA is the structural variable that is used in the integral de�nition of A . For example,
in the case of the mean density inversions illustrated in D. R. Reese, Marques, et al. (2012),
one has

δ ρ̄

ρ̄
=
∫ 1

0
4πx2 ρ

ρ̄

δρ

ρ
dx. (3.149)
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Further examples of these targets functions will be found in part II of this thesis.
Another di�erence in equation 3.147 is the absence of surface corrections. As stated in

section 3.9.2, adding a surface correction in the cost function reduces signi�cantly the
quality of the �t, meaning that no proprer seismic diagnostic can be derived from the
inversion. A workaround is to apply empirical corrections on the frequencies and to use
this corrected dataset as input for the structural inversions. Of course, this means that the
correction will su�er from the inaccuracies in the empirical corrections of surface e�ects.

Similarly, the cross-term contribution will play a signi�cant role in asteroseismic
inversions. Eliminating the cross-term is even more complicated in this framework than
in helioseismology. Therefore, the asteroseismic inversions in this work had to be made
using either Γ1, the adiabatic exponent, or Y , the helium mass fraction, as the structural
variable related to the cross-term contribution. Using these variables allows to reduce
the cross-term signi�cantly, as will be shown in part II. This is a consequence of the
thermodynamic properties of stellar materials which make Γ1 ≈ 5/3 nearly everywhere
in the stellar structure. Consequently, the contribution of Γ1 to the cross-term integral
is naturally much smaller than if one used ρ or c2 as a secondary variable. This is
illustrated in �gure 2.4 for standard solar models, but similar conclusions can be found
in the asteroseismic context, as we will see in Part II. For the helium mass fraction, Y ,
the justi�cation is found in equation 3.136 and illustrated in �gure 3.7, where one sees
that the structural kernels linked to helium actually have very small amplitudes nearly
everywhere except in the helium ionisation zones. This means that their contribution to
the cross-term will be rather small and even more so if one has insights on the helium
abundance in the convective zone thanks to other methods.

The last term in the cost function of asteroseismic inversions is an additional constraint
based on dimensional arguments and linked to homologous relations. It can be shown
that if the integrated quantity A depends on stellar mass as Mk/2, with k an integer factor
described through dimensional analysis, then a non-linear generalisation of the SOLA
method can be developped and used in asteroseicmic inversions. The term in the cost
function of the asteroseismic SOLA inversion is there to ensure a certain unimodularity
based on dimensional arguments. To avoid repetition, we refer to section 5.3.3 for the
description of this non-linear process and all the details linked to the scaling process
involved in seismic inversions.

3.9 Correcting surface e�ects

In the previous sections, we showed that to derive the integral relations between frequency
di�erences and structural corrections, one had to neglect some surface terms. In addition
to these approximations, the hypothesis of adiabaticity is obviously wrong in the upper
regions, where the thermal and dynamical timescales are of the same order of magnitude.
Another inaccuracy comes from the fact that upper regions are poorly modelled. This
means that the cavity in which the waves propagate is not properly modelled and the
strati�cation of the regions where the modes are generated, in solar-like oscillations, is
wrong. These e�ects are completely disregarded when deriving the kernels and thus the
frequencies have to be corrected so that they can be used to probe the acoustic structure
of a given star. In this section we will present the usual correction that is adopted in most
helioseismic inversions and discuss some applications in asteroseismology.

3.9.1 Helioseismic inversions

Dealing with surface corrections means that we are looking at modi�cations occuring only
in the upper regions of the star. We will �rst analyse the behaviour of these so-called
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surface e�ects. We thus impose that we are looking at a given perturbation, δDsur f , of
high amplitude in the surface layers, but negligible in the lower regions, where all the
hypotheses of adiabatic computations are well met.

At a given frequency, one can see that the behaviour of the eigenfunctions does
not depend on ` in the surface regions, especially for low degree modes (which are
those observed in asteroseismology). The behaviour of the frequencies of such modes is
illustrated in Fig. 3.11.

Figure 3.11: Behaviour of individual frequencies with and without scaling, each curve
representing modes of various `. Once the scaling has been applied, very little dependance
in ` is seen (Reprinted from Christensen-Dalsgaard (2003)).

As a �rst approximation, we thus assume that the eigenfunctions do not depend on `
and de�ne an equation similar to equation 3.100 for the surface e�ect

<~ξn,`,δDsur f (~ξn,`)>

2ω2
n,`

= En,`
δωn,`

ωn,`
. (3.150)

This equation is very similar to equation 3.100, since we are trying to determine the
impact of a perturbation of the model on the frequencies. In this particular case, the
perturbation is located in the surface regions and equation 3.150 will thus behave like
the eigenfunctions in these regions. In other words, it will not be strongly dependent
on `, especially if the modes are of low degree. We follow here the developments of
Christensen-Dalsgaard (2003), introducing a Qn,` function de�ned as

Qn,` =
En,`

Ē0(ωn,`)
, (3.151)

with Ē0 being the inertia of the radial mode at a �xed ω , interpolated in ωn,`. One obtains
the following relations

Qn,`δωn,` =
<~ξn,`,δDsur f (~ξn,`)>

2ωn,`Ē0(ωn,`)
. (3.152)

Figure 3.11 illustrates the e�ects of this scaling for a comparison between a reference model
and a model with a modi�ed opacity in the upper regions. Consequently, this implies
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that the quantity Qn,`δωn,` is largely independent of ` and, in turn, the surface corrections
will also only depend on ω for a given `. A �rst correction is thus to apply this scaling
method to eliminate the ` dependency of the surface e�ects. However, this scaling is of
course not su�cient to correct the observed biases.

From the analysis of the variational equation 3.123, we know that no particular care is
taken to account for the surface e�ects. Indeed, the hypotheses of equation 3.123 are not
even satis�ed in the surface regions and these inaccuracies mean that there is no theoretical
expression for Dsur f . Thus, we have to add another function to the integral relations,
attempting to take into account surface e�ects. This function is usually denoted G (ω).
Using the Qn,` factor to normalise the expression, one gets a surface term independent
of `. In fact, G (ω) is simply an empirical modelling of the e�ects of the operator δDsur f ,
which form is unknown. For the (ρ0,c2) structural pair, one gets the following relation

δωn,`

ωn,`
=
∫ R

0

[
Kn,`

c2,ρ0

δc2

c2 +Kn,`
ρ0,c2

δρ0

ρ0

]
dr+

G (ω)

Qn,`
. (3.153)

The inversion technique now includes an additional function, taking into account the
surface e�ects that need to be either modelled or eliminated. In practice, it can also be
shown that G must be a slowly varying function of frequency because any variation in a
model leads to an oscillating signature in the frequencies whose frequency is proportional
to the acoustic depth of the perturbation. In the case of surface e�ects, this signature is
going to be very slowly varying.

The most usual way to model the function G is to use Legendre polynomials to model
the surface e�ects and impose in the inversion technique an additional condition imposing

∑
i

ci(r0)G (ωi) = 0. (3.154)

This additional condition thus imposes that the model of the surface e�ect should be
simultaneously cancelled by the inversion, when it derives the inversion coe�cients used
to recombine the frequencies. In practical cases, the series of Legendre polynomial goes
up to order 6 or 7. One should note that there is no physical justi�cation behind the
choice of the Legendre polynomials and that one rather speaks of “well chosen functions6”
without further arguments

Another method to model surface e�ects is to use a low-pass �lter on the oscillation
data (Basu et al. (1996a)). One then uses an asymptotic form of the relation between
frequency and structure, in the form

Si
δωi

ωi
'H1(

ωi

L
)+H2(ωi), (3.155)

where L = `+ 1/2. This expression is derived from the perturbative analysis of the
asymptotic relations of pressure modes given in equation 3.47. The exact analytical
expression of the functions H1 and H2 can be found in Christensen-Dalsgaard, D. O.
Gough, and Perez Hernandez (1988). The �ltering is done in three steps, with the hopes of
delivering a correction for the surface e�ects in the form

∑
i

aiSi
δωi

ωi
= G (ωi). (3.156)

First, one �ts a spline combination on equation 3.155. This allows to obtain an equation
linking frequency corrections to H2(ω).

6See Christensen-Dalsgaard (2003)
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The second step is then to apply a low pass �lter to this relation to isolate any slowly
varying function of ω . One then obtains a �ltered function, H2(ω), that is supposed to be
linked to G (ω).

Thirdly, one �ts this �ltered H2(ω) to obtain a relation similar to equation 3.156. This
�t then allows to de�ne coe�cients to correct the individual frequencies such that one
eliminates the surface e�ects based on the asymptotic �t. One should note that due to
this correction, the structural kernels are modi�ed and have much lower amplitudes in
the surface regions. This method also has the disadvantage of introducing correlations
between frequency di�erences, meaning that the treatment of the propagation of errors is
slightly more expensive numerically.

3.9.2 Asteroseismic methods

In asteroseismology, the context is completely di�erent. First, one only has a few observed
modes. Typically, the low ` solar spectra used in global helioseismology to probe the
lower internal structure of the Sun contains a few thousands of modes (see for example
Basu, Chaplin, et al. (2009)), while the best Kepler dwarf targets have from around 20
to 55 observed frequencies (see for example Appourchaux et al. (2014) and Lund et al.
(2017)). This of course means, as stated before, that linear inversion techniques used in
helioseismology are not su�ciently e�cient to carry full structural pro�les determinations.
Besides the limitations on the diagnostic provided by inversions, the small number of
frequencies has an impact on the way one could treat surface e�ects in asteroseimic
inversions.

In helioseismology, �tting a 6th order polynomial function alongside a custom-made
target to infer corrections is not a problem, since one has thousands of structural kernels
that can be recombined. In asteroseismology, adding the constraint of �tting a 6th order
polynomial is unrealistic. Indeed, the inversion would be only trying to eliminate the
surface term without giving any weight to the inversion target. As we will see, an inversion
is always a trade-o� problem and in asteroseismology, one has to use all available means
to avoid an unfavourable trade-o� situation. Therefore other methods of corrections
should be employed that do not a�ect the trade-o� problem of the inversion.

One way to deal with these e�ects is to apply a correction on the frequencies
before using them in the inversion. Up to now, three main approaches can be found
in the litterature. Historically, the �rst one is a power-law correction proposed in
Kjeldsen, Bedding, and Christensen-Dalsgaard (2008), based on considerations on the
solar oscillation spectrum. While of course this correction works for the Sun, it does
not perform well for other stars. The second one is a correction proposed by Ball and
Gizon (2014). This approach is still purely empirical, but takes into account the fact that
the frequency correction should be proportional to the inverse of the mode inertia, as
shown in the variational expression. Moreover, the Ball and Gizon correction was tested
using stellar models patched to averaged 3D atmospheres and thus certainly takes into
account some part of the surface e�ects (Ball, Beeck, et al. (2016)). More recently, another
correction law has been proposed by Sonoi et al. (2015) using a more extended sample of
patched models.

However, it should be noted that none of these corrections takes into account non-
adiabatic e�ects (although studies have been performed by Houdek, Trampedach, et al.
(2017) for radial modes in the solar case), which are the second contributor to the so-called
“surface e�ects”. These empirical corrections thus still need to be improved and connected
to more solid theoretical background since ultimately, the surface e�ect problem is a
consequence of our current incapacity to understand and model the physics of the upper
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layers of stars and the way the oscillation modes propagate through them. In what follows,
we will show theoretical developments for which these e�ects are not important since we
only work with models. However, the results related to observed targets neglect these
e�ects and thus should not be regarded de�nitive, even if they do give a feel for what
inversions are capable of achieving.
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4. OBTAINING NEW STRUCTURAL KERNELS

4.1 General Introduction

The use of additional structural kernels besides those of the classical adiabatic squared
sound speed and density pair is not new. Indeed, in D. O. Gough and Kosovichev (1988),
such changes were advocated for using primary acoustic variables but also additional ther-
modynamical variables like the temperature or the hydrogen abundance, assuming a given
equation of state and thermal balance hypothesis. Inversions with the squared isothermal
sound speed, de�ned by u = P

ρ
or the Ledoux convective parameter, A = d lnρ

d lnr− 1
Γ1

d lnP
d lnr

1,

were already performed in the early 1990’s (see D. O. Gough and Kosovichev (1993a),
D. O. Gough and Kosovichev (1993b), D. O. Gough and Kosovichev (1988)). While these
inversions were indeed successfull in helioseismology, their application to asteroseismic
targets was not straightforward. However, it was already clear that being able to change
the thermodynamical variables of the integrals in the variational expression could lead to
potentially more suitable variables, therefore making it easier to probe stellar structure
with seismic data. In these studies, the method of conjugated function was used, but its
development had been undertaken in the framework of helioseismology. Therefore, it
could not be implemented as such for asteroseismic inversions.

In this chapter, we present two methods suitable for changing the thermodynamical
variables of the variational integral relations. We test the new kernels thanks to variational
expressions and demonstrate the possibility for non-linearities to appear in certain
structural pairs. These results have been published in Astronomy and Astrophysics under
the reference Buldgen, D. R. Reese, and M. A. Dupret (2017) and the following section is a
reproduction of this publication.

1This quantity is also called the Ledoux discriminant in some publications. Moreover, the de�nition we
have adopted here, which is based on the manual of the Liège Oscillation Code (LOSC) written by R. Scu�aire,
appears to be unfortunately the exact opposite of what can be found in the publications referenced in this
manuscript.
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4.2 Analysis of the linear approximation of seismic inversions for various struc-
tural pairs

4.2.1 Introduction

Asteroseismology is now considered the golden path to the study of stellar structure. This
young research �eld bene�ts from high quality data for a large sample of stars stemming
from the successes of the CoRoT, Kepler, and K2 missions (Baglin et al. (2009), Borucki
et al. (2010), Chaplin, Lund, et al. (2015)). More speci�cally, the detection of solar-like
oscillations in a large sample of stars now allows a more accurate study of stellar structure.
In the future, the Tess and Plato missions (Rauer et al. (2014)) will carry on what is now
called the space-photometry revolution.

Historically, the successes of asteroseismology were preceded by the successes of
helioseismology, the study of solar pulsations. Indeed, the quality of seismic data of the
Sun is still far beyond what is achievable for other stars, even in the era of the space
missions. In the particular �eld of helioseismology, numerous methods were developed
to obtain constraints on the solar structure. Amongst them, inversion techniques led to
the successful determination of the position of the base of the convective envelope, the
helium abundance in this region, and the rotational pro�le of the Sun (Schou, Antia, et al.
(1998)). The determination of the sound speed and density pro�les also demonstrated the
importance of microscopic di�usion for solar models (e.g. Basu and Antia (2008)).

In the context of asteroseismology, the use of these inversion techniques can now
be considered for a limited number of targets under the conditions of validity of all the
hypotheses hiding behind the basic equations de�ning their applicability domain. The
most constraining of these hypotheses is to assume a linear relation between frequency
di�erences and structural di�erences. In this section, we propose to analyse in depth
the issues surrounding the linearity of these relations for various structural pairs and
more speci�cally for kernels of the convective parameter. To that extent, we derive
new structural kernels for the convective parameter and helium abundance and compare
their linear behaviour to other, pre-existing kernels. Di�erences in the veri�cation of
the linearity of the frequency-structure relation mean that care should be taken when
combining seismic diagnostics of various kernels, even in the solar case. Di�erences can
stem from the intrinsic non-linear behaviour of the structural variables considered, but
can also be the results of inaccuracies in terms of numerical quality of the models and/or
kernels.

4.2.2 The variational principle and linear frequency-structure equations

The variational principle is a well-known property of adiabatic stellar oscillation equa-
tions. In fact, it can be extended to more general objects than stars and generalised
beyond the classical case presented in helio- and asteroseismology. The history of the
variational principle can be traced back to stability analysis in structural mechanics, but
its application in seismology stems from the pioneering work of Chandrasekhar (1964)
and the generalisation of his study by other authors the following years (Clement (1964),
Lynden-Bell and Ostriker (1967)).

Far beyond the historical interest of the discovery of this mathematical property, the
hypotheses that lay behind this principle are still important since they are at the heart of
intrinsic limitations of the frequency-structure relation. From the mathematical point of
view, the variational principle is a consequence of the symmetry of the operator associated
with adiabatic stellar pulsations. Mathematically, this means that given two functions ~ξ
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and ~ψ and D the operator associated with adiabatic oscillations, we have the property

< ξ ,D(ψ)>=< ψ,D(ξ )>, (4.1)

where <,> denotes the scalar product associated with the functional space de�ned as

<~ξ , ~ψ >=
∫

V
ρ~ξ .~ψ∗dV, (4.2)

with the symbol ∗ denoting the complex conjugate. The absence of symmetry in the
non-adiabatic case is the reason why all inversions are carried out using the hypothesis
of adiabaticity of stellar oscillations.

Moreover, the hypothesis of linearity of the frequency-structure relations is a strong
restriction to the validity of seismic inversions and in this section we brie�y discuss how
this hypothesis in�uences structural diagnostics from inversion techniques. The relation
between perturbations of the frequencies and small perturbations of the stellar structure
can be obtained by perturbing the variational expression of the pulsation frequencies.
The symmetry of the stellar pulsation operator is then used to eliminate perturbations of
the eigenfunctions in the resultant expression. Other e�ects such as perturbations of the
eigenfunctions associated with each pulsation frequency can be neglected to �rst order.
This implies that a direct relation can be obtained between structural di�erences and
pulsation frequencies only. This relation is formally written:

δν =
<~ξ ,δD(~ξ )>

<~ξ ,~ξ >
, (4.3)

with δν the perturbation of an oscillation frequency, δD the associated perturbation to
the operator of adiabatic oscillations. The eigenfunctions ~ξ and the unperturbed operator
D are known and de�ned from the reference model.

In practice, Eq. (4.3) implies that small di�erences in frequencies can be used to analyse
the associated di�erences in the operator of adiabatic pulsations. The main problem is the
scalar product which implies integral relations and thus an ill-posed problem. However,
it should be noted that the validity of the variational expression is limited, since we are
speaking of small perturbations, the term “small” being misleading because it is o�en
retroactively de�ned. In other words, perturbations are small because the variational
expression is satis�ed, but the quanti�cation of how small a perturbation can be and if all
variables can be similarly perturbed remains uncertain.

The classical equation for inversion techniques is the result of further developments
introduced in the variational expression, assuming spherical symmetry of the star, and
carrying out integration by parts and permutation of integrals. This ends leading to
the following formally simple equation (see D. O. Gough and Thompson (1991) for a full
demonstration of this expression and its hypotheses.):

δνn,`

νn,` =
∫ R

0
Kn,`

ρ,c2

δρ

ρ
dr+

∫ R

0
Kn,`

c2,ρ

δc2

c2 dr+O(δ 2), (4.4)

with the following de�nition:

δx
x

=
xobs− xre f

xre f
. (4.5)

The quantity x can be the oscillation frequency of a particular mode, νn,`, the density,
ρ , the squared adiabatic sound speed, c2, or other quantities for which kernels can be
derived.
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First of all, we note that to this expression is usually added the surface e�ects term,
which is an empirical correction that is added to Eq. (4.4) to take into account the improper
modelling of surface layers in the computation of oscillation frequencies of stellar models.
In this study, we do not consider this surface term since we will only compare theoretical
models and the validity of the linear approximation for various test cases between these
models.

In terms of seismic diagnostic, the linear hypothesis puts strong restrictions on the
applicability of inversion techniques. In fact, in some regions of the Hertzsprung-Russell
diagram, it seems obvious that di�erences in frequencies may not be linearly related to
structural changes. For example, in evolved stars, changes in the mixed modes frequencies
will have strong impact on the coupling of the p and g mode cavities. Thus a small change
in frequency will imply a strong change in the eigenfunctions. In this particular case, the
second order terms neglected in the variational analysis may well become dominant and
have to be modelled to e�ciently use kernel based inversions as a seismic diagnostic.

For the case of p modes observed in solar-like stars, one could say that provided
the model is good enough, the linear approximation may be used. However, the linear
approximation as presented is usually for a slow-rotating, non-magnetic, isolated star2.
The problem is not to carry out the inversion, since that can be done provided a su�cient
number of frequencies is available, but to decide whether the inverted results can be
trusted. The errors due to linearity are intrinsically not seen by the inversion technique.
However, it is still possible to witness their e�ects on inversion results and indirectly
assess the quality of the reference model. To do so, one simply has to start from various
reference models and analyse the variation of the results with the model. This simple and
straightforward method is well-adapted to global optimisation techniques which generate
a large sample of models. However, this does not mean that using a large number of
models, one can go beyond the linear approximation of the variational principle, it only
implies that one can analyse the errors coming from the non-linear e�ects and decide
whether the results should be trusted or not.

An other important aspect of asteroseismic inversions which has been reported by
Basu (2003) and described in Buldgen, D. R. Reese, and M. A. Dupret (2015) is that the
inversion scales its results implicitly. This scaling stems from the assumption that integral
relations are de�ned on the same domain for the reference model as for the observed
target. In other words, if we de�ne RRe f , the radius of the reference model and RTar, the
radius of the observed target, the inversion will wrongly consider that both radii are
equal. However, since the inversion uses seismic information, the mean density of the
observed target is known. Consequently, the mass of the scaled target, denoted here
M̃Tar, which is studied by the inversion is M̃Tar = R3

Re f ρ̄Tar, with ρ̄Tar the mean density of
the observed target. This means that structural quantities such as the squared sound
speed, or indicators de�ned by integrated quantities, are not determined for the observed
target itself, but for the scaled one and are related to the observed quantities through an
homology. While this does not reduce the diagnostic potential of inversion techniques, it
should of course be taken into account when comparing results inverted from various
reference models.

4.2.3 Changing the structural pair

The calculation of new kernels is particularly interesting in the context of asteroseismology,
where the change of structural variables can signi�cantly improve the ability to �t a

2By isolated, we mean that it is not in a close binary system where the gravitational in�uence of the
neighbouring companion would change the geometry of the star and its oscillation modes
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certain target while reducing the contribution from the so-called “cross-term”. Additional
kernels have also been used in helioseismology to test the equation of state used in solar
models and to try to determine the helium abundance in the convective envelope. In this
section, we present two methods to derive additional structural kernels from Eq. 4.4 and
discuss in more details their implementation and respective strengths and weaknesses.

Direct method

We call this approach direct because it consists in a direct change of variables within
Eq. 4.4 (or any similar relation), from which a linear di�erential equation is derived (This
equation can be of the �rst, second or third order depending on the variables involved).
The resolution of this equation allows us to determine new kernels, provided the proper
boundary conditions are applied.

In practice, this method gives access to any function of ρ , c2, Γ1 or their integrals
(e.g. hydrostatic pressure, P or the gravitational acceleration, g), or combinations of these
variables (e.g. the squared isothermal sound speed, u = P

ρ
)3. However, it should be noted

that this method does not give access to any function of the derivative of the density
without further integration by parts when deriving the di�erential equation. The kernels
that can be obtained through the direct method are listed in Table 4.1. We mention that
this list contains only kernels for which the equations have been derived, but one could
be interested to de�ne new thermodynamical variables and to obtain kernels for these
new variables.

Table 4.1: Summary of the properties of the di�erential equations for various structural
pairs with the direct method.

Pair Order of o.d.e. Integration by parts
ρ,Γ1 (or Y ) 0-algebraic No
g,Γ1 (or Y ) 1 No
P,Γ1 (or Y ) 2 No

c2,Γ1 (or Y ) 2 No
u,Γ1 (or Y ) 2 No
A,Γ1 (or Y ) 3 Yes

N2,c2 3 Yes

This method has been partially presented in a previous paper Buldgen, D. R. Reese,
and M. A. Dupret (2015) and referred to as Masters’ method, because it was developed as an
extension of an approach presented in Masters (1979) for geophysical applications that was
mentioned in D. O. Gough and Thompson (1991) as a potential method for obtaining kernels
for the Brunt-Väisälä frequency4. Originally, Masters’ approach proposed to solve directly
the integral relations between structural kernels used in geophysics. In asteroseismology,
the method could have been similar. First, we start with Eq. 4.4 and consider for example
the change from the (ρ,c2) structural pair to the (g,c2) structural pair, where g is the
gravitational acceleration and is written:

g =
Gm(r)

r2 , (4.6)

3More generally, this function could be written f (ρ,P,g,Γ1) or f (ρ,P,g,Y ) with any f that can be written
in terms of linear perturbations of these quantities.

4We describe how this can be done in appendix 4.2.6
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with m(r) the mass of stellar material contained in a sphere of radius r and being de�ned:

m(r) =
∫ r

0
4π r̃2

ρdr̃. (4.7)

If we consider the linear relative perturbation of the gravity acceleration, we obtain:

δg
g

=
Gδm

r2

Gm
r2

=
δm
m

=
1
m

∫ r

0
4π r̃2

δρdr̃. (4.8)

This expression can be used directly in the integral relations for the structural kernels.
Indeed, if kernels of the pair (g,c2) can be found, they must satisfy the following relation:

δνn,`

νn,` =
∫ R

0
Kn,`

g,c2

δg
g

dr+
∫ R

0
Kn,`

c2,g
δc2

c2 dr

=
∫ R

0
Kn,`

ρ,c2

δρ

ρ
dr+

∫ R

0
Kn,`

c2,ρ

δc2

c2 dr. (4.9)

From the second equality, we have the integral relation that we searched. One has only to
introduce the perturbation of the gravitational acceleration and permute the integrals such
that the perturbation of density is in the outermost integral. From there it is easy to obtain
a simple relation between kernels. Indeed, Eq. 4.9 must be satis�ed for any perturbation
within the linear regime, since the kernels must be dependent on the reference model
only. We then obtain simple relations for each kernel:

Kn,`
c2,g = Kn,`

c2,ρ
(4.10)

4πr2
ρ

∫ R

r

Kn,`
g,c2

m
= Kn,`

ρ,c2 . (4.11)

The proposition of Masters (1979) was to solve directly this integral relation, which can be
done using, for example, an iterative relaxation method to solve the integral equation. In
practice, we favour a more e�cient approach by deriving a di�erential equation for these
kernels, simply by taking the derivative of Eq. 4.11 a�er having divided it by r2ρ . We then
obtain the following very simple di�erential equation:

−m
d
dr

Kn,`
ρ,c2

ρr2

= Kn,`
g,c2 , (4.12)

Since this equation is extremely simple, the kernels are straightforward to obtain. However,
this development was just for the sake of illustration and a good example of the di�culties
associated with this method is illustrated in appendix 4.2.6.

A more elaborated case, which has already been involved in practical applications is
that of the (u,Γ1) and (u,Y ) kernels. These kernels are obtained by solving a second order
di�erential equation which is recalled here:

−y
d2K

′

(dy)2 +

[
2πy3/2ρ̃

m̃
−3

]
dK

′

dy
=y

d2K

(dy)2 −

[
2πy3/2ρ̃

m̃
−3+

m̃ρ̃

2y1/2P̃

]
dK

dy

+

[
m̃ρ̃

4yP̃2

dP̃
dx
− m̃

4yP̃
dρ̃

dx
− 3

4y1/2P̃
dP̃
dx
− m̃ρ̃

2y3/2P̃

]
K ,

(4.13)
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with K =
Kn,`

u,Γ1
r2ρ

and K
′
=

Kn,`
ρ,Γ1
r2ρ

in the case of the di�erential equation of the (u,Γ1) kernels

or with with K =
Kn,`

u,Y
r2ρ

and K
′
=

Kn,`
ρ,Y

r2ρ
for the equation of the (u,Y ) kernels. Furthermore,

in Eq. 4.13, one has the following de�nitions: x = r
R , y = x2, m̃ = m

M , ρ̃ = R3ρ

M , P̃ = R4P
GM . We

also recall here that using kernels such as the (ρ,Y ) or the (u,Y ) kernels requires to
introduce the equation of state by using the following de�nition:

δΓ1

Γ1
=

(
∂ lnΓ1

∂ lnP

)
Z,Y,ρ

δP
P

+

(
∂ lnΓ1

∂ lnρ

)
Z,Y,P

δρ

ρ
+

(
∂ lnΓ1

∂Y

)
Z,P,ρ

δY

+

(
∂ lnΓ1

∂Z

)
Y,P,ρ

δZ. (4.14)

Two hypotheses are made when using helium kernels. First, one assumes that the equation
of state of the reference model and that of the target model are the same. Secondly, one
usually drops the last term in δZ of Eq. (4.14). This is o�en considered to be a benign
hypothesis and we will review its impact for various kernels in section 4.2.4.

The problem of this method is that, when deriving the di�erential equation for the
kernels, one may be faced with discontinuous terms within the equation coe�cients.
These discontinuities are due to the e�ects of the transition from radiative regions to
convectives regions and have to be treated correctly if one does not wish to introduce
numerical errors in the resolution. Typically, these discontinuities appear when taking
�rst or second derivatives of the density (or any quantity related to the density through
an algebraic relation). For example, the second derivative of the adiabatic squared sound
speed, c2 shows a discontinuity at the base of the convective envelope. This also means
that the di�erential equation must be solved on separated domains and that continuity
conditions have to be applied for each sub-domain. These conditions typically serve as
constraints to solve the di�erential equations of structural kernels. For example, for the
(u,Γ1) and (u,Y ) kernels, the resolution of the second order di�erential equation uses one
central boundary condition that is derived from the di�erential equation itself and one
“boundary” condition that stems from the integral equation. Namely, one assumes that the
kernels have to satisfy their integral equation at some point of the sub-domain. For the
next sub-domain, a continuity relation on the kernels is derived, since they have to be
continuous for continuous variables, and the integral relation is again used to obtain an
additional condition for the sub-domain.

In practice, the use of the integral relation for the additional condition is not trivial,
since sometimes one can be confronted with integrals of the layers above the layer
on which one wishes to solve the di�erential equation5. The problem is even more
complicated when facing separated domains. Thus, one has to �nd a workaround based on
the linearity of the problem and ends up solving a system of two di�erential equations on
each sub-domain, where the equations are simultaneously connected through continuity
relations and integral equations. With a little algebra, this can be done using a simple
direct solver and �nite di�erence discretisation (In our case, we used the prescriptions of
D. R. Reese (2013) for the grid on which the equation is solved). This leads in practice to
a good accuracy in the results when care is taken in the computation of the derivatives
of the coe�cients and of the already known kernels. Indeed, these derivatives can be a
source of signi�cant numerical noise when calculated on a reference model of poor quality
or when the eigenfunctions have been computed with a poor accuracy.

5Thus the arguments of the integral are unknown.
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Method of conjugated functions - Application to the A-Y kernels
The method of conjugated functions is quite di�erent from what is done in the direct
method, although the starting point is still the equality of two variational expressions for
di�erent structural variables. This method was presented for the �rst time in a paper
by Elliott (1996) in the context of helioseismology and a more thorough presentation of
the method can be found in Kosovichev (1999). In this section, we recall the basis of the
method and apply it to the derivation of new kernels associated with the (A,Y ) structural
pair.

The quantity A is called the convective parameter and is closely related to the Brunt-
Väisälä frequency. It is de�ned as follows:

A =
d lnρ

d lnr
− 1

Γ1

d lnP
d lnr

(4.15)

This quantity has the convenient property to be zero in adiabatically strati�ed convective
regions. It is also very sensitive to changes in depth of the base of the convective zone
and changes in upper regions of convective envelopes. The problem we will de�ne is
thus related to determining the change of structural variables from (ρ,Y ) kernels to the
(A,Y ) kernels. The (ρ,Y ) pair is a convenient starting point but one could choose other
starting variables. Thus, our goal is to �nd the functions Kn,`

A,Y and Kn,`
Y,A for a given stellar

model such that for two models that are su�ciently close to each other, we have:

δνn,`

νn,` =
∫ R

0
Kn,`

ρ,Y
δρ

ρ
dr+

∫ R

0
Kn,`

Y,ρδY dr

=
∫ R

0
Kn,`

A,Y δAdr+
∫ R

0
Kn,`

Y,AδY dr. (4.16)

First, we have to relate the linear perturbation of A to the other structural variables.
In the approach of conjugated functions, one starts by de�ning a system of di�erential
equations between the model perturbations, where one wishes to relate the di�erent
perturbed structural quantities found in the starting and �nal integral relations. In this
particular case, one has a system of 3 di�erential equations that relates all the quantities
together. This system is written:

r
d
dr

(
δρ

ρ

)
= δA+

Gm
rc2

∂ lnΓ1

∂Y
|P,ρδY +

Gm
c2r

[
∂ lnΓ1

∂ lnP
|ρ,Y +1

]
δP
P

,

+
Gm
c2r

[
∂ lnΓ1

∂ lnρ
|P,Y −1

]
δρ

ρ
− Gm

rc2
δm
m

, (4.17)

r
d
dr

(
δm
m

)
=

4πr3ρ

m

(
δρ

ρ
− δm

m

)
, (4.18)

r
d
dr

(
δP
P

)
=

Gmρ

rP

[
δP
P
− δρ

ρ
− δm

m

]
. (4.19)

As we will show in this section, the method of conjugated functions uses equations
closely related to the system presented above. A major advantage is that this approach leads
to a system with simple coe�cients, for which the problem of numerical derivatives will
not be as important as for the direct method. However, this method uses more hypotheses
than the direct method and is consequently less well-suited for asteroseismology. Typically,
the problem stems from the boundary conditions that are used to close the system and
select a unique solution. For the surface boundary conditions, we have to assume that
the mass of the observed target is the same as the mass of the reference model. At �rst,
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we thought that only the mean density was required to be �tted to ensure a veri�cation
of the variational expression but we will see how we were mistaken in the next section.
Indeed, it can be argued that kernels for structural pairs such as the (A,Γ1) pair or the
(A,Y ) pair will never o�er a good accuracy in the asteroseismic case as will be illustrated
in section 4.2.4.

The goal of the method of conjugated functions is to determine the unknown tridimen-
sional vector ~v = (v1,v2,v3), which is a conjugated function linked to the structural kernels
(see Eq. 4.33), solution of the following system (related to the system of equations 4.17 to
4.19):

−r
d~v
dr
−~v = A T~v+C T~K1, (4.20)

where we have used the following de�nitions:

A =


Gm
rc2

[
∂ lnΓ1
∂ lnρ
|P,Y −1

]
−Gm

rc2
Gm
rc2

[
∂ lnΓ1
∂ lnP |ρ,Y +1

]
4πr3ρ

m −4πr3ρ

m 0
−Gmρ

rP
−Gmρ

rP
Gmρ

rP

 , (4.21)

~K1 = (Kn,`
ρ,Y ,K

n,`
Y,ρ), (4.22)

C =

(
1 0 0
0 0 0

)
. (4.23)

We also introduce the following de�nitions:

~x =


δρ

ρ

δm
m

δP
P

 , ~s1 =

(
δρ

ρ

δY

)
, ~s2 =

(
δA
δY

)
, (4.24)

B =

1 Gm
rc2

∂ lnΓ1
∂Y |P,ρ

0 0
0 0

 , (4.25)

~K2 = (Kn,`
A,Y ,K

n,`
Y,A), (4.26)

D =

(
0 0
0 1

)
. (4.27)

We use the following boundary conditions for r = 0:

3ṽ1(0)+3ṽ2(0) =−
Kn,`

ρ,Y

r2ρ
(0), (4.28)

ṽ3(0) = 0, (4.29)

with ṽi =
vi

r2ρ
. Using ṽi as variables for the system is motivated by the central limit of the

structural kernels, such as Kn,`
ρ,Y , which goes as O(r2) in central regions. These boundary

conditions can be obtained from the limit as r goes to 0 of Eq. 4.20 itself similarly to
what is presented in Unno et al. (1989) for the pulsation equations. The last boundary
condition of equation 4.20, at r = R is de�ned as follows:

δρ

ρ
(R)v1(R)+

δm
m

(R)v2(R)+
δP
P

(R)v3(R) = 0, (4.30)
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and results from the elimination of surface term in the integration by parts in Eq. 4.39
which can be changed using l’Hospital’s theorem to avoid having to de�ne δP

P (R) with the
equation of hydrostatic pressure, thus considering both P(R) and δP(R) to be 0:

δρ

ρ
(R)v1(R)+

δm
m

(R)v2(R)+
(

δρ

ρ
(R)+

δm
m

(R)
)

v3(R) = 0. (4.31)

The main problem with this equation is that both the δm and δρ terms are unknown,
it is thus impossible to derive a simple boundary conditions and the components of ~v
without an additional hypothesis. In helioseismology, one states that the mass of the
observed target is known and one ends up with a simple equation only with δρ . One
then simpli�es the δρ term and ends up with the following simple relation:

v1(R)+ v3(R) = 0. (4.32)

This problem is intrinsic to the method of conjugated functions since one de�nes the
boundary conditions of the system using an expression containing structural perturbations.

Using these de�nitions, it can be proven that if ~v is the solution to this problem, then
the structural kernels Kn,`

A,Y and Kn,`
Y,A, for each perturbation of the model de�ned by ~x and

~s2, can be determined using the following relations:

Kn,`
A,Y = v1, (4.33)

Kn,`
Y,A = Kn,`

Y,ρ +Kn,`
A,Y

Gm
rc2

∂ lnΓ1

∂Y
|ρ,P, (4.34)

To demonstrate this property, let us �rst rewrite the system of equations 4.17 to 4.19 in its
vector form using the de�nitions we have just introduced:

r
d~x
dr

= A~x+B~s2, (4.35)

One can also write a trivial matrix relation between vectors ~s1 and ~s2:

~s1 = C~x+D~s2, (4.36)

We now apply the scalar product of Eq. 4.35 and Eq. 4.36 with ~v, de�ning the scalar
product on the functional space as:

< a,b >=
∫ R

0
a(r)b(r)dr, (4.37)

which is done in this case for each component of ~v and ~x. We then obtain:

<~v,r
d~x
dr

>=<~v,A~x >+<~v,B~s2 >, (4.38)

−< r
d~v
dr

+~v,~x >+[r~v.~x]R0 =<~v,A~x >+<~v,B~s2 >, (4.39)

where we have applied an integration by parts and thus obtained a di�erential equation
for ~v. If one considers both equations 4.39 and 4.20, we obtain:

< ~K1,C~x >=<~v,B~s2 >, (4.40)
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The new kernels can then be determined using:

< ~K2,~s2 >=< ~K1,C~x >+< ~K1,D~s2 > (4.41)

=<~v,B~s2 >+< ~K1,D~s2 >, (4.42)

where we have used Eq. 4.40. If we develop the scalar products, we obtain the following
integral relations:∫ R

0
Kn,`

A,Y δAdr+
∫ R

0
Kn,`

Y,AδY dr =
∫ R

0
v1(δA+

Gm
rc2

∂ lnΓ1

∂Y
|P,ρδY )dr

+
∫ R

0
Kn,`

Y,ρδY dr. (4.43)

From these relations, we directly obtain the relations 4.33 and 4.34 and have thus
demonstrated that determining the vector ~v satisfying Eq. 4.20 allowed us to determine
the kernels of the (A,Y ) structural pair.

However, a few comments must be made on Eq. 4.31 since it leads to a strong limitation
in the use of the method of conjugated functions. As previously stated, the boundary
conditions applied are that the mass of the observed target and the reference model are
the same. In asteroseismology, this is not necessarily the case. When using this method
for other kernels, we could avoid this limitation by using the relation δm

m = δ ρ̄

ρ̄
if the

radius is �xed. Ultimately, one ends up with the same implicit scaling presented before for
the direct method. It is a considerable advantage of the direct method that it does not
explicitly uses any hypothesis on the mass of the observed target.

In this particular case, scaling the perturbations is impossible since the quantities δA
and δY are adimensional and not expressed as relative perturbations, obviously because
δA
A would be undetermined when A goes to zero for the reference model. Consequently,
the trick of the implicit scaling cannot be used and we are limited by the accuracy of radii
determinations for asteroseismic targets.

However, even with scaled models, the problem can still be present for the helium
integrals. Indeed, for the density or the sound speed, the link is quickly done since these
variables are explicitly part of what is called the acoustic structure of the stellar model
and are directly linked to the oscillation frequencies. The question is more di�cult when
one thinks about the helium mass fraction. The problem is to link the helium mass fraction
pro�le of the scaled target model to the helium pro�le of the real target. As such, there is
no clear link between both pro�les and helium cannot be directly related to the dynamical
time since it is not an explicit variable of the acoustic structure. Therefore, caution as to
be taken when determining helium abundances from inversion techniques when there is
no strong constraints on the radius6.

We illustrate the (A,Y ) kernels in Fig. 4.1 for various degrees and radial orders. It
should be noted that the kernels associated with the convective parameter A of the (A,Γ1)
structural pair are quite similar to the kernels associated with A for the (A,Y ) structural
pair and could thus be used to carry out inversions of similar indicators without the
need to introduce the equation of state in the problem. The main problem is then to
cope with the high amplitude of the cross-term kernels but ultimately, the presence of
pairs of kernels with similar behaviours can be used to check the robustness of the
inversion for observed data since it should lead to similar results if the cross-term is
properly damped for both structural pairs. One additional striking feature of the (A,Y )

6As such the mass of the model would not be a problem if one considers that the mean density can be
very accurately determined using seismology. Thus, if one knows the radius accurately, an accurate estimate
of the mass can be determined provided good seismic data.
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Figure 4.1: Illustration of various kernels for the (A,Y ) structural pairs for various degrees
and radial orders.

structural pair is the high amplitude of the helium kernels when compared to those of
the convective parameter. It is pretty unusual since as was already noticed for the (ρ,Y )
structural pairs and con�rmed for other structural kernels we derived, the helium kernels
tend to have very low amplitudes and are thus very well adapted as cross-terms of
inversions7. This makes these kernels very interesting for inversions of helium abundance
using appropriated indicators in the solar case, where the data is abundant and the radius
of the observed target is very well constrained and used to build the standard solar model
used as a reference for the inversion. In terms of numerical quality, the veri�cation of the
initial system of di�erential equations is done up to relative di�erences of the order of
10−14 on the average. Typically the resolution is more accurate (10−16 or less) in central
regions and less accurate at the surface (10−13). It should be noted that the numerical
quality of the results is naturally still subject to the number of points of the models and
the variables and unknowns considered in the system of equations.

4.2.4 Numerical experiments

In this section, we describe a few numerical experiments carried out to analyse the
importance of various hypotheses used to compute structural kernels. All models were
computed using the Clés stellar evolution code (Scu�aire, Théado, et al. (2008)) with the
following ingredients: the CEFF equation of state (Christensen-Dalsgaard and Daeppen
(1992)), the OPAL opacities from Iglesias and Rogers (1996), supplemented at low temperature
by the opacities of Ferguson et al. (2005) and the e�ects of conductivity from Potekhin
et al. (1999) and Cassisi et al. (2007). The nuclear reaction rates are those from the NACRE
project (Angulo et al. (1999)), supplemented by the updated reaction rate from Formicola
et al. (2004) and convection was implemented using the classical, local mixing-length
theory (Böhm-Vitense (1958)). We also used the implementation of microscopic di�usion
from Thoul, Bahcall, and Loeb (1994), for which three groups of elements are considered and
treated separately: hydrogen, helium and the metals (all considered to have di�usion speeds

7Although errors on the equation of state can be non-negligible at the levels of accuracy of helioseismology.
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of 56Fe). The oscillation frequencies and eigenfunctions were computed using the Liège
adiabatic oscillation code (Scu�aire, Montalbán, et al. (2008)). We took much care to analyse
the numerical quality of the eigenfunctions and the models before computing structural
kernels. Irregularities and poor quality of the computed eigenfunctions can bias the results
and lead to wrong structural kernels and thus wrong inferences from inverted results.
From our experience in hare-and-hounds exercises and inversions, we have determined
that adding seismic constraints to the model is very e�cient at bringing the reference
model into the linear regime thus validating the inversion process. In other words, �tting
the average large and small frequency separations is already a big improvement in terms
of linearity, although individual seismic constraints, such as individual frequency ratios
and individual small frequency separations are the best way to maximise the chances of
being in the linear regime. Individual large frequency separations can also be used, but
due to their sensitivity to surface e�ects, they should not be used in observed cases. As
such, since in this study we did not use very elaborate seismic �tting techniques, our
tests serve the only purpose of isolating various contributions to the errors and to test
various hypotheses usually done when carrying out structural inversions in the context
of helio- and asteroseismology.

We started by computing 4 target models with di�erent physical ingredients summarised
in Table 4.2. Among these e�ects, we tested opacity changes, changes in the equation of
state, the impact of the metallicity, the impact of individual abundance tables along with
changes of typical parameters used for seismic �ts such as the mixing-length parameter,
αMLT and the hydrogen abundance. For each target, we computed reference models with
the same mass and similar physical ingredients. To ensure that both target models and
reference models had the same radius, we used a minimisation algorithm to �t the mean
density of the target model varying the age of the reference model. In other words, since
on the main sequence the radius is changed due to slight core contraction and envelope
expansion, we could ensure with this simple method a straightforward �t of all targets. Of
course, this approach is limited. For instance, a model which includes e�cient microscopic
di�usion or a completely di�erent chemical composition will not be strongly constrained
by the �t of the mean density and thus will surely not be lying in the linear regime. This
should be kept in mind throughout this section since it is not what is done in typical
seismic studies where all the available information is used. The veri�cation of the linear

Table 4.2: Physical ingredients of the target models used for the hare-and-hounds exercises.
Target Model 1 Target Model 2 Target Model 3 Target Model 4

Mass (M�) 1.0 1.0 1.0 1.0
Radius (R�) 1.0712 1.0822 1.0394 1.0770
Age (Gyr) 5.0 5.0 5.0 4.5

EOS CEFF OPAL CEFF OPAL
Abundances GN93 GN93 AGSS09 AGSS09

X0 0.7 0.7 0.7 0.67
X0 0.015 0.015 0.015 0.02

αMLT 1.7 1.7 1.7 1.7
Mixing − − − Settling+turbulent di�usion

relations between frequencies and structural pro�les is demonstrated by plotting the
relative di�erences between the right-hand side and le�-hand side of the linear integral
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relations, denoted E n,`
s1,s2 de�ned as follows:

E n,`
s1,s2

=

δνn,`

νn,` −
(∫ R

0 Kn,`
s1,s2

δ s1
s1

dr+
∫ R

0 Kn,`
s2,s1

δ s2
s2

dr
)

δνn,`

νn,`

(4.44)

with s1 and s2 being any of the structural variables for which structural kernels can be
obtained. Using this approach o�ers a straightforward method to compare the validity
of the linear relations for each kernel and each mode, pointing out possible weaknesses
and inaccuracies. For each comparison, we used the modes with `= 0, 1, 2 and 3 and n
between 6 and 41.

Limits of the linear regime
First of all, we illustrate in Figure 4.2 the veri�cation of the linear relations between
frequency di�erences and structural di�erences for various structural pairs for target 1 and
two reference models, with slightly di�erent αMLT and X0 values. The model associated
with the le� panel has αMLT = 1.5 and X0 = 0.69, whereas the model used as a reference
for the right panel has αMLT = 1.9 and X0 = 0.715. We can also see that all structural pairs
do not satisfy the linear relations to within the same accuracy. Typically, kernels for the
convective parameter A can be problematic, especially kernels of the (A,Y ) structural pair.
This can mean that all perturbations of the quantities may not be in the linear regime,
and that for some kernels, second order terms should be considered. Ultimately this
can be the case for variables other than the convective parameter and the (A,Y ) kernels
can sometimes satisfy the linear relations whilst the (ρ,c2) kernels do not. Two other
problems of hare-and-hounds exercises using various kernels have to be mentioned: �rst,
the insu�cient numerical quality of the model and of the eigenfunction themselves; second,
the changes of the parameters of the models can sometimes be inappropriate to test these
relations and thus, inversion techniques. This means that we are intrinsically limited in
our tests for robustness of inversions and that to some extent, other approaches could be
sought to fully constrain the limitations of inversions in the context of asteroseismology.
The �rst point is quite straightforward and linked to various problems that can be found
in stellar evolution codes. For example, the quality of numerical derivatives, which is a
function of both the derivation scheme that is used and the quality of the grid on which
the model or the eigenfunction is computed. Another highly underestimated error is the
�nite accuracy with which a stellar evolutionary model satis�es hydrostatic equilibrium.
In other words, the intrinsic consistency of thermodynamical quantities used to describe
the acoustic structure of the model must be checked. To these two sources of errors, we
must add the possible di�erences stemming from intrinsic methods used to compute the
models in various stellar evolutionary codes.

Intrinsic non-linearity is a recurring problem when using the frequency structure
relations. In �gure 4.3, we illustrate the arguments of the structural integrals from the
(ρ,c2) pair and (A,Y ) pair. The ρ and c2 arguments have very regular patterns naturally
more concentrated towards the surface regions due to the higher amplitude of the kernels.
Similarly, the amplitude of the Y contribution in the lower right panel is only important
in the surface regions. Although smaller than the other contributions, this helium integral
is a factor 2 larger than the helium integral from the (ρ,Y ) structural pair. As we will
see later, this has important implications for the limitations of the linear regime with
the (A,Y ) kernels. In the lower-le� panel of Fig. 4.3, we can see that the A term is
much more important in the surface regions, with a small contribution coming from the
base of the convective envelope. This means that in practice, this structural pair might
well be very sensitive to surface e�ects. From the numerical point of view, this means
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Figure 4.2: Le� panel: veri�cation of the linear integral relations between structure and
frequencies for target 1 and a model with αMLT = 1.5 and X0 = 0.69. Right panel: same as
le� panel but for a model with αMLT = 1.9 and X0 = 0.715. We clearly see that di�erent
structural pairs do not satisfy the linear relations to within the same accuracy. Each curve
corresponds to a given ` of the modes.

that to use the (A,Y ) or (A,Γ1) pair, a very good quality of the grid as well as of the
structure equations in the uppermost regions of the model is necessary to avoid important
numerical uncertainties. We emphasise here that being able to build the (ρ,c2) pair to
within a good accuracy does not mean that numerical errors remain small when building
new kernels from the existing ones. This is particularly true for the (A,Y ) and (A,Γ1)
kernels but can also be seen for other pairs.

Another extreme is the case where the perturbation of certain thermodynamic quan-
tities can be considered small and thus within the linear regime while other cannot. In
this case, certain linear relations might be valid while others are not. The case can be
illustrated with kernels related to helium. Let us take two models, with the same mass,
radius, chemical composition and mixing-length parameter. In one of the models, we
include microscopic di�usion but not with its full intensity by multiplying the di�usion
speeds by a factor D smaller than one (here for example, we chose 0.5). The surface
helium abundance has signi�cantly changed. We see a di�erence in mass fraction of the
order of 0.025, in other words, nearly 10%. It is obvious that the changes cannot be
considered small and it is then no surprise to see that these models are within the linear
regime for the (A,Γ1) kernels but not the (A,Y ) kernels. Again this means that caution is
required when changing the structural pair in an inversion process and that usually, the
validity of the linear regime can be assessed by using di�erent reference models to carry
out the inversion with one structural pair. Ultimately, if the inversion result, let us say,
changes signi�cantly with the structural pair that is used, then there is a problem with
the inversion process. In the case of the Y kernels, the problem can also arise due to the
assumption that the equation of state is known, since it is used to derive the kernels. In
these test cases, we always used the same equation of state for both target and reference
model, except when it is speci�cally mentioned as in the other test cases below.
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However, even when the equation of state is the same, we noticed that Eq. 4.17 is not
always perfectly satis�ed. If the same equation is written for the (A,Γ1) kernels, then the
agreement is improved, meaning that some of the errors seen for the (A,Y ) kernels can be
attributed to the veri�cation of Eq. 4.14. This hypothesis has been tested and we clearly
saw a disagreement between the le�-hand side and the right-hand side of equation 4.14.
This disagreement did not seem to arise from numerical uncertainties but rather from the
intrinsic non-linearity of the equation, due for example to shi�s in the ionisation zones
that were not reproduced by the linear expansion with derivatives of Γ1. Knowing this, it
thus seems perfectly normal to see a stronger non-linear behaviour for the (A,Y ) kernels
since they have a much higher helium contribution than other kernels. This of course
implies limitations on direct helium determinations from kernel inversions and requires
further investigation.
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Figure 4.3: Arguments of the integrals of the linear relations between frequency and
structure. ρ argument (upper le�) and c2 argument (upper right) from the (ρ,c2) pair.
A argument (lower le�) and Y argument (lower right) from the (A,Y ) pair. Each curve
corresponds to a given ` of the modes.

E�ects of metallicity
The e�ect of metallicity are extremely important to quantify since they are o�en neglected
when trying to assess the helium abundance. Using a few models, we review the impact
of small changes of metallicity on the veri�cation of the linear relations. This impact is
illustrated in �gure 4.4. An important point to mention is that in asteroseismic observed
cases, the metallicity is calculated through the spectroscopic observations of [Fe/H]. One
then uses the Sun as a reference but it should be emphasised that there is no agreement
to this day on the solar metallicity and that this uncertainty as such has an impact on
linear relations, especially when using Y related kernels.

In �gure 4.4, we can disentangle the impact of metallicity, since on the le�-hand plot,
both the target and reference models have the same Z, whereas on the right-hand plot,
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we changed the metallicity by 0.002. Of course, since the models do not have the same
age, some changes can be seen due to intrinsic di�erences in the models, but it is still
striking to see that the di�erence in Z can have an impact in some contexts, which is in
contradiction with what was previously believed. The case of the high frequency range of
the (A,Y ) kernel is a very good illustration of how this can be a problem. However, we
note that other kernels, such as the (A,Γ1) pair were a�ected by the changes in metallicity,
but not as much, so the intrinsic di�erences coming from Z is at least a few per cent.
From inspection of the behaviour of the (ρ,Γ1) pair, we can say that the di�erences for the
(ρ,Y ) pair also stem from intrinsic di�erences and not only from the term in δZ neglected
in Eq. 4.14. This means that metallicity can be extremely important for some �tting
processes in terms of the validity of the linear structural relations due to the intrinsic
di�erences that can be generated between the target and reference models.

We also plotted in purple the veri�cation of the linear relations for a model with a
metallicity change of 0.001. We can see that the errors are divided by approximatively a
factor 2. This means that the e�ect of the metallicity is rather global and goes beyond
the neglect of the additional term in Eq. 4.14. This is further con�rmed by the impact of
the metallicity on the (A,Γ1) structural pair, where the δZ contribution is not explicitely
involved. Figure 4.4 also shows that the (ρ,c2) kernels are not a�ected by metallicity
changes, as expected, thus leaving their diagnostic potential unaltered.

0 1000 2000 3000 4000 5000
−0.2

−0.1

0

0.1

0.2

0.3

Frequency ν (µHz)

R
el
a
ti
v
e
E
rr
o
r
E

0 1000 2000 3000 4000 5000
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency ν (µHz)

R
el
a
ti
v
e
E
rr
o
r
E

Eρ,c2

Eρ,Y
EA,Y
E∗

A,Y

Figure 4.4: Le� panel: Veri�cation of the linear integral relation for a reference model
which has the same metallicity as target 1. Right panel: e�ects of a 0.002 shi� to the
metallicity on the veri�cation of the linear integral relations. The e�ects of a 0.001 shi�
to the metallicity for the (A,Y ) kernels only is shown in purple and referenced with a ∗.
Each curve corresponds to a given ` of the modes.

E�ects of the equation of state
In �gure 4.5, we illustrate the same plot as �gure 4.4, but changing the equation of state
of the target model to the OPAL equation of state (Rogers and Nayfonov (2002)). The
reference models are built with the CEFF equation of state which is used to compute the
derivatives of Γ1 and derive consistent variational expressions. Figure 4.5 thus illustrates
the impact that not knowing the equation of state of the target has on the veri�cation of
the linear structural relations. While there is some impact, it is not as large as expected.

Of course this does not mean in any case that the equation of state is not important
for the linear integral relations used in inversions, but when compared to the impact of
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metallicity, it seems that in this case Z has a larger impact. This is not to be generalised
but means that we have to be careful with the approximations made and perhaps, in
the case of the solar metallicity problem, both the uncertainties on metallicity and the
equation of state have to be taken into account. One point worth mentionning about this
test case is that both the CEFF and the OPAL equations of state are very similar for solar
conditions, so the small impact is a result of similarities between theoretical equations
of state and might not be representative of the di�erences between the true equation of
state in the Sun and one of the theoretical ones.
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Figure 4.5: Le� panel: Veri�cation of the linear integral relation for a reference model
which has the same equation of state as target 1. Right panel: e�ects of a change from
the CEFF equation of state on the OPAL equation of state to the veri�cation of the linear
integral relations. Each curve corresponds to a given ` of the modes.

E�ects of abundances and radii inaccuracies

To test the impact of microphysics, we computed the target model with the AGSS09
(Asplund, Grevesse, Sauval, and Scott (2009)) heavy elements mixture and the same
metallicity as the reference model, computed with the GN93 abundances (Grevesse and
Noels (1993)). Indeed, this changes signi�cantly the thermodynamic quantities inside the
star and a�ects signi�cantly the opacity. As such, this test can be seen as one way to
demonstrate that microphysics also has a large impact on the veri�cation of the linear
integral relation used to carry out inversions. From the right hand side panel of Fig. 4.6, we
can see that all the kernels are a�ected by the microphysics. The e�ects are mostly seen
for the (ρ,c2), (ρ,Γ1) and (ρ,Y ) pairs, but the good results of the other pairs are likely due
to chance since all pro�les have been signi�cantly a�ected by the modi�ed microphysics.
The problem of the radius �t that was discussed in section 4.2.3 is illustrated on the le�
side panel of �gure 4.6. The tendency is clearly seen since introducing progressively an
error on the mean density produces an important error on the veri�cation of the linear
relations. The problem would be similar if one would consider the mean density to be
known within an excellent accuracy but the mass to be unknown. In such case, a small
error on the mass introduces an error of the order of R3 thus an even larger departure
from the linear integral relation. The problem is intrinsically due to the adimensional
nature of A, meaning that it cannot be scaled to take into account our ignorance of the
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Figure 4.6: Le� panel: e�ect of mismatches in radii between the reference and target
models. The relative values of the mismatches are respectively 10−4 for the blue dots,
103 for the magenta dots and 3×10−3 for the red dots. Right panel: e�ects of changes in
the abundances of heavy elements for di�erent structural pairs. Each curve corresponds
to a given ` of the modes.

mass or radius of the target. Indeed, this e�ect is not seen for any kernel computed with
the direct method if the proper scaling is applied to the structural variables. This leads to
intrinsic limitations of the application of the (A,Γ1) and (A,Y ) kernels in asteroseismology.
The problem may not be solved in this case by changing the �tting method since �tting
seismic constraints may not always ensure a good �t of the radius of the observed target.
Ultimately, these kernels are only limited to the very best asteroseismic targets for which
excellent interferometric measures of the radii are available.

E�ects of extra-mixing

The extra-mixing term is very common in stellar physics. It is used to introduce additional
hydrodynamical processes not taken into account in standard stellar models. The problem
of lithium abundances is a good illustration that some extra-mixing is actually taking
place in real stars. Thus, it seems perfectly normal to ask the question whether the
non-inclusion of additional mixing processes could a�ect the veri�cation of linear integral
relation between frequencies and structural quantities. The answer to this question is
illustrated in Fig. 4.7. To carry out this test case, we used target model 4 which includes
turbulent di�usion in addition to microscopic di�usion. To test the robustness of the linear
relations, we used reference models for which turbulent di�usion had been inhibited. For
example, in the le� panel of Fig. 4.7, the reference model had a slightly higher helium
of 0.005 abundance and a less e�cient turbulent di�usion. The veri�cation of the linear
relations is still good, but it seems that the (A,Γ1) and the (ρ,Γ1) structural pairs are
strongly a�ected by the neglect of extra-mixing. This statement is con�rmed when
looking at the right panel of Fig. 4.7 for which the reference model has a nearly constant
extra-mixing throughout all layers of the model. The (ρ,c2) and (u,Γ1) kernels seem not
to be too much a�ected by extra-mixing. In general, the impact of extra-mixing is much
reduced for the models we tested here. This statement, of course, only applies for physical
conditions similar to solar and for the �tting process we use in these numerical tests. This
does not mean that the problem could not reappear for models with convective cores,
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for which extra mixing could change signi�cantly the evolutionary path and the acoustic
structure.
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Figure 4.7: E�ect of extra mixing on the veri�cation of linear structural relations for both
models. The le� panel is associated with a model with a slightly inhibited extra-mixing
intensity, whereas the right panel has a nearly constant extra-mixing throughout the
model layers, but with an even smaller intensity. Each curve corresponds to a given ` of
the modes.

4.2.5 Conclusion

In this section, we analysed the veri�cation of the linear integral relations between frequency
and structural quantities frequently used in helioseismology for various structural pairs.
In Sect. 4.2.3 and Sect. 4.2.3, we presented the two methods to change the structural
variables in the linear integral relations. The direct method we present in this section
has the advantage of being more general than the method of conjugated functions, which
explicitly uses the same radius for the observed target and the reference model. Although
this is implied in the direct method, it is not used as a pre-requisite in the derivation
of the equations leading to the kernels. Moreover, it has been shown that it is possible
circumvent the problem by re-scaling the information provided by the inversion (see
Buldgen, D. R. Reese, and M. A. Dupret (2015) or Basu (2003) for a discussion of this
problem). In that sense, the method we propose o�ers a good alternative that is applicable
in the asteroseismic case. However, we have also shown that the method we propose
leads to somewhat complicated coe�cients which can be di�cult to derive if the numerical
quality of the model is not ensured.

Furthermore, in Sect. 4.2.3, we showed how the conjugated functions approach could
be used to derive (A,Y ) kernels. These kernels have the particularity of showing a very
high sensitivity to the chemical composition since they are the only structural kernels for
which the helium kernels have a higher amplitude than those associated with the secondary
variable of the structural pair. This property is extremely important in the context of
structural inversions since the amplitude of helium kernels was the main motivation
behind their use as a cross-term in helioseismology but also their main handicap for
direct kernel-based inferences of the helium pro�le using classical inversion techniques
such as the SOLA or the RLS method. However, by no means would these inversions be
independent of the equation of state since it is introduced in the very equations leading
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to the (A,Y ) kernels.
In Sect. 4.2.4, we presented various experiments showing the intrinsic limitations in

the linear regime of structural pairs. These limitations can be due to numerical inaccuracies
or to the intrinsic non-linear behaviour of di�erent variables. The most striking example
is that of helium, for which extra-mixing can change signi�cantly the local abundance
while hardly changing the sound speed or density pro�le. In that sense, the numerical
experiments we presented, although intrinsically limited, show that changing the structural
pair in the integral relations is not o�en innocent, especially at the verge of non-linearity8.

In addition, we analysed the importance of various structural changes, such as the
impact of metallicity changes. We showed that small changes of metallicity could a�ect
signi�cantly the linear structural relations, especially for the (A,Y ) structural pair. However,
we stress here that the linear behaviour of the integral relations is strongly dependent on
the �tting process. This emphasises again that in the asteroseismic case, all information
available should be used to ensure the veri�cation of the linear structural relations.

In addition to the e�ect of metallicity, we also analysed the impact of the equation
of state on the integral relations. Surprisingly, we �nd them to be less important than
previously stated and even less important in some cases than the metallicity e�ects on the
veri�cation of the linear relations. This could have an impact on the potential of inversion
techniques in the solar case. Changing the equation of state has little impact, and may be
the result of a bias from the �tting process we used or it may be due to the similarity
under solar conditions of most equations of state.

We also analysed the importance of radius constraints and constraints on the micro-
physics by changing the heavy elements mixture. The test case on the radius inaccuracies
shows the importance of this additional constraint for kernels derived with the method of
conjugated functions, whereas the kernels derived with the direct method are found to be
more robust if the proper scaling is applied when analysing the inversion results. However,
we also emphasise that adimensional variables, like A or Y , cannot be rescaled. The test
case on the heavy elements mixture showed the important sensitivity to microphysics
in stellar models. As such, the reference and target models were quite di�erent and it
is not surprising that linear structural relations are strongly a�ected. However, from
our experience in seismic modelling, we know that these di�erences can be reduced by
introducing additional constraints. Ultimately, models with di�erent abundances can be
very similar in terms of thermodynamical quantities due to compensations.

Finally, we also analysed the importance of additional mixing acting during the evolution
of the target model. We found that for solar conditions, additional extra-mixing processes
could change slightly the veri�cation of the linear relations, but that these changes were
not as signi�cant as those obtained from inaccuracies in metallicity, for example. We stress
that this analysis should be extended to other parts of the HR diagram, where extra-mixing
can have a more signi�cant impact on the acoustic structure of stellar models, and thus
on the veri�cation of the linear relations between frequencies and structure.

To conclude, the advent of the space photometry era and the quality of data provided
by past and upcoming space missions will allow us to use new seismic approaches
to extract e�ciently seismic information. However, it is still important to provide a
theoretical framework for these methods, to test their limitations and to determine what
additional information (spectroscopic, interferometric, ...) or methodological improvement
are necessary to enable the use of seismic inversions in asteroseismology. As such, this
study only gives answers to limited theoretical questions and is only one step towards
the improvement of our use of seismic information.

8Which may well be the case in the context of asteroseismic inversions.
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4.2.6 Appendix: Convective parameter kernels from the direct method

As stated in the core of this section, kernels for the structural pair (A,Y ) or (A,Γ1) can be
also obtained from the direct method. We give a few steps in the derivation of the third
order di�erential equation that leads to these kernels and discuss a few problems regarding
its numerical resolution. The �rst step is to introduce the helium and A perturbations in
the linear integral equation.
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Then, we have to use the de�nition of hydrostatic pressure and mass and permute the
integrals. We can already notice that the term with the derivative of density will be
problematic and will require an integration by parts.
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The �rst term of this equation is exactly zero for r = 0. However, it is not for r = R and it
is a strong hypothesis to consider that the surface relative density di�erences are exactly
zero. Nevertheless, it is the only way to obtain an equation for the (A,Y ) kernels with
the direct method. The problem is exactly the same for the (N2,c2) kernels which can be
easily derived but will also face the same problem due to the density derivative. Moreover,
one could argue that the contribution of the surface term is negligible when compared to
the integrals and that this term has no impact on the �nal result of the kernels9. This
simpli�cation could also be seen as a boundary condition, stating that the kernels we
are searching for have to be exactly 0 at the surface boundary. Ultimately, a�er a few
additional algebraic operations, we obtain a third order di�erential equation that we write

9This could be done by analysing how accurate Eq. 4.46 is without the additional term.
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with the following additional de�nitions:
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Now the central boundary conditions are found using additional transformations. Typically,
we solve the equation using r2 as the independent variable for radial position. Taking
the limit of the di�erential equation when r2 goes to 0 and simplifying leads to simple
central boundary conditions. Surface conditions are found by stating that Eq. 4.46 has
to be satis�ed and that the kernels must be 0 at the surface. One must also take care
of the discontinuous coe�cients, meaning that, again, the system must be solved in the
radiative and convective regions independently and reconnected using proper continuity
conditions. We face the same problem as for the (u,Y ) or (u,Γ1) kernels but can use
the same algebraic manipulation to solve the system. Ultimately, we have to solve three
discretised equations on two di�erent domains (six systems in total) and reconnect those
solutions. Now in addition to the numerical cost of such manipulations, we can see in
Eq. 4.47 third derivatives of the density and second derivatives of the A1 function. From
numerical experiments not presented here, we have seen that these coe�cients contain
numerical noise due to the quality of the reference model. The noise can be reduced by
increasing the quality of the model and of the �nite di�erence scheme, but smoothing is
still necessary to a certain extent. The concern with the smoothing process is that it
could in some pathological cases change signi�cantly the form of the kernels. In conclusion,
despite the applicability of the method to the (A,Y ) kernels and the fact that it uses
di�erent hypotheses to obtain structural kernels, we state that for the (A,Y ) kernels, the
direct method is not well suited in large scale automated studies. Moreover, due to the
intrinsic problems of inversions with the adimensional variables mentioned before and
the di�culties in determining accurate radii, the (A,Y ) pair might well be restricted to
solar inversions for which the conjugated functions method is perfectly valid and should
be preferred since it leads to simpler equations.
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4.3 General Conclusion

The developments presented in this chapter are crucial for both helio- and asteroseismology.
As we will see in the next chapter, as well as in Part III of this thesis, they are necessary
to fully exploit the capabilities of in depth astero- and helioseismic investigations. This
chapter only gave a hint of the technical aspects of the methods and of the di�culties linked
to its implementation. The development of inversion techniques for more evolved targets
will likely require further improvements of the numerical techniques used in InversionKit
for the kernel calculations. Also, investigations into more e�cient kernel formulations
for g-modes should be carried out to extend the applicability domain of asteroseismic
inversions.

In practice, gravity modes have already been used in Takata and Montgomery (2002)
for a white dwarf, implying that such inversions are achievable. However, it should be
noted that a localised inversion will likely be di�cult since it required 116 individual
frequencies to achieve a full pro�le inversion in the hare-and-hounds exercises in Takata
and Montgomery (2002). Moreover, they did not consider uncertainties in the fundamental
parameters of the target, which would have dominated the inversion of the convective
parameter.

In conclusion, while the methods presented here are very general, a full assessment of
the linearity domain of g-modes should be done. This is crucial to determine whether
the variational formulation can be used in its linear form with the current observational
constraints or whether non-linear approaches should be favoured. In that sense, it appears
that the method of Roxburgh and Vorontsov (I. W. Roxburgh (2010)) would intrinsically be
more robust, although it could be up against convergence problems and lead to multiple
solutions (I. W. Roxburgh (2015b)).
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5.1 General introduction

The following sections encompass the papers related to the development of inversion
techniques of integrated quantities in the context of asteroseismology. The motivation
behind the derivation of such indicators was to attempt to improve the use of the seismic
information contained in Kepler and CoRoT data. Indeed, despite the quality of the data,
it appeared that the number of individual frequencies and the absence of high degree
modes made full structural pro�le inversions impossible with the classical, linear methods
applied in helioseismology, with the exception of a few corrections in u for the very best
asteroseismic targets.

Initially, the goal of these developments was to determine the mass of a star using
seismic inversion techniques. It quickly became clear that the mass could not be determined
by inversions but that the mean density could be obtained by such methods. These
initial developments led to the paper of D. R. Reese, Marques, et al. (2012) and laid the
foundations of the studies presented here. The �rst objective of the inversion of integrated
quantities is to provide an additional selection process to models built using a forward
modelling approach, thus improving the constraints on their internal structure. A very
important aspect of this selection process is that the inversion of indicators focusses very
e�ciently all the information on one particular aspect of the pro�le of a given quantity,
while corrections obtained using Gaussian targets might sometimes simply show that
the target and the model agree, simply because the target function of the inversion is
suboptimal.

Besides providing these additional constraints to stellar models, inversions of integrated
quantities also raise the question of the independent amount of information provided by
seismic observations. Indeed, the �rst physical quantity determining the frequency values
is the mean density. In addition to this trend, glitches can be used to analyse potential
sharp transitions in the stellar structure and some independent information is also present
in the frequency ratios, such as the r02 or the r01, which are o�en used as constraints in
forward modelling techniques.
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However, there is no current way to properly assess the exact amount of independent
information that can be derived using asteroseismology. In a way, indicator inversions can
give us some basis to start studying this problem since redundancy between indicators
and degeneracies in the way each quantity behaves when changes are applied to the
models can point towards the limitations of the seismic data provided by the space
photometry missions. Knowing these limitations is crucial, �rst of of all, to overcome
them, but also to avoid overestimating the capabilities of stellar seismology which in a
long term perspective, would be harmful for the �eld.

In section 5.2, we present the results of inversions of the �rst indicators developed
during this thesis, namely the acoustic radius, denoted τ , an evolutionary stage indicator,
denoted t and further tests of mean density inversions. These results were published
in Astronomy and Astrophysics under the reference Buldgen, D. R. Reese, M. A. Dupret,
and Samadi (2015). Tests were carried out to determine the robustness of the inversions
towards modelling mismatches and surface e�ects such as non-adiabatic e�ects in the
frequency values of the target or the impact of turbulent pressure in the upper convective
envelope. While these inversions are successful and seem to indicate some robustness
of the method, it does not mean that further investigations should not be carried out.
Indeed, additional studies using patched models with three-dimensional atmospheres have
shown that surface e�ects can, as expected, strongly a�ect the inversion results.

Section 5.3 presents the development and hare-and-hounds exercises associated
with an indicator of internal mixing processes, chemical composition and consequently
evolutionary stage, denoted tu, which have been published in Astronomy and Astrophysics
under the reference Buldgen, D. R. Reese, and M. A. Dupret (2015). This indicator was the
�rst fully custom-made seismic indicator for which the derivation of the kernels and the
building of the target function were motivated by structural considerations. The main
goal was to provide an alternative to the t indicator, which could be determined only for
low-mass young main-sequence stars without a convective core. The tu indicator was
proven to be very e�cient at determining mismatches in chemical composition and mixing
that would lead to changes in the deep regions. Hare-and-hounds exercises have shown
that �tting the frequency ratios de�ned in I. W. Roxburgh and S. V. Vorontsov (2003)
allowed for a better agreement with tu but that the inverted indicator would be slightly
more sensitive to structural di�erences between target and model in some cases.

In section 5.4, we present the results associated with indicators specialised in analysing
convective regions of stellar structure. Both indicators showed promising results in
hare-and-hounds exercises and could potentially be applied to all Kepler LEGACY targets.
The main limitations of this method are the validity of the linear approximation for more
massive models and the impact of surface e�ects on the determination of these indicators.
These developments are described in an article currently submitted to Astronomy and
Astrophysics.

5.2 Stellar acoustic radii, mean densities, and ages from seismic inversion tech-
niques

5.2.1 Introduction

Determining stellar global characteristics such as mass, radius, or age as accurately as
possible is crucial for understanding stellar evolution, determining properties of exoplane-
tary systems, or characterising stellar populations in the galaxy. Although these quantities
can be estimated using classical observations, such as photometry and spectroscopy, or in
special cases such as binary systems, signi�cant progress has only been made in recent
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years with the advent of high-precision asteroseismology missions, namely CoRoT and
Kepler. Indeed, these missions are providing a wealth of data of unprecedented quality
for large numbers of stars. Hence, it is crucial to develop techniques that are able to
determine global stellar parameters from pulsation data as accurately as possible and
with the least computational e�ort (see Chaplin and Miglio (2013) for a review on this topic).

Estimating stellar ages is the most problematic case since there is no direct obser-
vational method to measure this quantity. Therefore, it has to be estimated by relating the
evolutionary stage empirically to some phenomena like rotation, activity, lithium depletion,
or by using model-dependent methods like isochrone placements (see Soderblom (2010)
for an extensive review of age determination methods). Currently, the most promising
method to determine stellar ages is carrying out asteroseismic modelling of stars. These
ages are estimated to be ∼ 10% accurate in the best cases (Soderblom (2010)).

Many of the techniques used for exploiting stellar pulsation data are variants of grid
or parameter search methods. On one end of the spectrum, there are simple methods
that estimate global stellar parameters, such as the mass and radius, through empirical
scaling relations based on seismic indicators such as the large frequency separation and
frequency at maximum power. Search methods using a dense grid of models, calculated
once and for all, can also be used to �nd optimal models for a whole set of observed
stars. However, it is clear that this method can only handle a limited number of free
parameters when describing the models. On the other end of the spectrum, there are
sophisticated search methods such as genetic algorithms (Charpinet et al. (2008), Metcalfe,
Monteiro, et al. (2010)) or MCMC methods (Bazot, Bourguignon, and Christensen-Dalsgaard
(2012)) that are able to deal with much larger multi-dimensional parameter spaces thanks
to an optimised search strategy. These methods will typically calculate stellar models
as needed, which make them considerably slower than scaling relations or simple grid
search methods, thereby limiting the number of observed stars that can be treated this
way. A common point in these search methods is their reliance on stellar models, which
unfortunately do not fully represent the physical complexity of the phenomena taking
place in stars. Hence, these inaccuracies can lead to biases in the results and to persistent
di�erences between the model and observed frequencies. Therefore, there is currently a
need for less model-dependent methods that are applicable to a large number of stars, and
are able to characterise, as accurately as possible, the global parameters and evolutionary
stage of a star.

In this context, seismic inversion techniques become particularly interesting since they are
able to invert the di�erences between observed and theoretical frequencies and translate
them into appropriate structural corrections on the models. In that sense, these tech-
niques overcome the limitations imposed by the set of physical ingredients used for the
construction of the models. Therefore, they allow us to obtain more detailed information
on the stellar structure as well as insights into new physical phenomena that need to
be included in the models. For instance, helioseismic inversions have provided detailed
solar rotation pro�les, which were di�erent from theoretical predictions, and have shown
that the solution to the lacking solar neutrino problem should come from improving
neutrino physics rather than revising the solar structure. In contrast to the solar case,
asteroseismic space missions cannot resolve the objects they observe and hence are
limited to low-degree modes. As a result, it is di�cult to obtain reliable inversions of full
structural pro�les for stars other than the Sun. A useful alternative is to invert for global
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stellar properties. Recently, D. R. Reese, Marques, et al. (2012) showed how this could
be done for the mean density of a star. This approach represents an important step of
progress compared to using typical seismic indices for two reasons. Firstly, it can provide
custom-made global quantities that are directly related to the stellar structure rather than
to the pulsation spectra of the stars. Secondly, the associated averaging kernels that are
obtained as a by-product give useful indications on the accuracy of the result.

In the current section, we wish to extend this approach to other stellar quantities,
namely the acoustic radius and an age indicator based on the integral of the sound speed
derivative. These characteristics are not chosen fortuitously. Indeed, they allow us to
compare our inversion results with those obtained by current asteroseismic proxies, the
large frequency separation, and the small frequency separation (Vandakurov (1967), Tassoul
(1980)). The outline of the section will be as follows. We will de�ne our general approach
to the speci�c inverse problem of global characteristics in Sect. 5.2.2. Section 5.2.3 will
show how this methodology applies to the acoustic radius and age indicator. Sections
5.2.4 and 5.2.5 will present inversion results for di�erent tests cases. In Sect. 5.2.4, we
use the model grid of D. R. Reese, Marques, et al. (2012), chosen without any optimisation
process1, to carry out a �rst series of tests and conclude that an optimization process
is necessary to choose the appropriate reference model for each inversion. We present
this type of method in Sect. 5.2.5 and test it in di�erent cases that include: changes
to the metallicity, modi�cations to the mixing length parameter, non-adiabatic e�ects in
the frequencies, and the e�ects of turbulent pressure. These test cases are chosen to
illustrate current limitations and uncertainties in stellar modelling i.e. the uncertainties
in the convection treatment, here mimicked by a mixing-length coe�cient mismatch; the
uncertainties in chemical composition, mimicked by a metallicity changes; the intrinsic
non-adiabaticity of stellar oscillations and the unknown surface e�ects such as turbulent
pressure. Each test case is carried out separately to isolate any e�ects that the inversion
could not correct. We show that using inversion techniques on a appropriate reference
model can improve the accuracy with which global stellar characteristics are determined
in that it provides accurate results in all these cases. Section 5.2.6 summarises our results
and discusses the strengths and weaknesses of the method.

5.2.2 General approach
Inverse problems and ways of solving them

As stated in the introduction, we seek to establish a new framework for linear inversion
techniques that allows us to determine stellar global characteristics. As for any inversion
carried out, our method needs a reference model, an observed star and their respective
oscillation frequencies. The reference model has to be close enough to the observational
target so that the relation between their relative frequency di�erences and their structure
di�erences can be deduced from the variational principle. This leads to the following
typical linear form:

δνn,`

νn,`
=
∫ 1

0
Kn,`

s1,s2

δ s1

s1
dx+

∫ 1

0
Kn,`

s2,s1

δ s2

s2
dx+

G (ν)

Qn,`
, (5.1)

where s1 and s2 are structural variables like ρ0, Γ1, c2, u0 = P0/ρ0, etc. As we will see
in the next section, choosing the right couple of variables for the right inversion is not
always straightforward. The function G (ν) is an ad-hoc correction for the surface term

1See D. R. Reese, Marques, et al. (2012) Section 6 for further details on this particular point
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assumed to be a slowly varying function depending only on the frequency. It is usually
expressed as a sum of Legendre polynomials and normalised by the factor Qn,`, which
is the mode inertia normalised by the inertia of a radial mode interpolated to the same
frequency (Christensen-Dalsgaard (1986)). The functions Kn,`

si,s j are the inversion kernels,
derived from the reference model and its eigenmodes (D. O. Gough and Thompson (1991)).
The behaviour of the kernels is critical to ensure a successful linear inversion, especially
when working with asteroseismic targets where the number of frequencies is rather small
compared to helioseismic inversions.

The symbol δ s/s denotes the relative di�erence between the value of s for the ref-
erence model and the target at a given x = r

R . We use the classical de�nition of the relative
di�erences between target and model:

δ s
s

=
sobs− sref

sref
. (5.2)

Other de�nitions were sometimes used in the past for helioseismic inversions (see Antia
and Basu (1994b)), but these de�nitions were not used in this study.

It is well known that the inversion problem is ill-posed and that the quality of the
inversion (in terms of accuracy but also of reliability) depends critically on the quantity
and the accuracy of available data. Therefore, in the asteroseismic context, inversions of
structural pro�les such as the density, the sound speed, or even the helium abundances
are out of reach for linear inversion techniques. However, we can still compromise and
search for global quantities.

The Substractive Optimally Localised Averages (SOLA) inversion method (Pijpers and
Thompson (1994)) naturally lends itself to obtaining global quantities. When using SOLA,
we build a linear combination of the inversion kernels that matches a pre-de�ned target. In
other words, we wish to determine the values of the coe�cients of the linear combination
of frequency di�erences that will give us information about one global characteristic of the
observed target. Using Eq. (5.1), we can de�ne a target T , which can be any function of
x = r

R . For example, let us assume we wish to determine the value of a global characteristic
Aobs the relative perturbation of which is de�ned by

δAobs

A
=
∫ 1

0
T (x)

δ s1

s1
dx+

∫ 1

0
Tcross(x)

δ s2

s2
dx. (5.3)

Assuming that Eq. (5.1) is satis�ed for our model and our target, we wish to build the
linear combination of frequency di�erences such that

∑
i

ci
δνi

νi
=
∫ 1

0
T (x)

δ s1

s1
dx+

∫ 1

0
Tcross(x)

δ s2

s2
dx

=
δAobs

A
. (5.4)

This is of course an ideal scenario. For real inversions, the result is more likely to be an
estimate δAinv/A, which is expressed as follows:

δAinv

A
=
∫ 1

0
Kavg(x)

δ s1

s1
dx+

∫ 1

0
Kcross(x)

δ s2

s2
dx+∑

i
ci

G (νi)

Qi
. (5.5)
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The functions Kavg(x) and Kcross(x) are the so-called averaging and cross-term kernels and
the third term accounts for surface e�ects. The averaging and cross-term kernels are
directly related to the structural kernels of Eq. (5.1) by the inversion coe�cients

Kavg(x) = ∑
i

ciKi
s1,s2

(x), (5.6)

Kcross(x) = ∑
i

ciKi
s2,s1

(x). (5.7)

Thus, in order for the inversion to be accurate, these kernels need to be as close as
possible to their respective target functions. One should note that the cross-term kernel
will always be present in an inversion result, as a direct consequence of Eq. (5.1). If A is
only related to s1, the function Tcross is simply 0. In this particular case, the contribution
of the integral of s2 in Eq. (5.1) has to be eliminated. When using the SOLA method, we
build a cost function (see Backus and Gilbert (1967) for the original de�nition of the OLA
cost function and its analysis in the context of geophysics)

JA =
∫ 1

0

[
Kavg(x)−T (x)

]2 dx+β

∫ 1

0
[Kcross(x)−Tcross(x)]

2 dx+ tan(θ)∑
i
(ciσi)

2

+λ

[
∑

i
ci− f

]
+

Msurf

∑
m=1

am ∑
i

ci
ψm(νi)

Qi
. (5.8)

There can be three to �ve terms in the cost function, depending on whether or not a
supplementary constraint and/or surface corrections are included. The �rst two terms are
responsible for making the averaging and the cross-term kernels match their respective
targets T and Tcross. The third term of the cost function de�nes the trade-o� between
reducing the measurement error bars on the result and improving the match to the
target functions. One usually talks of the magni�cation of the measurement errors. The
fourth term is a supplementary constraint on the inversion, usually a unimodularity
constraint in the classical SOLA approach. In the following section, we will follow the
prescriptions of D. R. Reese, Marques, et al. (2012) and use a constraint on the sum of the
inversion coe�cients. The parameters β and θ are trade-o� parameters that regulate the
balance between di�erent terms in the inversion, and λ is a Lagrange multiplier. Since the
parameters β and θ are free, one can adjust them to modify the results of the inversion,
but great care has to be taken since they can lead to non-physical results. Finally, the ��h
term corrects surface e�ects in the inversion.

Because of the form of Eq. (5.5), one has to be careful of the sources of errors on
the inverted solution. When the real value of Aobs is known (for example in theoretical
analysis), one can nearly always �nd a set of free parameters so that Ainv will be equal
to Aobs. However, one cannot use the same set of parameters for another inversion and
expect the same result. It is therefore necessary to introduce a criterion for which the
inversion can be considered as successful and reliable. In this study, we set the parameters
by testing several values and choosing the best compromise between reducing the errors
and matching the kernels to the target functions. However, the problem is far more
complicated since one should analyse how these parameters depend not only on the
modes used to carry out the inversion but also on the reference model for every integral
quantity. This problem will be discussed in further studies on larger samples to provide
relevant results.
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The error bars on the inversion result are deduced from the errors bars on the fre-
quency di�erences, where the errors on individual frequencies are considered to be
independent:

σδA/A =
√

∑
i

c2
i σ2

i , (5.9)

with σi = σ δνi
νi

. However, it is clear that Eq. (5.9) does not take other sources of errors

in the inversion into account, such as non-linear e�ects in the frequency di�erences,
the mismatch between the averaging or cross-term kernels and their respective target
functions, or the errors arising from neglected surface terms in the derivation of the
kernels themselves. In other words, the inversion is dependent on the mathematical
hypotheses leading to the variational principle (Lynden-Bell and Ostriker (1967)) and on
other additional simpli�cations leading to expression (5.1) (see D. O. Gough and Thompson
(1991)). In fact, Eq. (5.9) only takes into account the ampli�cation of the observational
errors, the so-called error magni�cation, but this is not representative of the accuracy of
the method since it does not include all sources of error.

In the test cases of Sect. 5.2.4 and 5.2.5, the error analysis was performed using
the di�erence between Eq. (5.4) and Eq. (5.5), following the method of D. R. Reese, Marques,
et al. (2012). This leads to the following equation:

δA−δAinv

A
=
∫ 1

0

(
T (x)−Kavg(x)

) δ s1

s1
dx+

∫ 1

0
(Tcross(x)−Kcross(x))

δ s2

s2
dx

−∑
i

ci
G (νi)

Qi
. (5.10)

The �rst integral is the error contribution originating from the error on the �t of the
target to the averaging kernel. We will write it σAvg. The second integral is the error
contribution originating from the error on the �t of the target to the cross-term kernel.
We will write it σCross. The third term originates from the surface e�ects. The above
equation does not take other sources of error into account, such as the non-linear e�ects
not taken into account in Eq. (5.1), numerical errors, or the neglected non-adiabatic e�ects.
In what follows, we will lump these errors together with the surface e�ects and call this
σRes i. e. the residual errors that are le� a�er having substracted σAvg and σCross from
the total error. Of course, σRes can only be obtained in theoretical test cases, where the
di�erences in structural pro�les are known beforehand and this speci�c contribution can
be isolated from the kernel contributions.

Accuracy and reliability of the solution
As discussed in the previous section, inversion techniques have to be used with care,
especially when modifying the values of the free parameters. First of all, it is necessary to
recall that linear inversion techniques are limited to targets, models, and oscillation modes
for which Eq. (5.1) is satis�ed to a su�cient accuracy. This means that the reference model
already has to be close to the target before the inversion can be computed. Therefore, we
propose making use of the forward modelling method before calculating global character-
istics with the inversion technique. For the present study, we used the Optimal Stellar
Model (OSM) so�ware developed by R. Samadi (Observatoire de Paris-Meudon) to compute
our reference models. We discuss the �tting process in Sect. 5.2.5 and present further
discussions in Sect. 5.2.6.
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Once the reference model is obtained to su�cient accuracy, one may carry out the
inversion. The free parameters β and θ of the SOLA method can be modi�ed to improve
the result. During this optimisation, the contributions from the matching of the averaging
kernel, the cross-term kernel, and the error magni�cation must be considered. In fact,
one has to compromise on the error contributions. One o�en talks about trade-o�
between precision and accuracy (see Pijpers and Thompson (1994) for a discussion on this
problematic in the context of the SOLA method). In some of our test cases, we see that
the error magni�cation can be quite important but on the other hand, having extremely
small error bars on an inaccurate result is also unacceptable.

5.2.3 Inversion procedure for acoustic radius and age indicator
De�nition of targets and motivations
As mentioned in the previous section, the �rst step is to de�ne the global characteristic
and its associated target. For this study, we work with the acoustic radius of the star,
denoted τ , and an age indicator, t, based on the integral of the derivative of the sound
speed appearing in the asymptotic limit of the small frequency separation. Therefore, the
global characteristics we wish to determine are:

τ =
∫ 1

0

dx
c
, (5.11)

t =
∫ 1

0

1
x

dc
dx

dx. (5.12)

The acoustic radius is sensitive to surface e�ects because of the 1/c factor, whereas the
age indicator is mostly sensitive to the central regions of the star. During the evolution
of the star, the mean molecular weight grows because of nuclear reactions, leading to a
local minimum in the sound speed pro�le. Therefore its derivative is very sensitive to the
intensity of this minimum and can be related to the age of the star. These targets are also
asymptotically related to the large and small frequency separation as follows (Vandakurov
(1967), Tassoul (1980)):

τ ' 1
2∆ν

, (5.13)

t ' −4π2νδ̃ν

(4`+6)∆ν
, (5.14)

where we use the symbol δ̃ ν to represent the small frequency separation to avoid con-
fusion with the frequency perturbation, δν . It is well known that Eq. (5.14) is not very
accurate for typical solar-like pulsators and that its agreement for models of the Sun in its
current evolutionary stage is in fact fortuitous (Christensen-Dalsgaard (1991)).

The average large frequency separation is currently the only way to estimate the acoustic
radius of a star. This quantity is expected to be sensitive to surface e�ects like convection
and can also be used to characterise structural changes that mimic the evolution of the
stellar radius, for example, its increase due to the contraction of the core during the evo-
lution of the star. Moreover, the average large separation is also combined with the small
frequency separation or other frequency combinations (see Christensen-Dalsgaard (1993a),
White, Bedding, et al. (2011)) to build asteroseismic H-R diagrams. The motivation behind
this approach is to estimate the mass and age of the star using seismic indicators that
provide nearly independent information. However, asteroseismic diagrams are intrisically
limited by two aspects: �rstly, the exact relation between frequency separations and the
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stellar structure is not trivial; secondly, there is only a limited number of di�erent frequency
combinations that can be used. In constrast, inversion techniques allow us to target the
structural characteristics of our choise based on their relation with stellar properties.
Thus, they o�er more speci�c constraints and potentially allow us to distinguish between
the di�erent contributions from micro- and macro-physics.

Target for the acoustic radius inversion
To de�ne the target function of the inversions, we have to calculate the �rst order relative
perturbation of these quantities. For the acoustic radius it is straightforward :

δτ

τ
=

1
τ

∫ 1

0

−1
c

δc
c

dx =
∫ 1

0

−1
2τc

δc2

c2 dx. (5.15)

This result means that the target function is

Tτ =
−1
2cτ

. (5.16)

Since in this case the perturbation of the acoustic radius is only related to the structural
variable c2, the contribution of the cross-term kernel has to be suppressed. However,
when using the perturbation of c2, and the couple ρ,c2 in Eq. (5.1), the cross-term will
involve the relative di�erence in density between the model and the target, potentially
leading to high pollution of the solution by the cross-term. It is possible to circumvent
this problem by using the structural couple ρ,Γ1. Indeed, the relative di�erences on Γ1
are expected to be small, thereby leading to a smaller cross-term. This can be done by
using the following equations:

δc2

c2 =
δΓ1

Γ1
+

δP
P
− δρ

ρ
, (5.17)

P(x) =
∫ 1

x

m(y)ρ
y2 dy, (5.18)

m(x) =
∫ x

0
4πx2

ρdx. (5.19)

Using these equations leads to new target functions de�ned on the ρ,Γ1 couple, where
we neglected the contribution of the turbulent pressure that is considered a surface e�ect:

Tτ,avg =
1

2cτ
− m(x)

x2 ρ

[∫ x

0

1
2cτP

dy
]
−4πx2

ρ

[∫ 1

x
(

ρ

y2

∫ y

0

1
2cτP

dt)
]

dy. (5.20)

Tτ,cross =
−1
2cτ

. (5.21)

These de�nitions can be used directly in Eq. (5.8). Furthermore, we optimise the inversion
by de�ning a supplementary constraint based on homologous relations and extending the
method to the non-linear regime, following the approach of D. R. Reese, Marques, et al.
(2012).

Supplementary constraint and non-linear extension for the acoustic radius
The idea behind the supplementary constraint is that the result of the inversion should
be exact for models that are homologous. In what follows, a procedure satisfying this
condition will be described as unbiased (not to be confused with the statistical meaning of
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the word.). To reach this goal, we make use of the knowledge that when using homology,
if the density of the model is scaled by a factor h2, the frequencies will scale as h. With
simple analysis of the de�nition of the acoustic radius, Eq. (5.11), we can see that it scales
as the inverse of the frequencies, 1/h. Therefore, to the �rst order, the relative variation
of the acoustic radius should be the opposite of the relative variation of the frequencies.
This means that if δν/ν = ε , then δτ/τ = −ε . Furthermore, we know that for linear
inversion techniques, the inverted correction is obtained from a linear combination of
relative frequency di�erences. Therefore, if the sum of the coe�cient is equal to −1, the
inverted correction will be exact for models in a homologous relation.

The non-linear extension is based on an iterative process involving successive scal-
ings of the model to reach an optimal point for which there is no further correction
with the inversion technique. We see a�er some development that this process can be
by-passed and that the solution can be obtained directly. However, to grasp the philosophy
of this extension, it is easier to see it �rst as an iterative process. First, we carry out an
inversion of the acoustic radius for a �rst reference model with a given τre f and obtain a
new estimate of the acoustic radius τinv,0. We now de�ne a scale factor q0 =

τinv0
τre f

, used to
scale the reference model, bringing it closer to the observed target. We can use this scaled
model as a reference model for which another inversion can be carried out. Indeed, the
frequencies have been scaled by the factor h0 =

1
q0

, and the relative di�erences between
the frequencies of the scaled reference model and those of the target are now given by:

νobs−h0νref

h0νref
=

1
h0

(
δν

ν
+1
)
−1, (5.22)

where νobs is the observed frequency and νref the frequency of the unscaled reference
model. Now for the jth iteration, the inverted acoustic radius can be expressed as follows:

τinv,j+1 =
τre f

h j

[
1+∑

i
ci

[
νobs,i−h jνref,i

h jνref,i

]]

=
τref

h j

[
1+∑

i
ci

[
1
h j
(
δνi

νi
+1)−1

]]

= τref

[
2
h j

+

[
1
h2

j

(
∑

i
ci

δνi

νi
−1

)]]
, (5.23)

where we have also used the fact that the sum of the inversion coe�cient is −1 for an
unbiased acoustic radius inversion. Now we also obtained that τinv, j+1 =

τre f
h j+1

, by de�nition
of our iterative process. Using this de�nition and rewriting Eq. (5.23) in function of q j and
q j+1, we obtain the following expression:

q j+1 = 2q j +q2
j

[
∑

i
ci

δνi

νi
−1

]
= f (q j). (5.24)

where we have introduced the function, f . If the above iterations converge, then the
limit, qopt, will be a �xed point of f , i.e. f (qopt) = qopt. Convergence is guaranteed over a
neighbourhood around qopt provided | f ′(qopt)|< 1. Given the simplicity of f , we choose
to bypass the iterative method by solving directly f (q) = q. There are two solutions. The
�rst is q = 0. However, it leads to an unphysical result, and would tend not to be the
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result of an iterative process since f
′
(0) = 2. The second solution is

qopt =
−1

∑i ci
νobs,i
νref,i

. (5.25)

Furthermore, it turns out that f
′
(qopt) = 0. Hence, had we applied an iterative method, the

convergence would have been quadratic. The associated acoustic radius is τinv = qoptτref.
However, one must be aware that the error bars given by Eq. (5.9) on the �nal result
are modi�ed as follows if we assume that σi� 1 and that the errors on the individual
frequencies are independent (see Appendix 5.2.7 for the demonstration of this formula):

στmin = q2
optτref

√
∑

i
c2

i σ2
i . (5.26)

Target for the age indicator inversion
By considering the perturbation of Eq. (5.12), we obtain the following target:

δ t
t
=

1
t

∫ 1

0

1
x

dδc
dx

dx =
1
t

∫ 1

0

1
x

dc
dx

dδc
dx
dc
dx

dx. (5.27)

The fact that we divide and multiply by the sound speed derivative is simply because of
the fact that the kernels are unable to match the function 1/x in the centre. Therefore, we
use this operation to de�ne an easier target for the inversion and express the problem in
terms of the relative perturbation of the sound speed derivative. The target is then given
by

Tt(x) =
1
x

dc
dx∫ 1

0
1
x

dc
dx dx

. (5.28)

If we now consider Eq. (5.1), we can use an integration by parts to obtain inversion kernels
in terms of the sound speed derivative

∫ 1

0
Kn,`

c2,ρ

δc2

c2 dx =−
∫ 1

0

∫ x

0

2Kn,`
c2,ρ

c
dy

 dc
dx

dδc
dx
dc
dx

dx+

∫ x

0
2

Kn,`
c2,ρ

c
ds

δc

1

0

. (5.29)

In the second term of this expression, the central evaluation is exactly 0 because the
kernels are proportional to x2 and the surface evaluation has been neglected because
numerical tests have shown that its amplitude was 60 to 150 times smaller than the
�rst term for modes with higher degree and radial order, and even smaller for lower
degree and radial order modes. We then de�ne the structural kernels for the sound speed
derivative as follows:

Kn,`
dc/dx,ρ =−dc

dx

∫ x

0

2Kn,`
c2,ρ

c
dy. (5.30)

By identi�cation, we also obtain that Kn,`
ρ,dc/dx = Kn,`

ρ,c2 , which will be associated with the
cross-term kernel. When deriving the targets for the acoustic radius, it was rather
straightforward to obtain the cost function for the inversion. In the case of the age
indicator, we show in Sect. 5.2.4 that the cost function de�ned in Eq. (5.8) is not adequate.
Therefore, we de�ned a new way to carry out a SOLA inversion: trying to match the
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anti-derivative of the averaging kernel with the anti-derivative of the target function. This
modi�cation is motivated by the oscillatory behaviour of the structural kernels, which is
unsuitable for the age indicator inversion. Using this method, the cost function is de�ned
as follows:

Jt =
∫ 1

0

[∫ x

0
T (y)dy−

∫ x

0
Kavg(y)dy

]2

dx+β

∫ 1

0
K2

cross(x)dx+ tan(θ)∑
i
(ciσi)

2

+λ

[
∑

i
ci− f

]
. (5.31)

The fourth term contains the supplementary constraint we will de�ne in the next section,
and once again we do not consider the ad-hoc surface correction term. As for the acoustic
radius, we can determine the value of the number f using homologous relations and add
a non-linear extension to the method.

Supplementary constraint and non-linear extension for the age indicator
The supplementary constraint is obtained in the same way as for the acoustic radius
inversion. We know that the frequencies scale with

√
υ/ε3 for a scale factor of υ in mass

and ε in radius, or in other terms a scaling factor υ/ε3 in density. It is easy to show that
the adiabatic sound speed will scale as

√
υ/ε and therefore its derivative will scale as√

υ/ε3. This means that the �rst order relative correction of the age indicator has to be
the same as the frequency correction for models in a homologous relation. Again, we can
�nd a constraint on inversion coe�cients so that the inverted correction will be exact
for models in a homologous relation. In this case, it means that the sum of the inversion
coe�cients needs to be equal to 1 to ensure that the correction will be the same for both
frequencies and t.

It is also possible to try to extend this inversion to the non-linear regime using the
iterative method of Eq. (5.22). Using this de�nition and the constraint on the sum of the
inversion coe�cients, we obtain:

tinv = htref

[
1+∑

i
ci

[
1
h
(
δνi

νi
+1)−1

]]

= tref(1+∑
i

ci
δνi

νi
). (5.32)

We now see that the inverted result is independent of the scaling factor h meaning that
the e�ect of the iterative process described for the acoustic radius is already included in
the linear method. However, this does not mean that the SOLA method is non-linear, nor
that a non-linear inversion could not be de�ned by some other approach.

Comparison with asymptotic laws based on frequency separations
In the following sections, we will compare the results of SOLA inversions to other tech-
niques based on frequency separations. We stress that these methods are not inversion
techniques; we simply express asymptotic laws in a di�erential formulation to relate them
to a linear combination of frequency di�erences.

It was shown by Vandakurov (1967) that the average large frequency separation is asymp-
totically related to the acoustic radius in the following way:

τ ≈ 1
2〈∆ν〉

. (5.33)
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When we linearise this relation we obtain

δτ

τ
≈−δ 〈∆ν〉

〈∆ν〉
= ∑

i
ci

δνi

νi
, (5.34)

where we used the fact that the average large separation is simply a linear combination
of frequencies to derive coe�cients ci. In much the same way as was done for inversion
coe�cients, these coe�cients can be inserted into Eqs. (5.6) and (5.7) to obtain averaging
and cross-term kernels for this method. These kernels can then be directly compared
with those coming from the SOLA inversion technique, thereby allowing a quantitative
comparison of the two methods. In our study, the average large separation was determined
by a χ2 �t (Kjeldsen, Bedding, and Christensen-Dalsgaard (2008)). If we apply the non-
linear extension to the above relation, we obtain the following result:

τinv =−
τref

∑i ci
δνi
νi
−1

=
τref

(
〈∆ν〉obs
〈∆ν〉ref

)
=

γτ

〈∆ν〉obs
. (5.35)

where γτ = τref 〈∆ν〉ref. Although Eq. (5.35) is very similar to Eq. (5.33), there are some
subtle, yet important, di�erences. Indeed, the proportionality constant γτ is not, in general
equal to 1/2 (as given by the original asymptotic formula), but has been speci�cally
adapted to the reference model for that particular range of modes. Likewise, SOLA
inversions are calibrated on the reference model, but they also go a step further by opti-
mising the frequency combination so as to be as sensitive as possible to the acoustic radius.

We now turn our attention to the age indicator and the small frequency separation.
We know from Tassoul (1980) that the small frequency separation is asymptotically and
approximately related to the derivative of the sound speed by the following relation:

δ̃ ν ≈ −(4`+6)∆ν

4π2νn,`

∫ R

0

dc
dr

dr
r
, (5.36)

which can be reformulated in the form of Eq. (5.14). The relative perturbation of this
equation will be a frequency combination, thereby allowing us to write

δ
νδ̃ν

∆ν

ν ˜δν

∆ν

= ∑
i

ci
δνi

νi
≈ δ t

t
. (5.37)

In other words, by using the relative perturbation of Eq. (5.14), we can de�ne inversion
coe�cients leading to the following estimate of the indicator t :

tinv = tref

(
1+∑

i
ci

δνi

νi

)
=

tref

(
ν ˜δν

∆ν

)
obs(

ν ˜δν

∆ν

)
ref

= γt

(
ν ˜δν

∆ν

)
obs

. (5.38)

Again we �nd a proportionality constant γt adapted to the reference model and the
observed modes. Using Eq. 5.36, one would �nd γt =

〈
−4π2/(4`+6)

〉
. We will see in the

next sections that the indicators determined by directly applying the asymptotic relations
are inaccurate compared to the SOLA method and the estimates de�ned in this section.
In D. R. Reese, Marques, et al. (2012), the same technique is also applied to the scaling
relationship between the mean density and the large frequency separation, and to another
technique, which includes the empirical surface corrections of Kjeldsen, Bedding, and
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Christensen-Dalsgaard (2008) . In Sect. 5.2.5, we will compare the three above procedures
for estimating the mean density. Following the notations of D. R. Reese, Marques, et al.
(2012) , we will refer to Kjeldsen et al.’s approach as the KBCD method2. The methods
presented in this section are summarised in Table 5.1.

Table 5.1: Methods used for the determination of t , τ and ρ̄ .
ρ̄ determination t determination τ determination

SOLA with θ = 10−2, β = 10−6 SOLA with θ = 10−8, β = 10−2 SOLA with θ = 10−2, β = 10−6

〈∆ν〉 estimate
〈

δ̃ ν

〉
estimate 〈∆ν〉 estimate

KBCD estimate with b = 4.9 − −

5.2.4 Test case with a grid of models
Targets and grid properties
The �rst test carried out used the model grid and the targets of D. R. Reese, Marques,
et al. (2012). The goal of this test was to determine the reliability of the inversion when
no forward modelling3 was performed. The model grid consists of 93 main-sequence and
pre-main sequence models with masses ranging from 0.8M� to 0.92 M� and ages ranging
from 28 Myr to 17.6 Gyr. These models were downloaded from the CoRoT-HELAS website
and additional information on their physical characteristics can be found in Marques,
Monteiro, and Fernandes (2008) and D. R. Reese, Marques, et al. (2012).

We present the results for two targets, models A′ and B, following the naming con-
vention of D. R. Reese, Marques, et al. (2012). The characteristics of these targets are
summarised in Table 5.2. The results for the �rst target were similar to those for B so
we do not present them here. Model A′ is in fact the �rst target of D. R. Reese, Marques,
et al. (2012), denoted model A in their study, to which has been added an ad-hoc 50%
increase of the density in the surface regions in the form of a hyperbolic tangent. Model
B is radically di�erent from the models of the grid since it includes rotational mixing,
di�usion and follows the solar mixture of Asplund, Grevesse, and Sauval (2005) rather
than that of Grevesse and Noels (1993), as used in the grid. We used a set of 33 oscillation
modes ranging from ` = 0 to ` = 2 and from n = 15 to n = 25. The error bars on the
observed frequencies were set to 0.3 µHz.

Results for the acoustic radius
The results for the acoustic radius for models A′ and B are represented in Fig. 5.1. The
values of the parameters θ and β are chosen so as to improve the match between the
averaging and cross-term kernels, and their respective targets. The optimal values are
θ = 10−2 and β = 10−6. The small value of β is due to the fact that the second target
(Tcross de�ned by Eq. 5.21) will be multiplied by the corrective term δΓ1/Γ1, which is
rather small. Likewise, θ could be reduced because the error bars were not dramatically
a�ected by changes in the value of this parameter. Because the structure of the target
is known, it is possible to plot all error contributions to the inversion results as in Eq.

2Eq. (26) in D. R. Reese, Marques, et al. (2012).
3Strictly speaking, the term “forward modelling” refers to solving the direct problem (see e.g. Tarantola

(2005) , Sect. 1.3), i.e. predicting the results (or in our case the pulsation frequencies) for a given model.
However, in the asteroseismic literature (see e. g. Charpinet et al. (2008), the term “forward modelling” has
also come to mean “execution of the forward problem using [stellar] models with a few adjustable parameters,
and the calibration of those parameters by �tting theory to observations” D. Gough (1985)). In what follows,
we use this latter de�nition.
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Table 5.2: Characteristics of targets A′ and B.
Model A′ Model B

τ (s) 2822.07 2823.53
t (s−1) −2.640×10−3 −2.534×10−3

Mass (M�) 0.9 0.92
Radius (R�) 0.821 0.825

Age (Gyr) 1.492 2.231
Teff (K) 5291 5291

log(g) (dex) 4.563 4.569

(5.10) and the error analysis described at the end of Sect. 5.2.2. These contributions are
represented for targets A′ and B in Fig.5.1 and the kernels for model A′ are represented
in Fig. 5.2. We see that the cross-term is not responsible for the errors of the SOLA
inversions and that the matching of the averaging kernel is the leading error term. Also, we
sometimes observe a compensation of the residual error and the averaging kernel error
for the SOLA method and that the correction based on the large frequency separation
can have smaller errors than SOLA, despite its oscillatory behaviour. The value of the
least-square �ts of the kernels for model A

′
for the τ and t inversions are illustrated in

�gure 5.7, where we compute the squared di�erence between the kernel and its target for
each reference model of the grid. However, it should be noted that these errors tend to
compensate and that this compensation is the reason for the slightly more accurate results
for model B, as can be seen on the right-hand side of the �gure. These compensations
have also been observed for mean density inversions, but in the case of model A

′
and

other test cases, they did not occur, as can be seen in the error plots in Fig. 5.1. Thus,
this technique is unable to account for surface e�ects and its reliability for observed stars
is questionable. If we directly use the asymptotic relation for the acoustic radius, i.e. if
we apply Eq. (5.33), we obtain τ = 2691 s for model A′ and τ = 2890 s for Model B, which
is even less accurate than both SOLA inversions and the improved ∆ν approach.

Results for the age indicator

The results of the age indicator inversions for models A′ and B are the same, thus we only
present them for model A′. They show the limit of our inversion techniques when there
is no criterion to choose the reference model. From Fig. 5.3, it is clear that the SOLA
inversion technique failed to reproduce the results for a subgrid of models. This is simply
due to the large range of ages of the reference models. One has to recall that the SOLA
approach is based on the integral Eq. (5.1), which itself is based on the variational principle,
only valid for small perturbations. The error plot also shows that SOLA inversions
bene�t from error compensations, which is problematic for observed stars. The second
problem is that when plotting the averaging and cross-term kernels, we see that the
results are rather poor (see Fig. 5.3). The parameters for these inversions were θ = 10−6

and β = 10−4. When carrying out an inversion on an observed star, one can only assess
the quality of the inversion based on how well the averaging and the cross-term kernels
�t their respective target functions. Therefore being able to obtain accurate results is not
su�cient: the accuracy must be related to the quality of the �t of the targets, otherwise
one would never be able to determine if the inversion was successful or not. Figure 5.4
illustrates the exact opposite for both our techniques. Therefore, we modi�ed the age
indicator inversion by using the anti-derivative of the target function rather than the target
itself, as described in Sect. 5.2.3. We then see that the inversion failed on a larger subgrid
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Figure 5.1: The le�-hand panels show inversion results for model A′, whereas the right-
hand side is for model B. The top panels show SOLA inversion results (blue) and estimates
based on the large frequency separation (red), the vertical line (magenta) indicates the value
of the large frequency separation of each target. The �gures below show the di�erent
error from Eq. (5.10) terms, which appear in the SOLA inversions (middle panels) and the
large separation (lower panels). The results and error contributions are given for every
model of the grid such that the abscissa of these �gures is the average large separation of
each reference model.

than before, but this failure is inevitable because of the properties of the reference grid.
The set of parameters for these inversions was θ = 10−8 and β = 10−2. The parameter β

was increased to annihilate the e�ect of the cross-term and θ was reduced thanks to its
small impact on the error bars. However, we need to de�ne a criterion to select a model
for which the result is reliable. We simply take the model with the closest average small
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Figure 5.2: Averaging and cross-term kernels for the inversion of the acoustic radius for
model A′. The target function is represented in black, the results for the ∆ν relation in
red, and those from SOLA inversions in blue.

frequency separation to the target. The results for this choice are illustrated in Fig. 5.5.
In this case, it is clear that the SOLA inversion is superior to the estimate based on the
small frequency separation and this leads to the de�nition of a new framework in which
to carry out inversions for this indicator more accurately.

5.2.5 Test case for targets using forward modelling
De�nition of the framework

In the previous section, we saw that by simply choosing the best model of the grid in
terms of the arithmetic average of the small frequency separation, we could achieve very
accurate results. However, the validity of Eq. (5.1) for the best model of the grid and the
target is still questionable, and one could wish to achieve an even greater accuracy. Using
forward modelling of the target is the best way to obtain a model that is su�ciently close
to enable the use of the variational principle, thereby leading to successful linear inversions.
We chose the so�ware Optimal Stellar Model (OSM)4, developed by Réza Samadi, to carry
out the forward modelling using the arithmetic average of the large separation and small
frequency separations of the observed frequency set as seismic constraints and the mass
and age of the reference model as free parameters. This optimization strategy is purely
arbitrary and further studies will be needed to determine how other approaches can be
used. However, regardless of what quantities (e.g. individual small separations or other
seismic indicators) and analysis methods (e.g. MCMC algorithms or genetic algorithms) are
used to select the reference model, the inversion will be carried out a�erwards, since it is
able to depart from the physical assumptions used by the stellar evolution code when
constructing the reference model. To ensure that di�erences still remain between our
reference model and our targets, we deliberately use di�erent values for the metallicity
or mixing-length parameter, add turbulent pressure to the target, or use non-adiabatic
computations for the observed frequencies. Therefore the forward modelling process will
always intentionally be unable to reproduce the target within an accuracy that would make
the inversion step useless. The tests were carried out using the CESTAM evolutionary code
(Code d’Evolution Stellaire, avec Transport, Adaptatif et Modulaire) Marques, Goupil, et al.
(2013), and the Adipls cite adipls , the LOSC (Liège OScillation Code) Scu�aire, Montalbán,

4The OSM so�ware can be downloaded from https://pypi.python.org/pypi/osm/

https://pypi.python.org/pypi/osm/
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Figure 5.3: Inversion results for the age indicator and estimates based on the small
frequency separation, using the grid of models. The le� column shows the results in which
the averaging kernels are optimised, whereas in the right column, the anti-derivative of
the averaging kernels are optimised. The top two panels show the inversion results where
the vertical line (magenta) indicates the value of the small frequency separation of the
target, the middle two panels show the errors from Eq. (5.10) in the SOLA inversions, and
the bottom two panels are the errors from Eq. (5.10) from the improved small frequency
separation technique. The results and error contributions are given for every model of
the grid such that the abscissa of these �gures is the average large separation of each
reference model.

et al. (2008) and MAD pulsation (M. A. Dupret (2001) M.-A. Dupret, Samadi, et al. (2006))
codes. We used the same modes as for the model grid tests, namely with ` ranging from 0
to 2 and n ranging from 15 to 25. The error bars on the frequencies were set to 0.33 µHz.
We will compare the results from the SOLA method with those from improved estimates
based on the average large separation as in the previous section. One could ask why we
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Figure 5.4: The upper panels illustrate the averaging and cross-term kernels for the model
with the best small frequency separation by optimising on the averaging kernel itself. The
lower panels illustrate the same results by optimising the anti-derivative of the averaging
kernel. The target function is in black, the results for the small frequency separation
estimate in red and those for SOLA inversions in blue.

are not using the arithmetic average of the large separation to carry out the correction. In
fact this quantity is already �tted to within 0.2 µHz of its target value with the forward
modelling process, and cannot therefore be improved upon. Concerning the values of the
θ and β parameters, we keep the same values as in the previous section, i.e. θ = 10−2

and β = 10−6 for the acoustic radius and the mean density, θ = 10−8 and β = 10−2 for the
age indicator.

Test case with di�erent metallicity and αMLT

The �rst test made use of a 0.95 M� and a 1.05 M� model, denoted targets 1 and 2,
respectively. The characteristics of the targets are summarised in the Table 5.3. The �rst
step was to carry out the forward modelling of these targets with the OSM so�ware using
the �xed parameters Z = 0.0135 and αMLT = 1.522 for the reference models. In tables 5.4
and 5.5, we summarise the inversion results with their error bars for both models. We
can see from this table that the error bars are underestimated for the acoustic radius
and mean density inversions. This results from the de�nition (5.9), which only accounts
for the propagation of observational errors but neglects the contributions related to the
inversion process itself or to the validity of Eq. (5.1). However, the error bars from the age
indicator are more important. We stress that quantifying errors of inversion techniques is
still problematic and require further theoretical studies. We also analysed the di�erent
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Figure 5.5: Inversion results for the model with the best small frequency separation. In the
main part of the �gure, the grid models are represented by the black +, the best model is
the purple ∗, model A′ the green X , the SOLA result is in blue, and the large frequency
separation result in red. The inset shows an enlarged view of the region around model A′.

contributions σi and found that compensation was present to a lesser extent in SOLA
inversions than in the other correction techniques. This is a direct consequence of the
quality of the kernel �ts with SOLA.

We also observed that the cross-term kernel contribution could sometimes be rather
important in the mean density and acoustic radius inversions. First of all, we can tell

Table 5.3: Characteristics of targets 1 and 2.
Model 1 Model 2

Mass (M�) 0.95 1.05
Radius (R�) 0.868 0.988
Age (Gyr) 1.8 1.5

Teff (K) 5284 5912
log(g) (dex) 4.538 4.469

Z 0.015 0.0135
αMLT 1.522 1.7

that the inversion of the age indicator is far more accurate when there are no metallicity
e�ects. Indeed, modifying the metallicity a�ects the entire star, whereas changing the
mixing length only in�uences the convective envelope, thereby having a negligible impact
on the age indicator inversions. Furthermore, test cases carried out for this model with
up to 50 or 70 frequencies showed an improvement in the accuracy of the method. The
inversion step, as well as the estimate based on the large frequency separation should
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Kernels for τ , ρ̄ and t for Model 1
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Figure 5.6: Kernels for the test case with di�erent metallicity. Averaging kernels (le�) and
cross-term kernels (right) for the age indicator inversion (top panels), the acoustic radius
inversion (middle panels), and the mean density (lower panels). The SOLA method is in
blue, the 〈∆ν〉 estimate in red and when implemented, the KBCD approach is in green.
The target function in all panels is plotted in black.

only be considered if there is a su�cient number frequencies with small error bars. If this
is not the case, then one should avoid carrying out an inversion. We will discuss more
extensively the observed weaknesses of the method and possible problems in Sect. 5.2.6.
Two supplementary results can be observed for this �rst test case: the SOLA method
is again more accurate when dealing with surface e�ects, here the variations of αMLT,
con�rming what had been guessed from the results of the previous section. The second
comment is related to the estimates based on the frequency separations. We see that the
results improve even if we already �tted the arithmetic average of the large separation
during the forward modelling process. This means that the χ2 large separation is more
e�cient at obtaining the acoustic radius and the mean density of a star and should be
preferred over the average large separation. The case of the age indicator is also di�erent
since the estimate is determined through the combination given in Eq. (5.14) and not the
small separation alone.

Test case with non-adiabatic frequencies

In this section we present the results for a 0.9 M� model, denoted target 1nad, for which
non-adiabatic e�ects have been taken into account. The frequencies have been calculated
with the MAD oscillation code, using a non-local, time-dependent treatment of convection
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Table 5.4: Inversion results for the test case with a di�erent metallicity, Model1.
Method ρ̄ (g/cm3) τ (s) t (s−1)

Reference Value 2.036 3007.77 −0.002523
SOLA 2.055 ±1.17×10−4 2993.91 ±0.08 −0.002548 ±1.27×10−4

〈∆ν〉 or δ̃ ν estimates 2.054 ±1.33×10−3 2995.10 ±0.334 −0.002560 ±2.71×10−5

KBCD 2.055 ±4.2×10−4 − −
Target Value 2.047 2995.01 −0.002539

Table 5.5: Inversion results for the test case with a di�erent αMLT, Model2.
Method ρ̄ (g/cm3) τ (s) t (s−1)

Reference Value 1.523 3471.91 −0.002452
SOLA 1.533 ±9.89×10−5 3460.29 ±0.1 −0.002460 ±1.38×10−4

〈∆ν〉 or δ̃ ν estimates 1.530 ±9.95×10−4 3464.43 ±0.45 −0.002464 ±2.835×10−5

KBCD 1.534 ±3.14×10−4 − −
Target Value 1.533 3461.49 −0.002458

taking the variations of the convective �ux and of the turbulent pressure due to the
oscillations into account (see Grigahcène et al. (2005), M. A. Dupret (2001), M.-A. Dupret,
Samadi, et al. (2006) for the description of this treatment). A second test case was carried
out using a 1 M� model, denoted target 2nad, and a reference model with a slightly less
accurate �t. The characteristics of both targets are summarised in Table 5.6. In both test
cases, the di�erence between the frequencies from the target and reference models lay in
the fact that only the former includes non-adiabatic e�ects. The results are summarised in
Tables 5.7 and 5.8 for both targets. The kernels from the various inversions and estimates
are illustrated in Fig. 5.8. The accuracy of the results is clearly related to how well the
kernels match their target functions, thereby accounting for the reliability of the inversion
technique. We observe that the SOLA inversion technique leads to accurate results for
all characteristics in the �rst test case. For the second test case, we �rst carried out
inversions and estimates based on a set of 33 frequencies. The results were accurate
for the mean density and the acoustic radius. However, the age indicator estimate was
as accurate as the value obtained through the forward modelling because the inversion
over-corrected this value. Therefore, we carried out a second set of inversions, using 40
frequencies ranging from n = 15−28 for `= 0 and from n = 15−27 for `= 1,2 to see if the
result for the age indicator could be improved. This second test is presented in Table 5.8
where we can see that the SOLA inversion leads to more accurate results than all of the
other techniques. This illustrates two e�ects: �rstly, when the model and the target are
less well �tted, the inversion requires more frequencies to reach a good accuracy; secondly,
a few more frequencies can greatly improve the accuracy of the inversion. This second
e�ect is typical of ill-posed problems. One has to be aware that the accurate result for
the second frequency set does not mean that using 40 frequencies is su�cient in all cases.
Analysing the di�erent contributions to the error showed that in this case, the estimates
based on frequency combinations could not accurately reproduce non-adiabatic e�ects in
the frequencies. We can thus conclude that the SOLA method is optimal to correct the
errors introduced in the forward modelling and particulary surface e�ects.

Test case with turbulent pressure

In the last test case, we included the e�ects of turbulent pressure when calculating, thanks
to the LOSC code, the adiabatic pulsation frequencies of a 1 M� target. The turbulent
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Table 5.6: Characteristics of targets 1nad and 2nad.
Model 1nad Model 2nad

Mass (M�) 0.9 1.0
Radius (R�) 0.858 0.942

Age (Gyr) 6.0 3.0
Teff (K) 5335 5649

log(g) (dex) 4.5248 4.4895
Z 0.0135 0.0135

αMLT 1.62 1.62

Table 5.7: Inversion results for test case 1, Model1nad, using 33 non-adiabatic frequencies.
Method ρ̄ (g/cm3) τ (s) t (s−1)

Reference Value 1.986 3042.76 −0.001873
SOLA 2.01 ±1.15×10−4 3024.60 ±0.08 −0.001893 ±7.8×10−5

〈∆ν〉 or δ̃ ν estimates 1.986 ±1.3×10−3 3042.80 ±0.34 −0.001903 ±2.56×10−5

KBCD 2.015 ±4.1×10−4 − −
Target Value 2.006 3023.88 −0.001894

pressure was included in the computation of the evolution of the model by adding a
supplementary term Pturb using the following phenomenological approach:

Pturb =
〈
ρv2

R
〉
=Cpturbρv2

R, (5.39)

with vR the radial speed of the convective elements given by the mixing length theory.
The value of the turbulent pressure coe�cient Cpturb was chosen to be 1.58 to match
e�ects of 3D simulations for the Sun. The characteristics of the target are summarised in
Table 5.9 and the results are summarised in Table 5.10. We see that the SOLA method
can account for the e�ects of turbulent pressure and improve the accuracy with which
global stellar characteristics are determined in this case. The kernels for this inversion
are illustrated in Fig. 5.9. As was the case previously, the SOLA kernels seem to be more
regular and closer to their target functions than those of the other techniques.

5.2.6 Conclusion

In this section, we have analysed four di�erent methods for obtaining various stellar
parameters. These include asymptotic relations based on two di�erent implementations
of large and small frequency separations, a scaling law for the mean density, which
includes the Kjeldsen, Bedding, and Christensen-Dalsgaard (2008) surface corrections, and
inversions based on the SOLA method. A comparison of these di�erent methods reveals
the following strengths and weaknesses:

• Arithmetic average of the large and small frequency separations: This method
is the simplest to implement and is useful in forward modelling. The method is,
however, less accurate than the other methods.

• Large frequency separation from a χ2 adjustment and arithmetic average of
the age indicator (based on Eq. 5.14): This remains simple but is more accurate
than the previous approach, as demonstrated by the improvement in the results
when this method is applied a�er the forward modelling (which uses the previous
approach). This version of the large frequency separation is more accurate because
it uses the information from all of the modes, rather than simply those with the
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Table 5.8: Inversion results for test case 2,Model2nad , using 40 non-adiabatic frequencies.
Method ρ̄ (g/cm3) τ (s) t (s−1)

Reference Value 1.588 3399.79 −0.002285
SOLA 1.691 ±9.4×10−5 3294.84 ±0.09 −0.002150 ±8.5×10−5

〈∆ν〉 or δ̃ ν estimates 1.659 ±7.9×10−4 3326.93 ±0.3 −0.002248 ±2.54×10−5

KBCD 1.696 ±2.65×10−4 − −
Target Value 1.684 3295.87 −0.002190

Table 5.9: Characteristics of target 1turb.
Model 1turb

Mass (M�) 1.0
Radius (R�) 0.868

Age (Gyr) 4.0
Teff (K) 5683

log(g) (dex) 4.469
Z 0.0135

αMLT 1.62

lowest and highest n values. The reason why using the average age indicator works
better than the average small frequency separation is less obvious, but is likely to be
related to the fact that in the former case one isolates an integral that only depends
on the stellar structure and does not contain a mode-dependent coe�cient in front,
before carrying out the average. In spite of these improvements, this approach
remains sensitive to surface e�ects as shown, for instance, in Fig. 5.1 (le� column).

• The mean density from the Kjeldsen et al. (2008) surface-correcting approach:
This approach produces superior results compared to the two previous methods
because it is able to correct for surface e�ects. However, changes in metallicity a�ect
both this method and SOLA inversions more than the previous methods, since such
changes modify the entire star rather than just the near-surface layers.

• SOLA inversions: Although this approach is the most complicated, it also turns
out to be the most accurate. Indeed, apart from the case where the metallicity
was modi�ed, it is able to deal with incorrect assumptions in the reference models
since it focusses on optimising the averaging and cross-term kernels. Furthermore,
a key feature of SOLA inversions is that the quality of these kernels is closely
related to the quality of the results, unlike what sometimes happens for scaling laws
where fortuitous compensations lead to good results. This is important because
it provides a way to estimate the quality of the inversion results. However, one
must be careful to choose a reference model that is su�ciently close to the target,
particularly for the age indicator inversions. This naturally leads to the use of
forward modelling before application of this method. A quick inspection of the values
in Tables 5.5,5.4,5.8,5.7,5.10 shows that SOLA inversions have improved the accuracy
by a factor ranging from 10 to several hundred for τ and ρ̄ and from 1.125 to more
than 20 for t , when compared to results from the forward modelling.

A couple of further comments need to be made concerning SOLA inversions of
the age indicator. Firstly, great care should be taken when calculating the quantity
1
x (

dc
dx), which intervenes in the target function. Indeed, this quantity is prone to
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Table 5.10: Inversion results for test case using turbulence pressure, Model1turb.
Method ρ̄ (g/cm3) τ (s) t (s−1)

Reference Value 1.557 3429.59 −0.001877
SOLA 1.575 ±9.6×10−5 3409.72 ±0.1 −0.001894 ±6.7×10−5

〈∆ν〉 or δ̃ ν estimates 1.570 ±1.02×10−3 3415.93 ±0.4 −0.001902 ±2.6×10−5

KBCD 1.576 3.3×10−4 − −
Target Value 1.573 3409.76 −0.001888

numerical noise as x approaches 0. In our calculations, we reduced this noise by
numerically calculating the derivative with respect to x2, but note that it was still
necessary to inspect this function before carrying out the inversion. Secondly, as can
be seen from the top le� panel of Fig. 5.4, the target function does not go to 0 in the
centre, as opposed to the structural kernels, which behave as O(r2) in the centre.
Therefore this target will be di�cult to �t, even with more frequencies, and we need
to �nd a workaround to be able to retrieve the e�ects of stellar evolution with an
inversion technique. In fact, the lower le� panel of Fig. 5.4 shows that optimising
the anti-derivative is not always su�cient to solve this problem.

In future studies, we plan to analyse in more detail under what conditions SOLA
inversions yield good results. In particular, we will investigate, in a systematic way,
how close the reference model needs to be to the observed star for the inversion
to be reliable. It will also be important to test the quality of the averaging and
cross-term kernels as a function of the number and type of modes available. We
also plan to extend SOLA inversions to other structural quantities, including age
indicators that do not su�er from the di�culties mentioned above. This highlights
the great potential of the SOLA method, since it allows us to choose the global struc-
tural characteristic that we wish to determine, o�ering a promising new diagnostic
method into stellar structural properties.

5.2.7 Appendix: Demonstration of the error propagation formula for the non-linear ex-
tension of the acoustic radius inversion

Equation (5.26) is obtained with a little algebra. First, we treat the observed frequencies,
νobs,i, and the inverted acoustic radius, τinv, as independent stochastic variables

νobs,i = ν̄obs,i(1+ εi), (5.40)

τinv = τ̄inv(1+ ετ), (5.41)

with εi being the individual noise realisations for each frequency, ετ the resultant deviation
on τinv, and ν̄obs and τ̄inv the average of the stochastic variables νobs,i and τinv, respectively..
Furthermore, we assume that:

εi� 1. (5.42)
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Using the fact that τinv = qoptτref, with the de�nition of qopt given in Eq. (5.25), and the
separation into stochastic and average contributions de�ned previously, we obtain:

τ̄inv(1+ ετ)'
−τref

∑i ci
ν̄obs,i

νref,i

1+
∑i ci

ν̄obs,i

νref,i
εi

∑i ci
ν̄obs,i

νref,i



=
−τref

∑i ci
ν̄obs,i

νref,i

1−
∑i ci

ν̄obs,i

νref,i
εi

∑i ci
ν̄obs,i

νref,i

 , (5.43)

where we assumed that εi is much smaller than 1, thereby allowing us to linearise the
above equation. We now apply the formula for the variance of a linear combination of
independent stochastic variables and obtain

τ̄
2
invσ

2
τ =

τ2
ref(

∑i ci
ν̄obs,i

νref,i

)4 ∑
i

c2
i σ

2
i , (5.44)

where we used the following equivalences:

σ
2
i = σ

2
δνi
νi

= σ
2
νobs,i
νref,i

=

(
ν̄obs,i

νref,i

)2

σ
2
εi
. (5.45)

Equation 5.44 then leads directly to Eq. (5.26) when using the de�nition of qopt given in
Eq. (5.25).

5.2.8 Appendix: Supplementary �gures

Figures 5.7, 5.8 and 5.9 illustrate the quality of the kernel �ts for some of the test cases we
presented in the core of this section. Although these plots are redundant from the visual
point of view, we wish here again to stress that they are crucial to the understanding of
the quality of a SOLA inversion and justify the accuracy of the results presented in the
previous sections.
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Figure 5.7: Least square �ts of the kernels for model A
′
.

Kernels for τ , ρ̄ and t for Model 1nad
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Figure 5.8: same as Fig. 5.6 for the �rst test case with non-adiabatic frequencies.
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Kernels for τ , ρ̄ and t for Model 1turb

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Position r/R

∫
K

A
v
g

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

Position r/R

K
C
r
o
s
s

0 0.2 0.4 0.6 0.8 1

−5

0

5

Position r/R

K
A
v
g

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

Position r/R

K
C
r
o
s
s

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

Position r/R

K
A
v
g

0 0.2 0.4 0.6 0.8 1

−20

0

20

Position r/R

K
C
r
o
s
s

Figure 5.9: Same as Fig. 5.6 for the test case with turbulent pressure.

5.3 Using seismic inversions to obtain an indicator of internal mixing processes
in main-sequence solar-like stars

5.3.1 Introduction

Determining accurate and precise stellar ages is a major problem in astrophysics. These
determinations are either obtained through empirical relations or model-dependent ap-
proaches. Moreover, accurate stellar ages are crucial when studying stellar evolution, when
determining properties of exoplanetary systems or when characterising stellar populations
in the galaxy. However, the absence of a direct observational method for measuring this
quantity makes such determinations rather complicated. Age is usually related empirically
to the evolutionary stage or determined through model dependent techniques like the
forward asteroseismic modelling of stars. However, this model-dependence is problematic
because, if a physical process is not taken into account during the modelling, it will
introduce a bias when determining the age, as well as in the determination of other
fundamental characteristics like the mass or the radius (see, for example, Eggenberger,
Meynet, et al. (2010) for the impact of rotation on asteroseismic properties, and Miglio,
Girardi, et al. (2015), for a discussion in the context of ensemble asteroseismology, and
T. M. Brown, Christensen-Dalsgaard, Weibel-Mihalas, et al. (1994), for a comprehensive
study of the relation between seismic constraints and stellar model parameters). It is also
clear that asteroseismology probes the evolutionary stage of stars and not the age directly.
In other words, we are able to analyse the stellar physical conditions but relating these
properties to an age will, ultimately, always depend on assumptions made during the
building of the evolutionary sequence of the model. A general review of the impact of the
hypotheses of stellar modelling and of asteroseismic constraints on the determination of
stellar ages is presented in Lebreton, Goupil, and Montalbán (2014a) and Lebreton, Goupil,
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and Montalbán (2014b).

In the sense of this age determination issue, the question of additional mixing pro-
cesses is central (M.-A. Dupret (2008)) and can only be solved by using less model
dependent seismic analysis techniques and new generations of stellar models. These new
seismic methods should be able to provide relevant constraints on the physical conditions
in the central regions and help with the inclusion of additional mixing in the models.
In this context, seismic inversion techniques are an interesting way to relate structural
di�erences to frequency di�erences and therefore o�er a new insight into the physical
conditions inside observed stars. From the observational point of view, the high quality
of the Kepler and CoRoT data as well as the selection of the Plato mission (Rauer et al.
(2014)) allows us to expect enough observational data to carry out inversions of global
characteristics. In the context of helioseismology, structural inversion techniques have
already led to noteworthy successes. They have provided strong constraints on solar
atomic di�usion (see Basu, Christensen-Dalsgaard, Schou, et al. (1996)), thus con�rming
the work of Elsworth et al. (1990). However, application of structural inversion techniques
in asteroseismology is still limited. Inversions for rotation pro�les have been carried out
(see Deheuvels, Doğan, et al. (2014) for example for an application to Kepler subgiants),
but as far as structural inversions are concerned, one can use either non-linear cite
see for an example of the di�erential response technique (I. W. Roxburgh (2010), I. W.
Roxburgh (2015b)), or linear inversion techniques applied to integrated quantities as in
D. R. Reese, Marques, et al. (2012) and Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015).

In our previous paper (see Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015)),
we extended mean density inversions based on the SOLA technique (D. R. Reese, Marques,
et al. (2012)) to inversions of the acoustic radius of the star and an indicator of core
conditions, denoted t. We also developed a general approach to determining custom-made
global characteristics for an observed star. We showed that applying the SOLA inversion
technique (Pijpers and Thompson (1994)) to a carefully selected reference model, obtained
via the forward-modelling technique, could lead to very accurate results. However, it was
then clear that the �rst age indicator was limited to rather young stars and that other
indicators should be developed. Moreover, the model dependence of these techniques
should be carefully studied and there is a need to de�ne a more extended theoretical
background for these methods. The in�uence of the number but also the type of modes
used for a speci�c inversion should be investigated. In the end, one should be able to
de�ne whether the inversion should be carried out or not, knowing the number of ob-
served frequencies and the quality of the reference model according to its selection criteria.

In this study, we o�er an answer to these questions and provide a new indicator for the
mixing processes and the evolutionary stage of an observed star. We structure our study
as follows: Section 5.3.2 introduces a technique to obtain equations for new structural
kernels in the context of asteroseismology and applies it to the (u,Γ1) and the (u,Y )
kernels, where u is the squared isothermal sound speed, Γ1 the adiabatic gradient and Y
the current helium abundance pro�le. Section 5.3.3 introduces a new indicator of mixing
processes and evolutionary stages, which is not restricted to young stars, as was the
case for the indicator presented in Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015).
Having introduced this new indicator, we test its accuracy using di�erent physical e�ects
such as including atomic di�usion processes with high velocities (up to 2.0 times the solar
microscopic di�usion velocities) in the target, changing the helium abundance, changing the
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metallicity and changing the solar mixture of heavy elements. Section 5.3.4 analyses the
impact of the type and number of modes on the inversion results whereas Section 5.3.5
studies how the accuracy depends on the reference model. We also tested our method
on targets similar to the binary system 16CygA and 16CygB using the same modes as
those observed in Verma, Faria, et al. (2014) to show that our method is indeed applicable
to current observational data. Section 5.3.6 summarises our results and presents some
prospects on future research for global quantities that could be obtained with the SOLA
inversion technique.

5.3.2 (u,Γ1) and (u,Y ) structural kernels
Integral equations for structural couples in the asteroseismic context
In D. O. Gough and Thompson (1991), it is demonstrated that one could deduce a linear
integral relation between the perturbations of frequencies and the perturbation of structural
variables from the variational principle. This equation is obtained by assuming the adiabatic
approximation and spherical symmetry, and by neglecting surface integral terms. It is only
valid if the stellar models are close to each other. If one is working with the structural pair
(c2,ρ), where c2 is the adiabatic squared sound velocity and ρ the density, this relation
takes on the form:

δνi

νi
=
∫ 1

0
Ki

ρ,c2
δρ

ρ
dx+

∫ 1

0
Ki

c2,ρ

δc2

c2 dx+
G (ν)

Qi
+O(2), (5.46)

where x = r
R with R the stellar radius, and where the classical de�nition of the relative

di�erences between the target and model for any structural quantity s has been used:

δ s(x)
s

=
sobs(x)− sref(x)

sref
. (5.47)

In what follows, we always use the subscript or superscript “obs” when referring to the
observed star, “ref” for the reference model variables in perturbation de�nitions, and
inv for inverted results. Other variables, like the kernel functions, which are denoted
without subscripts or superscripts, are of course related to the reference model and are
known in practice. Finally, one should also note that the su�x i is only meant to be an
index to classify the modes. Moreover, since it is clear that some hypotheses are not
suitable for surface regions, a supplementary function, G (ν) was added to model these
so-called surface e�ects. It is de�ned as a linear combination of Legendre polynomials,
normalised by the factor Qi, which is the mode inertia normalised by the inertia of a
radial mode interpolated to the same frequency. We emphasise here that neither this
normalisation coe�cient nor the treatment of surface e�ects are uniquely de�ned and that
other techniques have also been used (see Dziembowski, Pamyatnykh, and Sienkiewicz
(1990), Däppen et al. (1991), Basu et al. (1996b) for example).

The kernels of the couple (ρ,Γ1) have already been presented in D. O. Gough and
Thompson (1991) who also mentionned the use of another method, de�ned in Masters (1979)
to modify Eq. 5.46 and obtain such relations for the (c2,Γ1) couple and also the (N2,c2)
couple. Other approaches to obtaining new structural kernels were presented (see Elliott
(1996), Kosovichev (1999) for example for the application of the adjoint equations method
to this problem). The latter approach has been used in helioseismology where it was
assumed that the mass of the observed star is known to a su�cient level of accuracy to
impose surface boundary conditions. In the context of asteroseismology, we cannot make
this assumption. Nevertheless, the approach de�ned in Masters (1979) allows us to �nd
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ordinary di�erential equations for a large number of supplementary structural kernels,
without assuming a �xed mass5.

Another question arises in the context of asteroseismology: what about the radius?
We implicitly de�ne our integral equation in non-dimensional variables but how do we
relate the structural functions, for example c2

obs(r) de�ned for the observed star and c2
ref(r)

de�ned for the reference model? What are the implications of de�ning all functions in the
same domain in x = r

Rre f
varying from 0 to 1? It was shown by Basu (2003) that an implicit

scaling was applied by the inversion in the asteroseismic context. The observed target
is homologously rescaled to the radius of the reference model, while its mean density is
preserved. This means that the oscillation frequencies are the same, but other quantities
such as the adiabatic sound speed c, and the squared isothermal sound speed u = P

ρ
, will

be rescaled. Therefore, when inverted, they are not related to the real target but to a
scaled one.

This can be demonstrated with the following simple test. We can take two models
a few time steps from one another on the same evolutionary sequence knowing that they
should not be that di�erent. (Here, we consider 1M�, main-sequence models.) We then
test the veri�cation of Eq. 5.46 by plotting the following relative di�erence

E i
ρ,c2 =

δνi
νi
−S i

δνi
νi

, (5.48)

with S i de�ned as

S i =
∫ 1

0

(
Ki

ρ,c2
δρ

ρ
+Ki

c2,ρ

δc2

c2

)
dx. (5.49)

The results are plotted in blue in the le� panel of Fig. 5.10, where we can see that this
equation is not satis�ed. However, one might think that this inaccuracy is related to the
neglected surface terms or to non-linear e�ects. Therefore we carry out the same test
using the (ρ,Γ1) kernels, plotted in red in the right-hand panel of Fig. 5.10. We see that
for these kernels, the equation is satis�ed. Moreover, when separating the contributions
of each structural term, we see that the errors arise from the term related to c2 in the
�rst case. Using the scaled adiabatic sound speed, however, leads to the blue symbols
in the right-hand panel of Fig. 5.10 and we directly see that in this case, the integral
equation is satis�ed. This leads to the conclusion that inversion results based on integral
equations are always related to the scaled target and not the target itself, as concluded
by Basu (2003). We see in Sect. 5.3.3 that this has strong implications for the structural
information given by inversion techniques.

Di�erential equation for the (u,Γ1) and the (u,Y ) kernels
As mentioned in the previous section, the method described in Masters (1979) allows us
to derive di�erential equations for structural kernels. In what follows, we will apply
this method to the (u,Γ1) and the (u,Y ) kernels. However, this approach can be applied
to many other structural pairs such as: (c2,Γ1), (c2,Y ), (g,Γ1), (g,Y ), . . . , with c2 = Γ1P

ρ

the squared adiabatic sound speed , g = Gm
r2 the local gravity, Γ1 =

(
∂ lnT
∂ lnP

)
S

the adiabatic

5The method of adjoint equations previously described could also be used but would require an additional
hypothesis to replace the missing boundary condition.
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Figure 5.10: Veri�cation of Eq. 5.46 for a set of 120 modes with the · being the 40 radial
modes, the × being the 40 dipolar modes and the + being the 40 quadrupolar modes.
The le� plot illustrates this veri�cation for the (ρ,c2) couple when no scaling is applied
to c2 whereas the right plot illustrates the same veri�cation for the (ρ,c2) couple when
scaling is applied to c2, as well as the (ρ,Γ1) couple where no scaling is needed.

gradient and Y the local helium abundance. We do not describe these kernels since they
are straightforward to obtain using the same technique as that which will be used here for
the (u,Γ1) kernels. One should also note that a di�erential equation cannot be obtained for

the couple (N2,c2), with N2 the Brunt-Väisälä frequency, de�ned as: N2 = g
(

1
Γ1

d lnP
dr −

d lnρ

dr

)
, without neglecting a supplementary surface term.

The �rst step is to assume that if these kernels exist, they should satisfy an integral
equation of the type given in Eq. 5.46, thereby leading to:

δνi

νi
=
∫ 1

0
Ki

ρ,Γ1

δρ

ρ
dx+

∫ 1

0
Ki

Γ1,ρ

δΓ1

Γ1
dx,

=
∫ 1

0
Ki

u,Γ1

δu
u

dx+
∫ 1

0
Ki

Γ1,u
δΓ1

Γ1
dx. (5.50)

From that point, we use the de�nition of u to express the �rst integral in terms of a density
perturbation. This is done using the de�nition of the pressure, P, and the cumulative
mass up to a radial position, r:

P =
∫ R

r

Gm̃ρ̃

r̃2 dr̃+Psur f , (5.51)

m =
∫ r

0
4π r̃2

ρ̃dr̃, (5.52)

where we neglect the pressure perturbation at the surface. In what follows, we use
the non-dimensional forms P̂ = PR4

GM2 , where M is the stellar mass, R the stellar radius

and G the gravitational constant, m̂ = m
M and ρ̂ = R3ρ

M . To avoid any confusion in already
rather intricate equations, we drop the hat notation in what follows and denote these non-
dimensional variables P, m and ρ . Using Eqs. 5.51 and 5.52, one can relate u perturbations
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to P and ρ perturbations as

δu
u

=
δP
P
− δρ

ρ
. (5.53)

However, using Eq. 5.51, one can also relate P perturbations to ρ perturbations. Doing
this, one should note that the surface pressure perturbation is usually neglected and
considered as a so-called surface e�ect. Using non-dimensional variables and combining
Eqs. 5.51 and 5.52 in Eq. 5.53, one obtains an expression relating u perturbations solely
to ρ perturbations. (Of course, this is an integral relation due to the de�nition of the
hydrostatic pressure, P). One can use this relation to replace δu

u in Eq. 5.50 and a�er
the permutation of the integrals stemming from the de�nition of the hydrostatic pressure
perturbation, one obtains the following integral equation relating Ki

ρ,Γ1
to Ki

u,Γ1
:

∫ 1

0
Ki

ρ,Γ1

δρ

ρ
dx+

∫ 1

0
Ki

Γ1,ρ

δΓ1

Γ1
dx =

∫ 1

0

(
m(x)ρ

x2

[∫ x

0

Ki
u,Γ1

P̄
dx̄

]

+4πx2
ρ

[∫ 1

x

ρ̃

x̃2

[∫ x̃

0

Ki
u,Γ1

P̄
dx̄

]
dx̃

]
−Ki

u,Γ1

)
δρ

ρ
dx

+
∫ 1

0
Ki

Γ1,u
δΓ1

Γ1
dx. (5.54)

One should be careful when solving this equation since one is faced with multiple integrals,
with certain equilibrium variables associated with x̃ or x̄. Therefore care should be taken
when integrating to check the quality of the result. To obtain a di�erential equation, we
note that it is clear that the equation is satis�ed if the integrands are equal, meaning that
the kernels are related as follows:

Ki
ρ,Γ1

=
m(x)ρ

x2

[∫ x

0

Ki
u,Γ1

P̄
dx̄

]
+4πx2

ρ

[∫ 1

x

ρ̃

x̃2

[∫ x̃

0

Ki
u,Γ1

P̄
dx̄

]
dx̃

]
−Ki

u,Γ1
, (5.55)

Ki
Γ1,ρ = Ki

Γ1,u. (5.56)

Given this integral expression, one can simply derive and simplify the expression to obtain
a second-order ordinary di�erential equation in x as follows:

−y
d2κ

′

(dy)2 +

[
2πy3/2ρ̃

m̃
−3

]
dκ

′

dy
=y

d2κ

(dy)2 −

[
2πy3/2ρ̃

m̃
−3+

m̃ρ̃

2y1/2P̃

]
dκ

dy

+

[
m̃ρ̃

4yP̃2

dP̃
dx
− m̃

4yP̃
dρ̃

dx
− 3

4y1/2P̃
dP̃
dx
− m̃ρ̃

2y3/2P̃

]
κ,

(5.57)

where κ =
Ki

u,Γ1
x2ρ

, κ
′
=

Ki
ρ,Γ1

x2ρ
and y = x2. The central boundary condition in terms of κ and

κ
′
is obtained by taking the limit of Eq. 5.57 as y goes to 0. The additional boundary

conditions are obtained from Eq. 5.55. Namely, we impose that the solution satis�es Eq.
5.55 at some point of the domain. This system is then discretised using a �nite di�erence
scheme based on D. R. Reese (2013), and solved using a direct band-matrix solver.

Two quality checks can be made to validate our solution, the �rst being that every
kernel satis�es Eq. 5.55, the second being that they satisfy a frequency-structure relation
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(as in Eq. 5.50) within the same accuracy as the classical structural kernels (ρ,Γ1) or
(ρ,c2). We can carry out the same analysis as in section 5.3.2, keeping in mind that the
squared isothermal sound speed will also be implicitly rescaled by the inversion since it
is proportional to M

R , as is the squared adiabatic sound speed, c2. The results of this test
are plotted in Fig. 5.11 along with an example of the veri�cation of the integral equation
for the kernel associated with the `= 0, n = 15 mode.
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Figure 5.11: (le�) Plot illustrating the veri�cation of Eq. 5.55 for n = 15, `= 0 kernel K15,0,
where Iu,Γ1 is the right-hand side of this equation and R is the residual. (right) Same test
as in Fig. 5.10 for the (u,Γ1) kernels.

The equation for the (u,Y ) kernels is identical when using the following relation:

δνi

νi
=
∫ 1

0
Ki

ρ,Y
δρ

ρ
dx+

∫ 1

0
Ki

Y,ρδY dx,

=
∫ 1

0
Ki

u,Y
δu
u

dx+
∫ 1

0
Ki

Y,uδY dx. (5.58)

meaning that Eq. 5.57 can simply be transposed using the de�nitions: κ =
Ki

u,Y
x2ρ

and κ
′
=

Ki
ρ,Y

x2ρ
.

One could also start from Eq. 5.50, use the de�nition:

δΓ1

Γ1
=

(
∂ ln(Γ1)

∂ ln(P)

)
Z,Y,ρ

δP
P

+

(
∂ ln(Γ1)

∂ ln(ρ)

)
Z,Y,P

δρ

ρ
+

(
∂ ln(Γ1)

∂Y

)
Z,P,ρ

δY

+

(
∂ ln(Γ1)

∂Z

)
Y,P,ρ

δZ, (5.59)

and neglect the δZ contribution. This assumption is particularly justi�ed if one places
spectroscopic constraints on the metallicity. Nevertheless, the term associated with δZ
is smaller than the three other terms and if one is probing the core regions, the δΓ1

Γ1
contribution is already very small. Consequently, all of the terms of Eq. 5.59 are small
compared to the integral contribution. Still, this assumption is not completely sound if one

wishes to probe surface regions. When comparing the
(

∂ ln(Γ1)
∂Z

)
Y,P,ρ

to the
(

∂ ln(Γ1)
∂Y

)
Z,P,ρ

δY ,

we notice that their amplitude is comparable and that
(

∂ ln(Γ1)
∂Z

)
Y,P,ρ

is even o�en larger.

However, we have to consider that it will be multiplied by δZ, which is much smaller than
δY . Moreover, the functions are somewhat alike in central regions and, as a consequence,
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there will be an implicit partial damping of the δZ term when damping the δY contribution
if it is in the cross-term of the inversion. We can control the importance of this assumption
by switching from the (u,Y ) kernels to the (u,Γ1) kernels. Indeed, if the error is large, the
inversion result will be changed by the contribution from the neglected term. In conclusion,
in the case of the inversion of tu, we present and use in the next sections, this assumption
is justi�ed, but this is not certain for inversions of helium mass fraction in upper lay-
ers, for which only numerical tests for the chosen indicator will provide a de�nitive answer.

Knowing these facts, we can search for the (u,Y ) kernels using the previous devel-
opments. It is in fact straightforward when using the (ρ,Y ) kernels, which are directly
obtained from (ρ,Γ1) or (ρ,c2). However, one should also note that by using Eq. 5.59, we
assume that the equation of state is known for the target which might introduce small
errors6. Again, Fig. 5.12 illustrates the tests of our solutions by plotting the errors on the
integral equation (Eq. 5.58), and by seeing how well our solution for the `= 0, n = 15 mode
veri�es Eq. 5.55. The (u,Γ1) and (u,Y ) kernels of this particular mode are illustrated in
�gure 5.13. The kernels associated with u are very similar, except for the surface regions
where some di�erences can be seen.
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Figure 5.12: Same as Fig. 5.11 for the (u,Y ) kernels.

5.3.3 Indicator for internal mixing processes and evolutionary stage based on the varia-
tions of u
De�nition of the target function and link to the evolutionary e�ect
Knowing that it is possible to obtain the helium abundance in the integral Eq.5.58, we could
be tempted to use it to obtain corrections on the helium abundance in the core and thereby
gain insights into the chemical evolution directly. However, Fig. 5.13 reminds us of the
hard reality associated with these helium kernels. Their intensity is only non-negligible in
surface regions, making it impossible to obtain information on the core helium abundance
using them.

Another approach would be to use the squared isothermal sound speed, u, to reach
our goal. Indeed, we know that u = P

ρ
∝

T
µ
, and that during the evolution along the main

sequence, the mean molecular weight will change. Moreover the core contraction can also
lead to changes in the variation of the u pro�le. Using the same philosophy as for the

6However, these can be neglected when compared to other uncertainties on the structural properties of
observed stars.
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Figure 5.13: Structural kernels for the n = 15, `= 0 mode associated with the (u,Γ1) couple
on the le� hand side and with the (u,Y ) couple on the right hand side.

de�nition of the �rst age indicator (see Buldgen, D. R. Reese, M. A. Dupret, and Samadi
(2015)) and ultimately for the use of the small separation as an indicator of the core
conditions (see Tassoul (1980)), we build our indicator using the �rst radial derivative of u.
Using u instead of c2 allows us to avoid the dependence in Γ1 which is responsible for the
surface dependence of dc

dr . To build our indicator, we analyse the e�ect of the evolution on
the pro�le of du

dr . This e�ect is illustrated in Fig. 5.14. As can be seen, two lobes tend to
develop as the star ages. The �rst problem is that these variations have opposite signs,
meaning that if we integrate through both lobes, the sensitivity will be greatly reduced.
Therefore, we choose to base our indicator on the squared �rst radial derivative:

t̄u =
∫ R

0
f (r)

(
du
dr

)2

dr, (5.60)

where f (r) is an appropriate weight function. First, we consider that the observed star
and the reference model have the same radius. The target function for this indicator can
easily be obtained. We perturb the equation for tu and use an integration by parts to
relate the perturbations of the indicator to structural perturbations of u:

δ t̄u
t̄u

=
2
t̄u

∫ R

0
f (r)

du
dr

dδu
dr

dr,

=
−2
t̄u

∫ R

0
u

d
dr

(
f (r)

du
dr

)
δu
u

dr+
[

f (r)
du
dr

δu
]R

0
. (5.61)

The last term on the second line is not suitable for SOLA inversions, given the neglect
of surface terms in the kernels. We thus de�ne the function f so that f (0) = f (R) = 0,
thereby cancelling this term. This leads to the following expression:

δ t̄u
t̄u

=
∫ R

0
Ttu

δu
u

dr, (5.62)
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where

Ttu =
−2u

t̄u

d
dr

(
f (r)

du
dr

)
. (5.63)

The weight function f (r) must be chosen according to a number of criteria: it has to be
sensitive to the core regions where the pro�le changes; it has to have a low amplitude
at the boundaries of the domain, allowing us to do the integration by parts necessary
for obtaining δu in the expression; and it should be possible to �t the target function
associated with this f (r) using structural kernels from a restricted number of frequencies.
Moreover, Eq. (5.63) being related to linear perturbations, it is clear that non-linear e�ects
should not dominate the changes of this indicator7. We also know that the amplitude of
the structural kernels is 0 in the centre, so f (r) should also satisfy this condition.

We de�ne the weight function as:

f (r) = rα (r−R)λ exp

(
−γ

(
r− ropt

R

)2
)
, (5.64)

which means that we have four parameters to adjust. The case of ropt is quickly treated.
Since we know that the changes will be localised in the lobes developing in the core
regions, we chose to put ropt = 0, and α and λ should be at least 1, so that the integration
by part is exact and the central limit for the target function and the structural kernels is
the same. Gamma depends on the e�ects of the non-linearities. However, since we have to
perform a second derivative of u a more practical concern appears: we do not want to be
in�uenced by the e�ects of the discontinuity at the boundary of the convective envelope.
Ultimately, we use the following set of parameters: α = 1, λ = 2, γ = 7, and ropt = 0. One
could argue that the optimal choice for ropt would be either at the maximum of the second
lobe or between both lobes to obtain the maximal sensitivity in the structural variations.
These values were also tested, but the results were a little less accurate than using ropt = 0
and they involved higher inversion coe�cients and, hence, higher error magni�cation. We
illustrate the weighted pro�le obtained for this optimal set of parameters in the right-hand
side panel of Fig. 5.14. Furthermore, Eq. 5.62 is satis�ed up to 5%, so we can try to carry
out inversions for this indicator. It is also important to note that for the sake of simplicity,
we do not choose to change the values of these parameters with the model, which would
only bring additional complexity to the problem.

Because of the target function Ttu , we can now carry out inversions for the integrated
quantity tu using the linear SOLA inversion technique (Pijpers and Thompson (1994)). But
�rst, we should recall the purpose of inversions and our adaptation of the SOLA technique
to integrated quantities. Historically, inversions have been used to obtain seismically
constrained structural pro�les (Basu, Christensen-Dalsgaard, Schou, et al. (1996)) as well as
rotational pro�les (Schou, Christensen-Dalsgaard, and Thompson (1994)) in helioseismology.
However, none of these methods are suited for the inversions we wish to carry here. As
discussed in Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015), the SOLA inversion
technique, which uses a so-called kernel-matching approach is well suited to our purpose.
Indeed, this approach allows us to de�ne custom-made target functions that will be used

7Otherwise, using the SOLA technique, which is linear, would be impossible.
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to build a cost function, here denoted J . In the case of the tu quantity, one has the
de�nition

Jtu =
∫ 1

0

[
KAvg−Ttu

]2 dx+β

∫ 1

0
K2

Crossdx+ tan(θ)
N

∑
i
(ciσi)

2 +η

[
N

∑
i

ci− k

]
, (5.65)

where KAvg is the so-called averaging kernel and KCross is the so-called cross-term kernel
de�ned as follows for the (u,Γ1) structural pair (for (u,Y ), replace Ki

u,Γ1
by Ki

u,Y and Ki
Γ1,u

by Ki
Y,u):

KAvg =
N

∑
i

ciKi
u,Γ1

, (5.66)

KCross =
N

∑
i

ciKi
Γ1,u. (5.67)

The symbols θ and β are free parameters of the inversion. Here, θ is related to the
compromise between the ampli�cation of the observational error bars (σi) and the �t of
the kernels, whereas β is allowed to vary to give more weight to the elimination of the
cross-term kernel. In this expression, N is the number of observed frequencies, the ci are
the inversion coe�cients, used to determine the correction that will be applied on the tu
value. Eta is a Lagrange multiplier and the last term appearing in the expression of the
cost-function is a supplementary constraint applied to the inversion that is presented in
Sect. 5.3.3.

If the observed target and the reference model have the same radius, the inversion
will measure the value of tu for the observed target. However, if this condition is not met,
the inversion will produce a scaled value of this indicator. By de�ning integral equations
such as Eq. 5.60, or even Eq. 5.46, we have seen in Sect. 5.3.2 that we made the
hypothesis that both the target and the reference model had the same radius. However,

because the frequencies scale with
(M

R3

)1/2
, the inversion will preserve the mean density

of the observed target. Therefore, we are implicitly carrying out the inversion for a scaled
target homologous to the observed target, which has the radius of the reference model
but the mean density of the observed target. Simple reasoning demonstrates that the

mass of this scaled target is: M̄tar = Mtar
R3

re f

R3
tar

. Thus, because tu scales as M2, there is a

di�erence between the target value tobs
u and the measured value, t inv

u . Consequently, we
can write the following equations:

t inv
u

M̄2
tar

=
tobs
u

M2
tar

, (5.68)

t inv
u

R6
re f

=
tobs
u

R6
tar

, (5.69)

where we have used the de�nition of M̄tar to express the mass dependencies as radius
dependencies. Therefore, we use Eq. 5.69 as a criterion to determine whether the
inversion was successful or not.

Non-linear generalisation
This section presents a general approach to the non-linear generalisation presented in
D. R. Reese, Marques, et al. (2012) and Buldgen, D. R. Reese, M. A. Dupret, and Samadi
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Figure 5.14: Le� panel: structural changes in the scaled du
dx pro�le with the evolution. The

models are main sequence 1.0M� models. Right panel: the same e�ects as seen when(du
dx

)2
is weighted according to Eq. 5.64.

(2015) for any type of global characteristic that can scale with the mass of the star. It
is obvious that we can say that the frequencies scale as M1/2. Of course, they scale as

the mean density, namely
√

M
R3 . However, since the inversion works with a �xed radius

and implicitly scales the target to the same radius as the reference model, the iterative
process associated with this non-linear generalisation will never change the model radius.
Therefore, we do not take this dependence into account and simply work on the mass
dependence. We let A be a global characteristic, related to the mass of the star. It is
always possible to de�ne a factor k so that:

A ∝ ν
k. (5.70)

And we directly obtain:

δA
A

= k
δν

ν
. (5.71)

However, using the de�nition of the inverted correction of A, one has:

δA
A

= ∑
i

ci
δνi

νi
, (5.72)

where ci are the inversion coe�cients. Using the same reasoning as in Buldgen, D. R. Reese,
M. A. Dupret, and Samadi (2015) and D. R. Reese, Marques, et al. (2012), we de�ne the
inversion as “unbiased” (a term that should not be taken in the statistical sense.) if it
satis�es the condition

∑
i

ci = k. (5.73)

Now we can de�ne an iterative process using the scale factor sk
0 =

Ainv,0
Aref

. We scale the
reference model (in other words, multiply its mass and density by s2, its pressure by s4,
leaving Γ1 unchanged), carry out a second inversion, then de�ne a new scale factor and
so on until no further correction is made by the inversion process. In other words, we
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search for the �xed point of the equation of the scale factor. At the jth iteration, we obtain
the following equation for the inversion value of A:

Ainv = Arefsk−1
j

[
s j +∑

i
ci

δνi

νi
+ k(1− s j)

]
. (5.74)

This can be written in terms of the scale factor alone, noting that at the jth iteration,
Ainv
Are f

= sk
j+1:

sk
j+1 = sk−1

j

[
s j +∑

i
ci

δνi

νi
+ k(1− s j)

]
. (5.75)

The �xed point is then obtained,

sopt =
∑i ci

δνi
νi

k
+1, (5.76)

and can be used directly to obtain the optimal value of the indicator A. We can also carry
out a general analysis of the error bars treating the observed frequencies and Ainv as
stochastic variables:

νobs,i = ν̄obs,i(1+ εi), (5.77)

Ainv = Āinv(1+ εA), (5.78)

with εi and εA being the stochastic contributions to the variables. Using the hypothesis
that εi� 1 we obtain the following equation for the error bars:

σA = Are f

[
1
k ∑

i
ci

νobs
i

ν ref
i

]k−1√
(∑

i
ciσi)2. (5.79)

We note that in the particular case of the indicator tu, k = 4. Indeed, tu ∝ M2 whereas
ν ∝ M1/2.

Tests using various physical e�ects
To test the accuracy of the SOLA technique applied to the tu indicator, we carried out
the same test as in Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015) using stellar
models that would play the role of observed targets. These models included physical
phenomena not taken into account in the reference models. A total of 13 targets were
constructed, with masses of 0.9 M�, 1.0 M� and 1.1 M� but to avoid redundancy, we
only present six that are representative of the mass and age ranges and of the physical
e�ects considered in our study. We tested various e�ects for each mass. These e�ects
fell into the following categories: those that come from microscopic di�usion using the
approach presented in Thoul, Bahcall, and Loeb (1994) (multiplying the atomic di�usion
coe�cients by a factor given in the last line of Table 5.118), those caused by a helium
abundance mismatch, those that result from a metallicity mismatch, and those that stem
from using a di�erent solar heavy-element mixture. For the last case, the target was built
using the GN93 abundances (Grevesse and Noels (1993)) and the reference model was built

8These values might seem excessive regarding the reliability of the implementation of di�usion. We stress
here that our goal was to witness the impact of signi�cant changes on the results. However, other processes
or mismatches could alter the du

dr gradient and thus be detected by the inversion.
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using the AGSS09 abundances (Asplund, Grevesse, Sauval, and Scott (2009)).

All targets and reference models were built using version 18.15 of the Code Liégeois
d’Evolution Stellaire (CLES) stellar evolution code (Scu�aire, Théado, et al. (2008)) and
their oscillations frequencies were calculated using the Liège oscillation code (LOSC, Scu-
�aire, Montalbán, et al. (2008)). Table 5.11 summarises the properties of the six targets
presented in this section. The selection of the reference model was based on the �t

Table 5.11: Characteristics of the 6 targets.
Target1 Target2 Target 3 Target4 Target5 Target6

Mass (M�) 1.0 1.0 1.0 0.9 1.0 1.1
Radius (R�) 1.076 1.159 1.14 0.89 1.193 1.297
Age (Gyr) 8.05 7.55 7.06 6.0 5.121 5.135

Teff (K) 5597 5884 5712 5329 6081 5967
Z0 0.015 0.0122 0.0122 0.0122 0.0122 0.0122
Y0 0.2457 0.2485 0.2485 0.2485 0.3078 0.2485

Abundances AGSS09 GN93 AGSS09 AGSS09 AGSS09 AGSS09
αMLT 1.522 1.522 1.522 1.522 1.522 1.522

Di�usion factor 0 0 2 1.6 0 1.6

Note: Di�erences between target and reference model in bold.

of the large and small separation for 60 modes with n = 7− 26 and ` = 0− 2 using a
Levenberg-Marquardt minimisation code. The use of supplementary constraints will be
discussed in Sect. 5.3.5 whereas the e�ects of the selection of the modes will be discussed
in Sect. 5.3.4. The choice of 60 frequencies is motivated by the number of observed
frequencies for the system 16Cyg A - 16Cyg B by Kepler, which is between 50 and 60
(Verma, Faria, et al. (2014)). The inversions were carried out using the (u,Y ) and the (u,Γ1)
structural kernels.

If the inversion of tu shows that there are di�erences between the target and the reference
model, then we know that the core regions are not properly represented. Whether these
di�erences arise from atomic di�usion or a helium abundance mismatch, the tu indicator
alone could not answer this question9. Therefore, the philosophy we adopt in this section
is the following: Is the inversion able to correct mistakes in the reference models? If so,
within what range of accuracy?. The capacity of disentangling di�erent e�ects is partially
illustrated in Sect. 5.3.5, but additional indicators are still required to provide the best
diagnostic possible given a set of frequencies.

The results are given in Table 5.12 for the (u,Γ1) kernels and Table 5.13 for the (u,Y )
kernels along with the respective error contributions given according to the developments
of D. R. Reese, Marques, et al. (2012) and Buldgen, D. R. Reese, M. A. Dupret, and Samadi
(2015). We denote these error contributions: εAvg, εCross, εRes. These errors contributions

9To completely constrain the changes that are a consequence of multiple additional mixing processes with
only one structural indicator is of course impossible.
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are de�ned as

εAvg =
∫ 1

0

[
KAvg−Ttu

] δu
u

dx, (5.80)

εCross =
∫ 1

0
KCross

δΓ1

Γ1
dx, (5.81)

if the (u,Γ1) couple is used. If one prefers the (u,Y ), εCross becomes

εCross =
∫ 1

0
KCrossδY dx. (5.82)

Finally, εRes is associated with the residual contribution, in the sense that it is what remains
a�er one has taken into account both εCross and εAvg. The target function and their �ts
are illustrated in Fig. 5.15 for Target4. As we can see from Tables 5.12 and 5.13, we obtain

Table 5.12: Inversion results for the 6 targets using the (u,Γ1) kernels.
tref
u

G2R6
re f

(g2/cm6) t inv
u

G2R6
re f

(g2/cm6) (u,Γ1)
tobs
u

G2R6
tar

(g2/cm6) ε
u,Γ1
Avg ε

u,Γ1
Cross ε

u,Γ1
Res

Target1 4.032 3.568±0.063 3.532 4.415×10−4 −1.684×10−4 9.767×10−3

Target2 3.434 3.24±0.075 3.428 −1.301×10−3 −4.419×10−4 5.951×10−4

Target3 3.562 3.275±0.067 3.252 5.789×10−3 −1.178×10−3 2.277×10−3

Target4 5.879 5.621±0.147 5.536 1.388×10−2 3.088×10−4 8.062×10−4

Target5 2.845 2.669±0.088 2.630 −6.498×10−4 −4.493×10−3 2.366×10−4

Target6 3.205 3.480±0.091 3.498 1.496×10−2 −1.11×10−3 7.824×10−4

Table 5.13: Inversion results for the 6 targets using the (u,Y ) kernels.
tref
u

G2R6
re f

(g2/cm6) t inv
u

G2R6
re f

(g2/cm6) (u,Y ) tobs
u

G2R6
tar

(g2/cm6) ε
u,Y
Avg ε

u,Y
Cross ε

u,Y
Res

Target1 4.032 3.575±0.063 3.532 8.34×10−4 1.601×10−4 1.1×10−2

Target2 3.434 3.423±0.075 3.428 −1.301×10−3 1.338×10−7 2.127×10−5

Target3 3.562 3.283±0.067 3.252 5.748×10−3 8.296×10−3 −4.794×10−3

Target4 5.879 5.624±0.148 5.536 1.386×10−2 1.337×10−3 5.448×10−4

Target5 2.845 2.675±0.089 2.630 −5.421×10−4 −8.184×10−3 3.168×10−4

Target6 3.205 3.480±0.091 3.498 1.458×10−2 1.214×10−2 −9.721×10−3
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accurate results for all cases. This means that the inversion is successful and that the
regularisation process is su�cient for the values β = 10−6 and θ = 10−5.

We see in the ��h column of Tables 5.12 and 5.13 that the averaging kernel �t is usually the
dominant error contribution. In the next sections, we see how this result changes with the
modes used or with the quality of the reference model. If we analyse the cross-term error
contribution, we see that it is generally much less important than the averaging kernel
mismatch error. We also see that despite the high amplitude of the cross-term kernels
associated with Γ1 shown in Fig. 5.15, the real error is quite small and o�en smaller than
the error associated with the helium cross-term kernel. This is due not only to the small
variations in Γ1 between target and reference model but also to the oscillatory behaviour
of the Γ1 cross-term kernel. In contrast, the cross-term kernel of the (u,Y ) kernel has a
smaller amplitude, but nearly no oscillatory behaviour and is larger in the surface regions,
where the inversion is naturally less robust. Nonetheless, the results of the (u,Y ) kernels
also show some compensation. We also note that they tend to have larger residual errors.
However, there is no clear di�erence in accuracy between the (u,Γ1) and the (u,Y ) kernels.
In the case of Target2, we see that although the results are slightly improved, the reference
value is within the error bars of the inversion results. In an observed case, this would
mean that the reference model is already very close to the target as far as the indicator tu
is concerned. However, we wish to point out that it seems rather improbable that the only
di�erence between a static model and a real observed star would be in its heavy-element
mixture.

Analysing the residual contribution is slightly more di�cult, since it includes each and
every supplementary e�ect: surface terms, non-linear contributions, errors in the equation
of state (when using kernels related to Y ), etc. In this study, we can see that the residual
error is well constricted. This is not the case, for example, if the parameter θ is chosen to
be very small, or if the scaling e�ect is not taken into account10. In fact, the θ parameter
is a regularizing parameter, in the sense that it does not allow the inversion coe�cients to
take on extremely high values. In that case, the inversion would be completely unstable
because a slight error in the �t would be ampli�ed and would lead to incorrect results.
This is quickly understood knowing that the inversion coe�cients are used to recombine
the frequencies as

δ t inv
u

tu
=

N

∑
i

ci
δνi

νi
, (5.83)

with N the total number of observed frequencies. Where this equation is subject to
the uncertainties in Eqs. 5.62 and 5.50 (or, respectively Eq. 5.58), any error will be
dramatically ampli�ed by the inversion process. Therefore there is no gain in reducing θ

since at some point, the uncertainties behind the basic equation of the inversion process
will dominate and lead the method to failure. In this case, the inversion problem is not
su�ciently regularised. Such an example is presented and analysed in the next section.

5.3.4 Impact of the type and number of modes on the inversion results

When carrying out inversions on observed data, we are limited to the observed modes.
Therefore the question of how the inversion results depend on the type of modes is
of utmost importance. The reason behind this dependence is that di�erent frequencies

10In which case one would be searching for a result that is impossible to obtain.
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are associated with di�erent eigenfunctions, in other words di�erent structural kernels,
sensitive to di�erent regions of the star. Therefore, the inverse problem will vary for
each set of modes because the physical information contained in the observational data
changes. Hence, we studied four targets using seven sets of modes. As in Sect. 5.3.3, we
wish to avoid redundancy and so present our results for one target, namely Target3, and
�ve di�erent frequency sets. As a supplementary test case, we de�ned two target models
with the properties of 16CygA and 16CygB found in the litterature (Metcalfe, Chaplin, et al.
(2012), White, Huber, et al. (2013), Verma, Faria, et al. (2014)). Using these properties, we
added strong atomic di�usion to the 16CygA model and used Z = 0.023 as well as the
GN93 mixture for 16CygB. In constrast, the reference models used Z = 0.0122 and the
AGSS09 mixture. The characteristics of these models are also summarised in Table 5.14,
where we used the set of observed modes given by Verma, Faria, et al. (2014) and ignored
the isolated `= 3 modes for which there was no possibility to de�ne a large separation.

All the sets for the test cases of this section are summarised in Table 5.15. The ref-
erence model was chosen as in Sect. 5.3.3, using the arithmetic average of the large and
small frequency separations as constraints for its mass and age. With these test cases,
we �rst analyse whether the inversion results depend on the values of the radial order n
of the modes, with the help of the frequency Sets 1, 2 and 3 (see Table 5.15). Then we
analyse the importance of the `= 3 modes for the inversion using Sets 4 and 5.

The inversion results for all these targets and sets of mode are presented in Tables
5.16 and 5.17 for the (u,Γ1) kernels. A �rst conclusion can be drawn from the results
using Sets 1, 2 and 3: low n are important for ensuring an accurate results. In fact, Set 2
provides much better results than Set 1,. Even using Set 3 (which is only Set 1 extended
up to n = 34 for each `) does not improve the results any further. This means that modes
with n > 27 are barely used to �t the target.

This �rst result can be interpreted in a variety of ways. Firstly, using mathematical
reasoning, we can say that the kernels associated with higher n have high amplitudes in
the surface regions and are therefore not well suited to probing central regions. Another
way to interpret this problem follows: When we use modes with high n, we come closer to
the asymptotic regime, and the eigenfunctions are described by the JWKB approximation,
all of which have a similar form and do not therefore provide useful additional information.
Based on this, we see a clear di�erence between inverted structural quantities and the
information deduced from asymptotic relations, which requires high n values to be valid,
thereby highlighting the usefulness of inversions. The question of the importance of the
modes ` = 3 is also quickly answered from the results obtained with Set 4 and 5. For
these test cases, we reach very good accuracy even without n≤ 9 unlike the previous test
case using Set 2. Moreover, we use even fewer frequencies than for the �rst three sets. In
fact, this is crucial to determine whether one can apply an inversion in an observed case,
since a few `= 3 modes can change the results and make the inversion successful.

To further illustrate the importance of the octupole modes, we use the 16CygA and
16CygB clones to carry out inversions for their respective observed frequency sets. In a
�rst test case, we use all frequencies and reach a reasonable accuracy for both targets. In
the second test case, we do not use the octupole modes and we can observe a drastic
change in accuracy. These results are illustrated in Table 5.17, where the notation “Small”
(for small frequency set) has been added to the lines associated with the results obtained
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Table 5.14: Characteristics of 16CygA and 16CygB clones.
16CygA-clone 16CygB-clone

Mass (M�) 1.11 1.06
Radius (R�) 1.13 1.04
Age (Gyr) 6.9 6.7

Teff (K) 5696 5772.9
Z0 0.024 0.023
Y0 0.241 0.242

Abundances AGSS09 GN93
αMLT 2.0 2.0

Di�usion coe�cient 2 0

without using the `= 3 modes.

Looking again at the results for 16CygA, we see that although the inversion improves the
value of tu, the reference value lies within the observational error bars of the inverted
result. The case of the truncated set of frequencies is even worse, since the inverted
result is less accurate than the reference value. We therefore analysed the problem for the
full frequency set. To do so we carried out a variety of inversions using higher values of
θ . The results for θ = 10−4 are illustrated in Table 5.17. In this case we have lower error
bars, but what is reassuring is that the result did not change drastically when we changed
θ . This means that the problem is properly regularised around θ = 10−5 and θ = 10−4

and that we can trust the inversion results. Our advice is therefore to always look at
the behaviour of the solution with the inversion parameters to see if there is any sign of
compensation or other undesirable behaviour. In fact there is no law to select the value
of θ and applying �xed values blindly for all asteroseismic observations is probably the
best way to obtain unreliable results.

The case of the small frequency set is even more intriguing since the result improves
greatly with θ = 10−4. The question that arises is whether the problem is not properly
regularised with θ = 10−5 or whether we are faced with some fortuitous compensation
e�ect that leads to very accurate results. If we are faced with fortuitous compensation,
taking θ slightly larger than 10−4 or increasing β will drastically reduce the accuracy since
any change in the linear combination will a�ect the compensation. However, if we are faced
with a regularisation problem, the accuracy should decrease regularly with the change of
parameters (since we are slightly reducing the quality of the �t with those changes). We
emphasise again that one should not choose values of the inversion parameters where
any small augmentation of the regularisation would drastically change the result. In this
particular case, we were confronted with insu�cient regularisation and choosing θ = 10−4

corrected the problem.

Table 5.15: Sets of modes used to analyse the impact of the number and type of frequencies
on the inversion results

Set1 Set2 Set3 Set4 Set5 16CygA 16CygB
`= 0 n = 9−28 n = 5−27 n = 9−34 n = 11−24 n = 11−26 n = 12−27 n = 13−26
`= 1 n = 9−28 n = 5−27 n = 9−34 n = 11−24 n = 11−26 n = 11−27 n = 13−26
`= 2 n = 9−28 n = 5−27 n = 9−34 n = 11−24 n = 11−26 n = 11−24 n = 12−25
`= 3 − − − n = 9−20 n = 12−22 n = 15−21 n = 17−24
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Table 5.16: Inversion results for Target3 using the (u,Γ1) kernels and Sets 1−5 of Table
5.15.

tref
u

G2R6
re f

(g2/cm6) t inv
u

G2R6
re f

(g2/cm6) (u,Γ1)
tobs
u

G2R6
tar

(g2/cm6) ε
u,Γ1
Avg ε

u,Γ1
Cross ε

u,Γ1
Res

Set1 5.855 5.700±0.161 5.538 2.805×10−2 −4.246×10−5 4.881×10−4

Set2 5.888 5.566±0.088 5.538 4.062×10−3 1.869×10−4 3.505×10−4

Set3 5.895 5.690±0.146 5.538 2.79×10−2 9.25×10−6 6.8×10−4

Set4 5.886 5.570±0.110 5.538 6.074×10−3 2.859×10−4 −1.893×10−3

Set5 5.968 5.630±0.105 5.538 1.644×10−2 −4.072×10−4 4.714×10−4

Table 5.17: Inversion results for the 16CygA and 16CygB clones using the (u,Γ1) kernels.
tref
u

G2R6
re f

(g2/cm6) t inv
u

G2R6
re f

(g2/cm6) (u,Γ1)
tobs
u

G2R6
tar

(g2/cm6) ε
u,Γ1
Avg ε

u,Γ1
Cross ε

u,Γ1
Res

16CygA (Full, θ = 10−5) 2.965 2.891±0.083 2.885 2.641×10−3 −1.780×10−3 1.442×10−3

16CygA (Full, θ = 10−4) 2.965 2.872±0.036 2.885 −4.033×10−3 −9.487×10−4 7.149×10−4

16CygA (Small, θ = 10−5) 2.965 2.971±0.083 2.885 3.117×10−2 −2.577×10−3 5.000×10−4

16CygA (Small, θ = 10−4) 2.965 2.906±0.031 2.885 8.240×10−3 −1.778×10−3 7.000×10−4

16CygB (Full) 4.540 4.007±0.095 3.783 4.547×10−2 −2.407×10−4 2.277×10−2

16CygB (Small) 4.540 4.295±0.113 3.783 1.093×10−1 −1.715×10−3 1.138×10−2

5.3.5 Impact of the quality of the forward modelling process on the inversion results

In this section we present various inversion results using di�erent criteria to select the
reference model for the inversion. The previous results, only using the average large and
small frequency separations as constraints for the mass and age of the model, are indeed
a crude representation of the real capabilities of seismic modelling. It is well known that
other individual frequency combinations can be used to obtain independent information
on the core mixing processes and that we should adjust more than two parameters to
describe the physical processes in stellar interiors.

Table 5.18: Characteristics of Target7, Target8, and of the models obtained with the
Levenberg-Marquardt algorithm.

Target7 Model7.1 Model7.2 Model7.3 Target8 Model8.1 Model8.2
Mass (M�) 0.9 0.933 0.908 0.957 1.0 1.009 1.029
Radius (R�) 0.908 0.919 0.912 0.926 1.17 1.18 1.19
Age (Gyr) 3.075 3.34 3.69 3.45 4.168 4.322 4.489

Teff (K) 5659 5701 5488 5713 6003 5985 5966
Z 0.0122 0.0122 0.0122 0.0105 0.0122 0.0185 0.0181

Y0 0.308 0.274 0.269 0.243 0.3078 0.323 0.305
Abundances AGSS09 AGSS09 AGSS09 AGSS09 AGSS09 AGSS09 AGSS09

αMLT 1.522 1.522 1.297 1.522 1.522 1.522 1.522
Di�usion coe�cient 1.6 0 0 0 1.6 0 0

To carry out these test cases, we built two target models including microscopic dif-
fusion. As before, we did not include this process in the reference models obtained
by �tting the so-called 56 observed frequencies. We used the modes l = 0,n = 12−25;
l = 1,n = 11−25; l = 2,n = 11−26; l = 3,n = 14−24. The characteristics of the targets are
summarised in Table 5.18 along with those of the best models obtained through seismic
modelling. Table 5.19 contains information on the various constraints and free parameters
used for the �t. We used various seismic constraints such as the individual large and small
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Table 5.19: Constraints and free parameters used for the Levenberg-Marquardt �t.
Constraints Parameters

Model7.0 < ∆νn,`(ν)> + < δ̃ νn,`(ν)> Mass + Age
Model7.1 ∆νn,`(ν) + δ̃ νn,`(ν) + r01(ν) Mass + Age + Y0

Model7.2 ∆νn,`(ν) + δ̃ νn,`(ν) Mass + Age + Y0+ αMLT

Model7.3 ∆νn,`(ν) + δ̃ νn,`(ν) Mass + Age + Y0 + Z0
Model8.1 < ∆ν > + r02(ν) Mass + Age + Y0 + Z0
Model8.2 < ∆ν > + r02(ν) + r01(ν) Mass + Age + Y0 + Z0

frequency separations, the individual r01 and r02, de�ned as

r02 =
νn−1,2−νn,0

νn,1−νn−1,1
, (5.84)

r01 =
νn,0−2νn,1 +νn+1,0

2(νn+1,0−νn,0)
. (5.85)

The free parameters were chosen to match what is done when trying to �t observations,
although the �nal quality of the �t is much higher than one expects from an observed
case, as illutrasted in Fig. 5.16 for Target7

11 and Fig. 5.17 for Target8. Here one should note
that the arithmetic average of the large frequency separations were �tted to within 1% in
addition to the individual quantities plotted in Fig. 5.17. In all these cases the inversion
improved the value of tu. In some cases, the acoustic radius was not well �tted by the
forward modelling process but the inversion could improve its determination. Table 5.21
illustrates the results of combined inversions, whereas Table 5.20 gives the results for
all test cases. In fact, one could argue that the error contributions are not that di�erent
from what was obtained using only the average large and small frequency separations as
constraints. However, our previous analysis of the dependence on the degree and radial
order of the modes has shown us that having low n and l = 3 modes was the best way to
ensure accuracy.

Based on the above, the frequency set used for these test cases is of lower quality
and this has been compensated for by the forward modelling process. To further illustrate
the importance of the model selection, in Table 5.20 we repeat the results obtained by
simply ajusting < ∆ν > and < δ̃ ν > that we denote as Model7.0. For Target7 we see that
the dominant source of error contribution, εAvg is ±6 to 10 times smaller than what is for
Model7.0. As a result it is clear that using the information given by individual frequencies
is crucial to ensure accurate results in observed cases.

The necessity of an acoustic radius inversion results from two aspects in the selec-
tion of the reference models. The �rst one is present in Model7.2; the change of α induced
during the �t had an important impact on the upper regions and therefore a change in
the acoustic radius was observable. The second one is present in Model8.1 and Model8.2,
where the observational constraints were sensitive to core regions, except for the arith-
metic average of the large frequency separations. In this case, the upper regions are less
constrained and the inversion is still necessary. However, we note that in most cases
the acoustic radius of the reference model was very accurate. This is due to the lack of

11We did not present the �t of the individual large frequency separations for Model7.1 to avoid redundancy
with Model7.2 and Model7.3.



152 Chapter 5. INVERSIONS OF INTEGRATED QUANTITIES

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
10

15

20

25

Observed frequency µHz

δ̃ n
,l
µ
H
z

δ̃νTar7
n2

δ̃νTar7
n3

δ̃νMod7.1
n2

δ̃νMod7.1
n3

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
0.02

0.025

0.03

0.035

0.04

Observed frequency µHz

r
0
1

r
Tar7
01

r
Mod7.1
01

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
146

148

150

152

154

Observed frequency µHz

∆
ν
µ
H
z

∆νTar7
n0

∆νTar7
n1

∆νTar7
n2

∆νTar7
n3

∆νMod7.2
n0

∆νMod7.2
n1

∆νMod7.2
n2

∆νMod7.2
n3

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
10

15

20

25

Observed frequency µHz

δ̃
ν
n
,l
µ
H
z

δ̃νTar7
n2

δ̃νTar7
n3

δ̃νMod7.2
n2

δ̃νMod7.2
n3

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
148

149

150

151

152

153

154

Observed frequency µHz

∆
ν
µ
H
z

∆νTar7
n0

∆νTar7
n1

∆νTar7
n2

∆νTar7
n3

∆νMod7.3
n0

∆νMod7.3
n1

∆νMod7.3
n2

∆νMod7.3
n3

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
10

15

20

25

Observed frequency µHz

δ̃
ν
n
,l
µ
H
z

δ̃νTar7
n2

δ̃νTar7
n3

δ̃νMod7.3
n2

δ̃νMod7.3
n3

Figure 5.16: Results of the �t using the Levenberg-Marquardt algorithm for the �rst target
as a function of the observed frequency: the upper panel is associated with Model7.1
which used the average large frequency separation and the individual r01 and δ̃ νn,` as
constraints; the central panel is associated with Model7.2 which used individual ∆νn,` and
δ̃ νn,` as constraints; the lower panel is associated with Model7.3 which also used individual
∆νn,` and δ̃ νn,` as constraints.
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Figure 5.17: Results of the �t using the Levenberg-Marquardt algorithm for the second
target as a function of the observed frequency: the red dots are associated with Model8.1
which used individual r02 as constraints and the purple dots are associated with Model8.2
which used individual r02 and r01 as constraints.

surface e�ects in the target models. If we were to include non-adiabatic computations or
di�erences in the convection treatment, di�erences would be seen in the acoustic radii of
the targets and reference models, but it is clear from these test cases that the acoustic
radius combined with tu alone is not su�cient to distinguish between e�ects of di�erences
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in helium abundance and e�ects of microscopic di�usion. We also note that when using
the individual r02 along with the < ∆ν > (the test case of Model8.1), we obtain a very
good �t of tu with the reference model. This is a consequence of the fact that r02 is very
sensitive to core regions, and so the core characteristics are reproduced well. However,
with the acoustic radius inversion, we note that the surface regions are not well �tted,
and if we include r01, as done in the test case of Model8.2, we obtain a better �t of the
acoustic radius, but tu is then less accurate. The inversion of the indicator tu informs
us that the core regions are not reproduced well in this reference model. We can see
that Model8.1 or Model7.2 and Model7.3 reproduce the indicator tu better. However, in all
these cases the acoustic radius was not properly reproduced. Therefore the combined
inversions indicate that something is wrong with the set of free parameters used because
we cannot �t properly surface and core regions simultaneously, although the �t of the
seismic constraints with the Levenberg-Marquardt algorithm is excellent in all cases.

We also mention that in all test cases carried out here, we did not consider the �rst
age indicator t from Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015). In fact, the
indicator t could also provide accurate results for Target7. However, its inaccuracy for
older models has been observed during this entire study, and we recommend limiting its
use to young stars12, where it can provide valuable information providing that the kernels
are well optimised.

Table 5.20: Inversion results for various �ts with the Levenberg-Marquardt algorithm.
tref
u

G2R6
re f

(g2/cm6) t inv
u

G2R6
re f

(g2/cm6) (u,Γ1)
tobs
u

G2R6
tar

(g2/cm6) ε
u,Γ1
Avg ε

u,Γ1
Cross ε

u,Γ1
Res

Model7.0 7.626 7.000±0.24 6.703 4.952×10−2 2.94×10−4 −3.389×10−3

Model7.1 6.562 6.657±0.122 6.703 −1.4×10−3 −2.407×10−4 −2.777×10−4

Model7.2 6.393 6.669±0.123 6.703 −6.597×10−3 −1.292×10−4 −2.478×10−5

Model7.3 6.467 6.667±0.121 6.703 −2.571×10−3 −3.322×10−4 −5.661×10−4

Model8.1 3.450 3.651±0.092 3.568 2.458×10−2 −2.302×10−4 −1.745×10−3

Model8.2 3.337 3.637±0.096 3.568 2.089×10−2 −6.553×10−4 −1.568×10−3

Table 5.21: Combined (τ, tu) inversion results for various �ts with the Levenberg-Marquardt
algorithm.

tref
u

G2R6
re f

(g2/cm6) t inv
u

G2R6
re f

(g2/cm6) (u,Γ1)
tobs
u

G2R6
tar

(g2/cm6) τref(s) τinv(s) τobs(s)

Model7.2 6.393 6.657±0.092 6.703 3230 3223±0.028 3222
Model8.1 3.450 3.651±0.096 3.568 4509 4450±0.028 4442
Model8.2 3.337 3.637±0.120 3.568 4517 4448±0.017 4442

5.3.6 Conclusion

In this section, we have presented a new approach to constraining mixing processes in
stellar cores using the SOLA inversion technique. We used the framework presented in
Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015) to develop an integrated quantity,
denoted tu, that is sensitive to the e�ects of stellar evolution and to the impact of additional
mixing processes or mismatches in the chemical composition of the core. We based our
choice solely on structural e�ects and considerations about the variational principle and
the ability of the kernels to �t their targets.

12We chose not to present these results and to focus our study on the tu indicator.
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The derivation of this new quantity was made possible using the approach of Mas-
ters (1979) to derive new structural kernels in the context of asteroseismology by solving
an ordinary di�erential equation. We discussed the problem of the intrinsic scaling e�ect
presented in Basu (2003) and discussed how it could a�ect the indicator tu. We tested its
sensitivity to various physical changes between the target and the reference model and
demonstrated that SOLA inversions are able to signi�cantly improve the accuracy with
which tu is determined, thereby indicating whether there is a problem in the core regions
of the reference model.

We then analysed the importance of the number and type of modes in the observa-
tional data and concluded that the accuracy of an inversion of the indicator tu increased
with multiple values of the degree, `, and low values of the radial order, n. Following from
this, we emphasise that the observation of `= 3 modes is important for the inversion of
the indicator tu since it can improve the accuracy without the need of low n modes. Such
modes are di�cult to observe. Indeed, only a few octupole modes have been detected
for around 15% of solar-like stars with Kepler. The use of other observational facilities,
such as the SONG network (Grundahl et al. (2007)), might help us obtain richer oscillation
spectra as far as octupole modes are concerned. The test cases for the 16CygA and 16CygB
clones demonstrated that our method was applicable to current observational data and
one could still carry out an inversion of tu without these modes. However, it is clear that
this method will only be applicable to the best observational cases with Kepler, Plato or
SONG.

We also analysed the impact of the selection of the reference model on the inversion results
and concluded that using individual frequency combinations is far more e�cient in terms
of accuracy and stability for the inversion results. However, we noticed in supplementary
tests that there was what could be called a resolution limit for the tu inversion which
depends on the magnitude of the di�erences in the physics between the reference model
and its targets but also on the weight given to the core in the selection of the reference
model (see for example the case of Model8.1 and the associated discussion). This leads to
the conclusion that supplementary independent integrated quantities should be derived to
help us distinguish between various physical e�ects and improve our sensitivity to the
physics of stellar interiors. Nevertheless, the test cases of Sect. 5.3.5 showed that the
SOLA method is much more sensitive than the forward modelling process used to select
the reference model (here a Levenberg-Marquardt algorithm) and could indicate whether
the set of free parameters used to describe the model is adequate.

5.4 Constraining convective regions with asteroseismic linear structural inver-
sions

5.4.1 Introduction

Inversion techniques have been used for several decades in helioseismology to analyze
the structure of the Sun. Amongst the greatest successes of this �eld, one �nds the
determination of the base of the solar convective envelope (Kosovichev and Fedorova
(1991)) and the helium abundance in this region (Antia and Basu (1994a) and Kosovichev
(1993)), as well as the inversion of the sound speed pro�le (Antia and Basu (1994b)). While
for the Sun it is possible to determine a whole structural pro�le with linear techniques,
the case of asteroseismic inversions is far more di�cult. This is due to the small number
of modes and the absence of oscillations of high harmonic degree, which can help to scan
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through the whole structure of the star. Initial studies have been performed to carry
out inversions based on the variational principle for stars other than the Sun (see Basu
(2003), D. O. Gough and Kosovichev (1993a,b), and Takata and Montgomery (2002) for a
few examples of such studies).

Since the advent of space photometry missions such as CoRoT Baglin et al. (2009)
and Kepler (Borucki et al. (2010)), we now have seismic data with su�ciently small
uncertainties to attempt structural inversions to constrain models of solar-like stars. In
the future, the TESS and Plato 2.0 missions (Rauer et al. (2014)) will bring further data,
carrying on what is now named the space photometry revolution.

While for some of the best Kepler targets, full pro�les inversions could be attempted,
they would require very speci�c conditions. For example, a convective parameter inversion
as shown in Kosovichev (1993) would need a very accurate knowledge of the mass and
radius of the target as shown in Buldgen, D. R. Reese, and M. A. Dupret (2017) from the
analysis of the linear relations for various structural kernels. Secondly, an e�cient way to
deal with surface corrections without degrading the capabilities of the inversion technique
would need to be found. As a workaround to these di�culties and to allow more versatile
applications of these technniques, (D. R. Reese, Marques, et al. (2012)) adapted the classical
inversion techniques so that they would focus on extracting global information such as the
mean density from the oscillation spectra. This global information is de�ned by integrated
quantities which are chosen for their particular ability to probe certain aspects of stellar
structure (see for example Buldgen, D. R. Reese, and M. A. Dupret (2015) and Buldgen,
D. R. Reese, M. A. Dupret, and Samadi (2015)).

The strength of this approach is that it focuses the entire information of the seismic
spectra into to the determination of one piece of information at a time. Moreover, this
information, which is a linear combination of frequency di�erences is related through
the variational integral relations (Dziembowski, Pamyatnykh, and Sienkiewicz (1990)) to
structural characteristics. Our goal is to further correct seismic models which have been
built using the classical forward modelling method used in asteroseismology. Once the
integrated quantity is de�ned, one can use the SOLA inversion technique (Pijpers and
Thompson (1994)) to check whether it is possible to obtain corrections of the chosen
structural indicator. The success of the operation depends on whether the integrated
quantity will behave linearly and whether the target function can easily be �tted with the
amount of seismic information available. Ultimately, one still faces the classical trade-o�
problem of inversion techniques and the �ne-tuning of the parameters has to be done
carefully if one wishes to extract e�ciently the structural information from the seismic
observations.

In this section, we will present results from hare-and-hounds exercises for new
indicators based on an entropy proxy. We will start by presenting the kernels associated
with the structural quantity we use in the inversions. We will show how this variable
naturally reproduces the entropy plateaus in adiabatic convective regions and how its
behaviour can be used to probe both convective cores and envelopes with custom-built
indicators. Probing convective regions and their surrounding layers is crucial as they are
likely subject to extra-mixing.

These questions are illustrated by the current uncertainties on the solar tachocline
(see Zahn (2007) and references therein) and emphasize the physical complexity linked
to convective envelopes. In the Sun, indications of mixing can be seen in the relative
sound speed di�erences or from rotation inversions, where the change from di�erential
to solid body rotation is associated with this particular region of solar structure. In
asteroseismology, convective penetration has also been observed in the CoRoT target
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HD52265 (Lebreton and Goupil (2012)). From a seismic point of view, glitch �tting
techniques may help to position the acoustic depth of the convective envelope (see
Monteiro, Christensen-Dalsgaard, and Thompson (1994, 2000) and Verma, Raodeo, et al.
(2017)). However, these techniques also require very high data quality and currently, the
signal related to the base of the convective zone is considered by some authors to be
too weak to be fully exploited (Verma, Raodeo, et al. (2017)). In that sense, our approach
takes a di�erent path, by focusing on global information rather than localized signatures
to provide additional constraints.

Besides additional mixing processes, inaccuracies in the physical ingredients and
numerical techniques used in stellar models can leave their mark on the boundaries of
convective regions and therefore on the whole strati�cation of the model (Gabriel, Noels,
et al. (2014)). This, in turn, will adversely a�ect age determinations, and to a lesser
degree, the accuracy with which other stellar parameters are obtained. For example, the
inaccuracy with which is determined the extent of a convective core induces uncertainties
on the age of an observed target that far exceed 10%, thus emphasizing the importance of
constraining convective regions in the current context of the Plato 2.0 mission.

In Sect. 5.4.4, we will test the accuracy of both indicators for various targets and
analyse their error contributions to see whether the inversion can be computed for the
best solar-like targets at hand. Finally, we will conclude by summarising our results and
comment on further analyses which have to be carried out to fully assess the potential of
structural inversions in asteroseismology.

5.4.2 Kernels for the entropy proxy

Obtaining a new indicator with asteroseismic inversions means �nding a new way to
e�ciently extract information from the frequencies. Due to the small number of observed
modes, the target functions associated with the indicators must be constructed so that
they can easily be �tted by structural kernels. Moreover, the choice of the structural
variable must be physically motivated. For example, the use of the squared isothermal
sound speed u in Buldgen, D. R. Reese, and M. A. Dupret (2015) to analyse deep regions is
motivated by the approximate relation u≈ T

µ
in the core. In Dziembowski, Pamyatnykh,

and Sienkiewicz (1990), its use was motivated by the problem of measuring the helium
abundance in the solar convective envelope.

In this study, we focus on convective regions. Speci�cally, we wish to be able to
analyse the uncertainties linked to the detection of convective cores and extra-mixing at
the boundaries of convective regions. However, we have to keep in mind the intrinsic
limitations of inversions in asteroseismology. From our previous studies (Buldgen, D. R.
Reese, and M. A. Dupret (2017)), we know that kernels like the (A,Γ1) or (A,Y ) kernels,
where A= d lnρ

d lnr −
1

Γ1

d lnP
d lnr , cannot be used without a very accurate and precise determination

of the radius, which far exceed observational uncertainties which are of the order of a
percent in the case of interferometry. This means that we have to �nd a new structural
pair which e�ciently probes convective regions. In this section, we will derive new
kernels associated with the variable S5/3 =

P
ρ5/3 , with P the pressure and ρ the density,

and justify its choice as an e�cient probe of convective regions.
The choice of S5/3 as a structural variable stems from its relation with the entropy of

an ideal gas. If one considers the Sackur-Tetrode equation in this particular case, one �nds

S =
3kB

2

(
µmu ln

(
P

ρ5/3

)
+ f (µ)

)
, (5.86)

with kB the Boltzmann constant, µ the mean molecular weight and mu the atomic mass
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unit. In this equation, f only depends on the mean molecular weight and various physical
constants.

This quantity has the interesting property of forming a plateau in the adiabatic
convection zones. The height of this plateau is related to the temperature and mean
molecular weight gradients in the vicinity of the convective zone’s boundary and thus to
the strati�cation of these poorely modelled regions. We will illustrate this property in
Sect. 5.4.3, when we will derive the seismic indicators.

Due to the limited number of frequencies in asteroseismology, the second variable of
the structural pair must be chosen so that the cross-term will naturally be small. Two

variables satisfy this condition: Γ1, the adiabatic exponent de�ned as Γ1 =
(

∂ lnP
∂ lnρ

)
S

and Y ,

the helium abundance. This means that the structural pairs we are aiming for are the
(S5/3,Γ1) and (S5/3,Y ) pairs, which can be derived from the (ρ,Γ1) and (ρ,Y ) pairs. One
could also use the (u,Γ1) and (u,Y ) pairs without any further di�culties to derive the
di�erential equations. However, since in practice the (u,Y ) and (u,Γ1) kernels are already
obtained from the numerical resolution of a second order di�erential equation, it is wiser
to use the (ρ,Γ1) and (ρ,Y ) kernels as a starting point to avoid multiplying the sources
of numerical errors.

Using the direct method presented in Buldgen, D. R. Reese, and M. A. Dupret (2017), the
equation obtained for the (S5/3,Γ1) kernels is a second order di�erential equation written
as follows

−y
d2K

′

dy2 −

[
3− 2πy3/2ρ

m

]
dK

′

dy
=

5y
3

d2K

dy2 −

[
5− ρm

2Py1/2 −
10πy3/2ρ

3m

]
dK

dy

−
[

m
4y1/2ρ

dρ

dy
+

ρ2m2

4y2P2 −
mρ

4Py3/2

]
K , (5.87)

with y = ( r
R)

2 where r is the radial position and R the total radius of the star, m the mass
contained within the sphere of radius r, K = Kn,`

S5/3,Γ1
, K

′
= Kn,`

ρ,Γ1
. As was the case for the

(u,Y ) kernels, one can use exactly the same equation to obtain the (S5/3,Y ) kernels from

the (ρ,Y ) kernels by simply taking K
′
= Kn,`

ρ,Y and K = Kn,`
S5/3,Y

.

The Kn,`
Γ1,S5/3

and Kn,`
Y,S5/3

are directly obtained from the following algebraic relations:

Kn,`
Γ1,S5/3

= Kn,`
Γ1,ρ

, (5.88)

Kn,`
Y,S5/3

= Kn,`
Y,ρ (5.89)

Examples of such kernels are illustrated in Fig. 5.18.
The integral equations used as a starting point for the problem is used to derive the

additional boundary condition required to solve the second order equation. This equation
is written

Kn,`
ρ,Γ1

=
Gmρ

r2

∫ r

0

Kn,`
S5/3,Γ1

P
dr+4πr2

ρ

∫ R

r

Gρ

r̃2

∫ r̃

0

Kn,`
S5/3,Γ1

P
dr̄

dr̃

− 5
3

Kn,`
S5/3,Γ1

, (5.90)

and the additional boundary condition imposed on the new structural kernels is that they
satisfy this equation at one point. This can be done either iteratively or by decomposing
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Figure 5.18: Structural kernels for the n = 15, ` = 0 mode associated with the (S5/3,Γ1)
structural pair on the le� hand side and with the (S5/3,Y ) pair on the right hand side for
Target 1 of table 5.22. The kernels are presented in their non-dimensional form.

the problem into an homogeneous and non-homogeneous component (see Buldgen, D. R.
Reese, and M. A. Dupret (2017) for further details).

Once the kernels are derived, equation 5.90 also provides a �rst veri�cation step to
ensure that the kernels are in agreement with the initial steps of their derivation. The
second veri�cation is to ensure that the variational integral expressions are satis�ed by
the new kernels. In other words, ensure that we have:

δνn,`

νn,` =
∫ R

0
Kn,`

ρ,Γ1

δρ

ρ
dr+

∫ R

0
Kn,`

Γ1,ρ

δΓ1

Γ1
dr

=
∫ R

0
Kn,`

S5/3,Γ1

δS5/3

S5/3
dr+

∫ R

0
Kn,`

Γ1,S5/3

δΓ1

Γ1
dr (5.91)

Both veri�cations are illustrated in Figs. 5.19 for the (S5/3,Γ1) pair and 5.20 for the (S5/3,Y )
pair. The order of magnitude of the agreement is very similar to what is found for classical
kernels such as the (ρ,c2) and the (ρ,Γ1) structural pairs. However, small di�erences
can always be seen when changing the structural pair, as presented in Buldgen, D. R.
Reese, and M. A. Dupret (2017). We recall that to ensure the veri�cation of the variational
equations, the scaling method mentioned in Buldgen, D. R. Reese, and M. A. Dupret (2017)
is of course necessary since the observed target and the reference model may not have
the same radius.

5.4.3 Using the entropy proxy to obtain indicators of convective regions

In this section, we illustrate the sensitivity of the entropy proxy, S5/3, to convective regions
and we show how to build seismic indicators useful for asteroseismic targets using the
newly derived kernels.

Inverting an integrated quantity using the SOLA inversion technique actually consists
in �nding the linear combination of frequency di�erences which best reproduces the
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Figure 5.19: (Le� panel) Veri�cation of equation 5.90 for Target 1 of table 5.22 for the
n = 16, `= 0 mode kernel K16,0

S5/3,Γ1
, where I16,0

S5/3,Γ1
is the right hand side of this equation and

R is the residual. All quantities are presented in their non-dimensional form. (Right panel)
Veri�cation of Eq. 5.91 for modes of degree `= 0,1,2,3 and various radial orders between
Target 1 of table 5.22 and a model of the same evolutionary sequence, 500 My younger.

correction to be applied to this integrated quantity. As noted before, the indicator is
optimized to probe certain parts of the stellar structure. We �rst present the generic case
of a quantity A, the linear perturbations of which are given by

δA
A

=
AObs−ARe f

ARe f
=
∫ 1

0
TA

δ s1

s1
dx, (5.92)

with TA the target function used for the inversion and s1 a variable such as ρ , c2 or S5/3.
We recall that a generic expression of the linear integral relations can be written.

δνn,`

νn,` =
∫ R

0
Kn,`

s2,s1

δ s2

s2
dr+

∫ R

0
Kn,`

s1,s2

δ s1

s1
dr (5.93)

with s2 the second variable of the integral relations and the Kn,`
si,s j the kernel functions

related to each structural variable.
The inversion process estimates the di�erences between the observed integrated

quantity, AObs and that of the reference model, ARef using the following relation(
δA
A

)
Inv

= ∑
i

ci
δνi

νi
, (5.94)

with δν = νObs− νRe f and the ci being the inversion coe�cients determined from the
minimization of the SOLA cost function (see Pijpers and Thompson (1994) and Eq. 5.95).
The inverted di�erence in Eq. 5.94 is not exactly the real di�erence in Eq. 5.92, due to
the intrinsic limitations of the inversion.

The inversion process as a whole is a trade-o� between various antagonistic terms.
This is understood from the cost function used to carry out the SOLA inversion

JA =
∫ 1

0

[
KAvg−TA

]2 dx+β

∫ 1

0
K2

Crossdx+ tan(θ)
N

∑
i
(ciσi)

2

+η

[
N

∑
i

ci− k

]
, (5.95)
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Figure 5.20: (Le� panel) Veri�cation of equation 5.90 for the (S5/3,Y ) structural pair for
n = 16, `= 0 mode kernel K16,0

S5/3,Y
, where I16,0

S5/3,Y
is the right hand side of this equation and

R is the residual. All quantities are presented in their non-dimensional form. (Right panel)
Veri�cation of Eq. 5.91 for the (S5/3,Y ) structural pair for modes of degree `= 0,1,2,3 and
various radial orders. The models used are the same as in Fig. 5.19.

which contains four terms. The �rst term is associated with �tting the target function: it
ensures the accuracy of the inversion and includes the averaging kernel, de�ned as

KAvg =
N

∑
i

ciKi
s1,s2

, (5.96)

with N the total number of individual observed frequencies. The second integral deals
with the cross-term kernel, de�ned as

KCross =
N

∑
i

ciKi
s2,s1

, (5.97)

which is a pollution term by the variable s2 whose contribution has to be damped. The
third term is linked with the propagation of observational error bars of the individual
frequencies, denoted here σi. The last term is linked to the additional normalisation
constraint on parameter k derived using homologous relations (see Sect. 5.4.3 and (D. R.
Reese, Marques, et al. (2012)) for a description of this approach) and unlike β and θ , η is
not a free parameter of the inversion but a Lagrange multiplier. The free parameters of the
inversion, β and θ , are used to give more or less importance to each of the antagonistic
terms and are thus called the trade-o� parameters.

The optimal set of parameters is de�ned by analysing the amplitude of the �rst three
individual terms of Eq. 5.95 and visually verifying that the �t is reliable. In practice,
this implies that the inversion will be a compromise between precision, accuracy and
cross-term. As stated in Sect. 5.4.2, the cross-term is damped by a suitable choice of
variables which has been validated in previous studies (Basu (2003) and D. R. Reese,
Marques, et al. (2012)). Consequently, the main part of the trade-o� problem is to �nd a
suitable compromise between precision and accuracy. This is done by comparing the terms
responsible for these characteristics in so-called trade-o� curves (see Backus and Gilbert
(1967), Pijpers and Thompson (1994), Rabello-Soares, Basu, and Christensen-Dalsgaard
(1999), and D. R. Reese, Marques, et al. (2012) for the full de�nition of this concept and
various applications), where one plots the following quantities
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||KAvg||2 =
∫ 1

0

[
KAvg−TA

]2 dx, (5.98)

σInv =

√
N

∑
i
(ciσi)2, (5.99)

for various values of θ . In practice, a visual inspection of the agreement of the averaging
kernels with their target is also informative on the quality and reliability of the inverted
results. In practice, the set of inversion parameters will depend on the target function of
the inversion and the observed seismic data.

In addition to these reliability assessments, further analyses can be performed, by
separating the contribution to the linear correction derived from the frequencies using
Eq. 5.94. Indeed, inversion techniques are subject to multiple error sources which can
sometimes damp each other. To analyse this potential compensation, the linear correction
of a given integrated quantity A can be decomposed into various contributions

AObs =ARe f +

(
δA
A

)
Inv

+
∫ 1

0
(TA−KAvg)

δ s1

s1
dx+

∫ 1

0
KCross

δ s2

s2
dx

+ εRes,

=ARe f +

(
δA
A

)
Inv

+ εAvg + εCross + εRes, (5.100)

where we de�ne three main error contributions: εAvg, the error stemming from the
mismatch between the averaging kernel and its target, which depends on the quality of
the dataset and the value of the θ parameter, εCross, the error stemming from the non-zero
cross-term contribution which depends on the choice of the variable s2 and the parameter
β , and εRes, the residual error, which is de�ned as

εRes =
AObs−ARef

ARef
− εAvg− εCross. (5.101)

This contribution is the most di�cult to assess, since it can originate from surface
e�ects, the linearization of the equation of state and non-linear e�ects. In inversions of
observed targets, the residual errors would also be in�uenced by physical processes not
included in the derivation of the variational relations and on systematics in the frequency
determinations. However, since its calculation requires the knowledge of the structural
di�erences between the target and the reference model, the value of this residual error is
not accessible in practical cases. As we will see in Sect. 5.4.4, we will use these error
contributions in combination with the classical trade-o� analysis to determine the degree
of reliability of the inversion and its accuracy.

Convective cores and deep regions
Convective cores are one of the major di�culties when studying the evolution of stars
with masses higher than approximately 1.2M�. Indeed, their presence can lead to large
uncertainties in age determinations and completely change the evolutionary track of a
given model. Various studies focus on to the uncertainties linked to convective cores, for
example the recent studies by Deheuvels, Brandão, et al. (2016) and Claret and Torres
(2016) to calibrate overshooting, or the derivation of dedicated seismic indices to the
detection of a convective core in a given star (see Miglio and Montalbán (2005)).

Looking at structural pro�les of a model, the presence of a convective core can easily
be seen in derivatives, where it introduces a discontinuity. This means that indicators
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based on derivatives, such as the tu indicator presented in Buldgen, D. R. Reese, and
M. A. Dupret (2015), de�ned as

tu =
∫ R

0
r(r−R)2 exp−7( r

R)
2
(

du
dr

)2

dr (5.102)

or t presented in Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015), de�ned as

t =
∫ R

0

1
r

dc
dr

dr (5.103)

will be extremely sensitive to convective cores. However, the target function associated
with these indicators is impossible to �t with the structural kernels if a convective core
is present in the model. Indeed, both of the target functions for t and tu are strongly
discontinuous whereas the structural kernels are not. Using S5/3 as the structural variable
for the kernels, we recover the sensitivity to convective cores without the need for a
derivative. Moreover, as can be seen in Fig. 5.18, the structural kernels associated with
S5/3 have an increased intensity in the deep regions, around 0.2r/R, due to the mass
dependency of the entropy proxy.

We de�ne a new indicator for convective cores as follows:

Score =
∫ R

0

f (r)
S5/3

dr (5.104)

with f (r) the weight function associated with the indicator:

f (r) =r
(

10exp
(
−26

( r
R
−0.17

)2
)
+3exp

(
−5
( r

R
−0.23

)2
))

tanh
(

50
(

1− r
R

))
(5.105)

The target function is built to �t the lobe around 0.2r/R present in every kernel of either
the (S,Γ1) or the (S,Y ) structural pair.

The linear perturbation of this indicator leads to the following target function for the
inversion:

δScore

Score
=

1
Score

∫ R

0
− f (r)

S5/3

δS5/3

S5/3
dr (5.106)

This means that the target function of this inversion is de�ned as follows

TSCore =
− f (r)

SCoreS5/3(r)
(5.107)

This function is illustrated in blue in Fig 5.21 along with the pro�le of 1/S5/3 in red. The
product of both curves gives the argument of the integral de�ning the indicator. From
visual inspection, it is clear that this argument probes the inner layers of the acoustic
structure of the star. One should also note that this indicator is not restricted to stars with
convective cores but can also be a complement to or a replacement for the tu indicator.

If the convective core is well established and has quite a high plateau with a steep
entropy variation, a peak tends to appear in the target function, as illustrated in Fig.
5.22. This peak is in fact due to the boundary of the convective core. Due to the O(r2)
behaviour of the structural kernels in the center, the entropy plateau of the convective



5.4 Constraining convective regions with linear structural inversions 163

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Position r/R

f S

GR2/(S5/3) (cm/g1/3)

TScore

Figure 5.21: Target function of the core indicator SCore plotted alongside the structural
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5/3. The model used is Target 3 of table 5.22. The target function is plotted in
its non-dimensional form.

core is erased, but if its height and radial extent are su�cient, some traces remain in the
kernels. Consequently the target function de�ned in Eq. 5.104 can still be �tted and is
well adapted to extract information about convective cores. From numerical tests, the
linear relations between frequencies and structure (Eq. 5.87) are still satis�ed even in
these particular cases. We will see in Sect. 5.4.4 how e�cient the inversion actually is
when confronted with these e�ects. The weight functions can also be adapted to be more
easily �tted if required. Ultimately, the diagnostic power is limited by the detected modes
and their error bars.

Convective envelopes
In this section, we will show that it is possible to probe the upper radiative zone and
the convective envelope of certain Kepler targets. However, fully isolating the convective
envelope is done thanks to high ` modes, as in helioseismology. Since these modes are not
accessible to asteroseismology a complete scan of the structure is not achievable. However,
a few `= 3 modes can still help with extracting information from the observations. The
e�ciency of this technique is mitigated by the di�culty to detect octupole modes, even
for Kepler targets, and the low precision of their frequency determinations.

Our objective here is to probe the plateau in the convective envelope of S5/3, shown
in Fig. 5.23, and layers just below it. However, a compromise has to be found to exclude
the uppermost region of the star, subject to surface uncertainties and a breakdown of the
assumptions behind inversion techniques. Provided that the data quality is su�cient, the
following indicator can be �tted

Senv =
∫ R

0
g(r)S5/3dr, (5.108)

which means that the target function for this inversion will be

TSenv =
g(r)S5/3(r)

Senv
, (5.109)

stemming from the relative linear perturbation of Eq. (5.108) and not forgetting the constant
factor Senv in the denominator. The weight function g(r) is somewhat complicated and has
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Figure 5.22: (Le� panel) Structural pro�le of S−1
5/3 in red, showing the plateau in the

convective core. In blue, an example of the adaptation of a target function to include
the trace of the convective core and its border. The target function is plotted in its
non-dimensional form. (Right panel) Structural kernels associated with S5/3 in the (S5/3,Γ1)
structural pair, showing the trace of the entropy plateau in the convective core in the
central regions. The model used is Target 6 of table 5.22. The kernels are plotted in their
non-dimensional form.

been built to match the behaviour of kernels while trying to extract information in the
upper regions. To explain the choice of g(r), we separate it in three components:

g(r) = (g1(r)+g2(r))g3(r), (5.110)

with the following de�nitions:

g1(r) =r1.5
(

30exp
(
−120

( r
R
−0.3

))2

+7exp
(
−45

( r
R
−0.37

)2
))

, (5.111)

g2(r) =
0.4r1.5

exp
((R

r −1.7
)
/1.2

)
+1

, (5.112)

g3(r) = tanh
(

50
(

1.0− r
R

))
. (5.113)

The function g1 is used to probe deeper regions where the entropy is in�uenced by the
way it is reconnected to the plateau of the convective envelope. Looking at Fig. 5.23,
we see that this corresponds to the regions where a slope starts in the entropy pro�le.
The g2 component is a Fermi-Dirac distribution that reproduces the entropy plateau in
the convective envelope. The g3 function eliminates the surface regions as e�ciently
as possible through the hyperbolic tangent. This component is steep in order to avoid
a�ecting the lower part of the pro�le. The target function combining all three components
is represented in Fig. 5.23. These components can be further adjusted depending on the
reference model and the observed modes.

For example, we will see in Sec. 5.4.4, that octupole modes are required to carry
out inversions of the SEnv indicator. The number of these modes and their error bars
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Figure 5.23: Target function of the envelope indicator SEnv plotted alongside the structural
function S5/3 for Target 1 of table 5.22. The target function is plotted in its non-dimensional
form.

also in�uence the paramaters of the g1 function. A larger number of precisely determined
octupole modes allows for a higher position of the peak in the g1 function and a more
slowly decreasing slope towards the convective envelope, implying a better analysis of
these regions. Besides the observed modes, the reference model also a�ects the building
of the target function of the SEnv indicator. For example, a more massive star, having a
shallower convective envelope, will require an adaptation of the g2 and g1 functions to
avoid building a target that cannot be easily �tted with only low ` modes.

Non-linear generalisation
As in Buldgen, D. R. Reese, and M. A. Dupret (2015) and D. R. Reese, Marques, et al. (2012),
one can improve the inversion by using a simple non-linear generalisation of the inversion
procedure. To do this, we follow the procedure in section 3.2 of Buldgen, D. R. Reese, and
M. A. Dupret (2015). From dimensional analysis, we can show that

S5/3 =
P

ρ5/3 ∝
GM2R5

M5/3R4 ∝ GRM1/3. (5.114)

This dimensional analysis is also crucial to know how the indicator value should be
rescaled to be comparable for various reference models. We have seen in Buldgen, D. R.
Reese, and M. A. Dupret (2015) that the inversion implicitly rescales the target model to
the radius of the reference model without changing its mean density. This means that
the quantity S5/3 is then also rescaled. Consequently, when comparing inversions from
various reference models, one should always be aware of this scaling and present them in
a form proportional to the mean density. For example, using equations 5.104 and 5.105,
one can carry out a dimensional analysis of the core conditions indicator, leading to

SCore ∝
R2

S5/3
∝

R
GM1/3 , (5.115)

meaning that the quantity GSCore scales as ρ−1/3. For SEnv, dimensional analysis from
equations 5.108 and 5.113 leads to

SEnv ∝ R3.5M1/3G. (5.116)
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Meaning that this quantity needs to be rescaled if it is to be compared for various reference
models. In other words, one has SEnv/GR4.5 ∝ ρ1/3. To provide the coe�cients for the
non-linear generalisation, we focus on the mass dependency of the quantities, since the
radius is implicitely kept constant by the inversion. Looking at Eq. 5.114, this means that
S5/3 ∝ ν2/3 in terms of the M dependency, thus leading to

δS5/3

S5/3
=

2
3

δν

ν
, (5.117)

for a homologous transformation which keeps the radius between models constant but
changes their mean density through their mass. As stated Sect. 3.2 of Buldgen, D. R. Reese,
and M. A. Dupret (2015), the coe�cient in this linear relation between perturbations of the
frequencies and that of a structural quantity, denoted k in our previous paper, is crucial to
derive the non-linear generalisation. In this study, one has k = 2/3 in the relation between
S5/3 and the frequencies. Looking at Eq. 5.108, which de�nes Senv, we can see that since
this indicator is proportional to S5/3. Hence, one will have

δSEnv

SEnv
=

2
3

δν

ν
, (5.118)

and the value of 2/3 can be applied to Eq. 31 and 34 of Buldgen, D. R. Reese, and
M. A. Dupret (2015) de�ning the optimal value of SEnv and its associated errors bars in the
framework of this non-linear generalisation. Similary, the value k will also be �xed to 2/3
in the additional condition on the inversion coe�cients (fourth term of Eq. 5.95) used to
improve the regularisation of the inversion process.

Using the same analysis, it is easy to show that the SCore indicator will satisfy a relation
of the opposite sign, due to its opposite mass dependency,

δSCore

SCore
=
−2
3

δν

ν
, (5.119)

since it is proportional to S−1
5/3. Consequently, the value −2/3 can also be used in Eq.

31, 34 and 28 of Buldgen, D. R. Reese, and M. A. Dupret (2015) to derive the non-linear
generalisation of this indicator.

Relation between Score, Senv and stellar structure
In the preceeding sections, we have shown how the entropy proxy could be used to
obtain indicators of both convective cores and envelopes. In this section we will brie�y
show how they change with some speci�c aspects of stellar structure. We mention that
these changes of course depend on the parameters used to build the target functions of
the indicators. For example, placing the maximum of the gaussian functions deeper in the
SCore target function will increase the changes due to convective cores.

We illustrate the relation between convective cores and the Score indicator in Fig. 5.24
by plotting the rescaled S−1

5/3 pro�les of two 1.3M�, 1.6Gy models with a solar chemical
composition. The model plotted in blue in Fig. 5.24, included a 0.15 pressure scale-height
adiabatic overshoot, causing its convective core to be larger at a given age and inducing
changes in its entropy plateau. Similarly, the peak in the Score target function is much more
pronounced in the blue pro�le than in the red, indicating a more extended convective core.
The changes seen in the indicator thanks to this small variation are of around one percent
of the total value of the indicator. This is of course quite small but results from the fact
that both models have the same age and chemical composition, and only di�er in one
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Figure 5.24: (Le� panel) Scaled S−1
5/3 pro�le used in inversions for two 1.3M� models. The

blue curve is associated with a model built using a 0.15 pressure scale height adiabatic
overshoot. (Right panel) Target function of the Score indicator for both models.

physical ingredient. In a more realistic case, where the models are selected using seismic
constraints, the di�erences between reference model and target can be much larger.

Similarly, we illustrate in Fig. 5.25 the e�ects of opacity changes on solar models. We
compare solar models using the AGSS09 and the GN93 abundances and di�erent opacity
tables. To further increase the di�erences, we do not include microscopic di�usion in the
AGSS09 solar model. This leads to variations in the position of the entropy plateau of
the convective envelope of the models, as can be seen in the le� panel of Fig. 5.25. This
emphasizes the direct link between the entropy plateau and the temperature gradient in
stellar models. The right panel of this �gure illustrates the small changes in the target
function of SEnv. The changes in the target function induce a change in the value of the
indicator of less than one percent. Again this is quite small but is mainly due to the fact
that the models have the same mass, the same age and are not selected on the basis of
their seismic information. Sect. 5.4.4 shows a very di�erent picture for its �rst target, a
solar model including various physical processes �tted using individual small frequency
separations without including these additional processes in the reference model.

5.4.4 Hare-and-hounds exercises

In this section, we present the results of hare-and-hounds exercises carried out to test the
accuracy and the capabilities of the indicators based on the entropy proxy. We test these
capabilities in similar exercises as in Buldgen, D. R. Reese, and M. A. Dupret (2015), using
hares built with certain speci�cities that the hounds did not include. For example, some
hares included strong overshooting or turbulent di�usion and were �tted with hounds
without these processes. This approach attempts to simulate as best as possible the biases
due to physical simpli�cations or approximations in our representation of stellar structure
and evolution when carrying out seismic modelling of observed targets. It is also a good
test of robustness and accuracy to see whether the linear approximation and the SOLA
method are indeed capable of probing such aspects of stellar modelling.
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Figure 5.25: (Le� panel) Scaled S5/3 pro�le used in inversions for two standard solar
models. The blue curve is associated with a model built using the AGSS09 abundances
while the red one uses the GN93 abundances. (Right panel) Target function of the Senv

indicator for both models.

Seismic diagnostic and accuracy

In total, we built 10 targets with various masses and ages, but only present 6 to avoid
redundancy. The hounds were built by �tting the hare’s individual small frequency
separations and their e�ective temperatures. The �t was carried out using a Levenberg-
Marquardt algorithm for the minimization. The observational spectrum of the hares is
given in Table 5.24. An error bar of 80K was used on the e�ective temperature and the
observational error bars on the frequencies were similar to those found of the best Kepler
targets. The physical characteristics of the target models are given in Table 5.22. Some
parameters have rather extreme values, in order to test the inversion and its limitations.
Targets 1 to 5 were built using the OPAS opacities (Le Pennec et al. (2015) and Mondet et al.
(2015)) and the Ce� equation of state (Christensen-Dalsgaard and Daeppen (1992)) with
the AGSS09 abundances (Asplund, Grevesse, Sauval, and Scott (2009)) while target 6 was
built using the OPAL opacities (Iglesias and Rogers (1996)) and the OPAL equation of state
(Rogers, Swenson, and Iglesias (1996)) with its corrections (Rogers and Nayfonov (2002)).
The reference models all used the Ce� equation of state and the OPAL opacities along with
the GN93 abundances (Grevesse and Noels (1993)). None of the reference models included
turbulent di�usion. The formalism used to implement turbulent di�usion in the target
models is presented in Miglio, Montalbán, and Maceroni (2007). All models were computed
using the Liège Stellar Evolution Code (CLES, Scu�aire, Théado, et al. (2008)) and the
oscillations were computed using the Liège Oscillation Code (LOSC, Scu�aire, Montalbán,
et al. (2008)). The reference models obtained from this �rst step of forward seismic
modelling are presented in table 5.23. As can be seen, most of the hounds, denoted “Re f ”
still present signi�cant structural di�erences with their respective target from table 5.22.
The goal of the exercises is now to determine whether the inversions of the structural
indicators can detect these mismatches, and thus provide additional information which
could lead to re�nements of the seismic modelling in the study of an observed target13.

We also tested the impact of supplementary observed modes, for example `= 4 and 5

13Similar exercises can be found in Sect. 5 of Buldgen, D. R. Reese, and M. A. Dupret (2015)
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Table 5.22: Characteristics of the target models used in this study.
Target1 Target2 Target3 Target4 Target5 Target6

Mass (M�) 1.0 1.1 0.86 1.14 1.05 1.07
Age (Gy) 4.5 6.0 2.0 3.5 1.5 5.0

Radius (R�) 0.9896 1.3492 0.8178 1.0908 1.1033 1.56
Te f f (K) 5823 5907 5056 5748 5918 5.983

Z0 0.02 0.02 0.015 0.03 0.02 0.013
X0 0.69 0.69 0.67 0.7 0.65 0.68

Abundances AGSS09 AGSS09 AGSS09 AGSS09 AGSS09 GN93
αMLT 2.0 1.8 1.7 1.9 1.5 1.7

αOv 0.1 0.2 0.2 0.2 0.2 0.15
Microscopic Di�usion Yes Yes Yes Yes Yes Yes

Turbulent Di�usion Yes Yes No Yes Yes Yes

Table 5.23: Characteristics of the reference models obtained from the forward modelling
process.

Ref1 Ref2 Ref3 Ref4 Ref5 Ref6
Mass (M�) 1.17 1.29 0.84 0.93 1.04 1.12

Age (Gy) 3.3 4.6 1.8 4.0 1.3 4.5
Radius (R�) 1.05 1.42 0.80 1.02 1.10 1.55

Te f f (K) 5826 5991 5069 5751 5960 6035
Z0 0.052 0.036 0.015 0.013 0.014 0.015
X0 0.65 0.68 0.7 0.7 0.68 0.67

Abundances GN93 GN93 GN93 GN93 GN93 GN93
αMLT 2.5 2.2 1.4 1.4 1.4 1.8

αOv 0.0 0.1 0.0 0.1 0.2 0.1
Microscopic Di�usion Yes Yes Yes Yes Yes Yes

Turbulent Di�usion No No No No No No

modes but also modes with higher and lower n, on the accuracy of the inversion. Our
goal was to assess which oscillations modes could help with extracting more information
on stellar structure using inversions of integrated quantities. The error bars were usually
taken to be similar to those of the best Kepler targets, i.e. around 3× 10−1 µHz with
slightly larger error bars for the lowest and highest frequencies, as expected in observed
cases.
Results for SCore inversions

In Table 5.25, we summarise the results of our test cases. Some kernels are illustrated
in Fig. 5.26. In these hare and hounds exercices, we consider observed quantities, denoted
with the subscript “Tar”, to be those of the target models.

From the inversions for Targets 2 and 5, we can see that the SCore indicator e�ciently
detects an inaccuracy in the strati�cation of the hounds, due to the absence of convective
cores in these models. For Targets 3, we can see that the inversion provides an accurate
result, but that the error bars on the inverted result are too large to conclude that the
model has to be rejected. From a modelling point of view, we can see from tables 5.23
and 5.22 that Ref3 is already a very good �t to Target3. Adding more frequencies to this
test case allowed to eliminate this problem but in practice, this would mean that for this



170 Chapter 5. INVERSIONS OF INTEGRATED QUANTITIES

Table 5.24: Frequencies used to �t the simulated targets.
` 0 1 2 3
n 13−27 13−27 12−26 17−23

Table 5.25: SCore inversion results for the 6 targets using the (S5/3,Y ) kernels.

SRef
CoreG (cm/g1/3) SInv

CoreG (cm/g1/3) STar
CoreG (cm/g1/3) ε

S5/3,Y
Avg ε

S5/3,Y
Cross ε

S5/3,Y
Res

Target1 3.201 3.118±0.0251 3.126 −3.085×10−3 −1.744×10−4 7.104×10−4

Target2 3.817 3.660±0.067 3.668 −2.477×10−3 −3.235×10−5 1.110×10−4

Target3 2.789 2.786±0.034 2.783 5.714×10−4 1.868×10−4 1.783×10−4

Target4 3.124 3.190±0.048 3.184 1.706×10−3 −1.383×10−4 4.121×10−4

Target5 2.734 2.720±0.007 2.726 −1.758×10−3 2.424×10−4 −5.751×10−4

Target6 3.408 3.434±0.003 3.438 −1.357×10−3 −5.035×10−5 3.779×10−4

particular case, the SCore indicator would only be an additional check for the modelling.
However, in most test cases, the observed di�erences between reference and inverted
results are smaller than the error bars of the inverted result, meaning that we are still
safe in terms of trade-o� parameters.

Moreover, it should be noted that the values of the parameters in the de�nition of
these indicators are not �xed. The number of frequencies available and the characteristics
of the convective core (if present) imply that the parameters considered optimal in a
case might be suboptimal in another case, depending on the mass, evolutionary stage or
chemical composition of the model. For each of the targets in table 5.25, we �ne tuned
the parameters to analyse the diagnostic potential using the oscillation modes of table
5.24. Further tests on targets of the Kepler LEGACY sample (see Buldgen, D. Reese, and
M.-A. Dupret (2017)) have also shown similar behaviours and proved that the method was
indeed applicable to current seismic data.

From table 5.25, we can conclude that the inversion is e�cient and can provide
a diagnostic of inaccuracies in our modelling of deep regions of solar-like stars with
convective cores. Very slight compensation is seen for Target 5 and 6, but further tests
have shown these cases to be marginal. In addition, the averaging kernels illustrated in
Fig 5.26 �t their target function to an acceptable level of accuracy.
Results for SEnv inversions

In Table 5.26, we present inversion results for the SEnv indicator. Some kernels are
shown in Fig 5.27. We used the same targets, oscillation spectra and naming conventions
as for the SCore indicator.

From table 5.26, we can see that reproducing the value of SEnv can be done e�ciently
for most targets. However, for target 5, for example, the inversion is very di�cult because
of the proximity between the target and its hound. The variation of the indicator is too
small to be seen with the typical accuracy of asteroseismic data. In comparison, some
standard solar models show larger di�erences between each other than what is seen
between target 5 and its hound. In addition, target 5 is more massive, meaning that its
envelope does not go as deep as in a lower mass star. In fact, we found the base of the
envelope to be around 0.75 fractional radii in its reference model. Therefore, the sensitivity
of the indicator has to be increased by pushing the weight function towards upper regions.
However, the structural kernels, illustrated in the right panel of Fig. 5.22 for a massive
star with a convective core (noticeable by the peak in the deeper layers) show the exact
opposite trend, the more massive the model, the steeper the decrease towards upper
regions. Consequently, the amount of seismic information required to probe the convective
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Figure 5.26: (Le� panel) Averaging kernel for the SCore indicator (blue) and the target
function for the inversion (green). (Right panel) Cross term kernel for the SCore inversion
(blue), and target function which is 0 (green). These results are presented for Target 2 of
table 5.22.

Table 5.26: SEnv inversion results for the 6 targets using the (S5/3,Y ) kernels.
SRef

Env
R4.5

Re f G1/3 (g1/3/cm)
SInv

Env
GR4.5

Re f
(g1/3/cm)

STar
Env

GR4.5
Tar

(g1/3/cm) ε
S5/3,Y
Avg ε

S5/3,Y
Cross ε

S5/3,Y
Res

Target1 1.682 1.805±0.035 1.807 −2.079×10−3 1.560×10−4 4.110×10−2

Target2 1.611 1.759±0.071 1.772 9.473×10−4 9.717×10−6 −8.521×10−3

Target3 1.127 1.050±0.046 1.040 1.338×10−2 2.127×10−5 −3.964×10−3

Target4 0.924 0.914±0.057 0.9083 5.787×10−3 −8.729×10−5 −8.189×10−4

Target5 1.626 1.627±0.081 1.629 −5.462×10−4 −2.837×10−5 −6.224×10−4

Target6 1.777 1.849±0.044 1.848 8.039×10−3 −1.374×10−4 −7.517×10−3

envelope of massive stars is higher than for low mass stars, for which the entropy plateau
goes deeper and the kernels are more suited to their purpose. We con�rm this by carrying
out supplementary test cases for additional low mass targets and show that these can
be probed with the SEnv indicator. We illustrate one of these hare-and-hounds exercises
in Fig. 5.28 and also test the e�ects of reducing the number of observed frequencies.
For the SCore indicator, going down to 44 frequencies still works. However, by changing
the parameters in the target function of the indicator, valuable information can still be
gained with as low as 35 observed frequencies. For the SEnv indicator, using fewer than
45 frequencies may already lead to imprecise results and we noticed that `= 3 modes
were required to ensure an acceptable �t of the target function. Its range of application is
therefore limited to the very best observed Kepler targets. In this particular case, we used
a 0.9M� model including microscopic di�usion and �tted the individual large and small
frequency separations of this arti�cial target with models that did not include microscopic
di�usion and had a di�erent helium mass fraction than the target.

Including higher ` modes can help improve the �t of the target function, but not all
radial orders are equivalent in this matter. As already observed for the tu inversion, low n
modes are better at �tting custom-made global quantities, while high n modes are barely
used and associated with lower inversion coe�cients. Indeed, at very high values of n,
one reaches the asymptotic regime and the oscillation spectrum becomes very regular,
thus the information to be extracted from the modes is degenerate. Moreover, the large
error bars on these high frequencies might make them very di�cult to use for precise
determinations of seismic indicators and these modes are more a�ected by the surface
e�ects, biasing their seismic diagnostic.
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Figure 5.27: (Le� panel) Averaging kernel for the SEnv indicator (blue) and the target function
for the inversion (green). (Right panel) Cross term kernel for the SEnv inversion (blue), and
target function which is 0 (green). These results are presented for Target 1 of table 5.22.

5.4.5 Conclusion

From Sect. 5.4.4, we can see that both indicators are well suited to probe convective
cores and envelopes. We can see from table 5.25 that the residual error remains small
compared to the variations of the SCore indicator caused by the changes of the entropy
plateau in the convective core. Consequently, we can conclude that the SCore indicator is
suitable in analysing mismatches in the deep layers of solar like stars, even if they present
a convective core. The SEnv indicator, on the other hand, is quite e�cient in its analysis of
upper layers and can provide further constraints even if other indicators, such as the tu
indicator, are �tted within their error bars.

Another aspect of inversions that has to be re-analyzed is linked to the surface e�ects.
While inversions related to core-sensitive structural aspects are naturally less prone to
show problems, this might not be the case for all inversions. Actually, additional tests have
shown that some inaccuracies, which appear as an increase of the residual error of the
inversion, might be expected. Therefore, one needs to analyse how empirical corrections
such as those of Sonoi et al. (2015) and Ball and Gizon (2014) might help solve the problem,
since the classical surface-correcting method used in helioseismology cannot be used in
asteroseismology due to the limited number of observed frequencies. This will be done in
future studies.

In conclusion, we have proved that the amount of seismic information found in the
typical spectra of solar-like Kepler targets is su�cient to carry out more robust inversions
of a core condition indicator, applicable to more massive stars. We also showed that for
the very best of these targets, for which octupole modes are observed, the inversion
of a structural indicator probing the regions near the base of the convective envelope
could be attempted, providing supplementary insights on the structural properties of
the target. However, both SCore and SEnv might require a slight adaptation of their target
functions when applied to observations depending on the dataset and the reference model
for the inversion. Nevertheless, they can be used alongside additional interferometric,
spectroscopic or even seismic constraints such as, for example, glitch �tting techniques. In
turn, the use of these indicators will help improve the physical accuracy of stellar models
and provide stringent constraints on stellar fundamental parameters required by other
�elds such as exoplanetology and Galactic archeology.



5.5 General Conclusion 173

1.68 1.685 1.69 1.695
3.005

3.01

3.015

3.02

3.025

3.03

3.035

3.04

3.045

Mean density ρ̄ (g/cm3)

In
d
ic
a
to
r
S
C
or
e
G

(c
m
/
g
1
/
3
)

Reference Model
Inversion Full Set (52 ν)

Inversion (49 ν)

Inversion (44 ν)

Inversion (41 ν)

Inversion (38 ν)
Target

1.68 1.685 1.69 1.695
1.57

1.58

1.59

1.6

1.61

1.62

1.63

Mean density ρ̄ (g/cm3)

In
d
ic
a
to
r

S
E
n
v

R
4
.5
G

(g
1
/
3
/
cm

)

Reference Model
Inversion Full Set (52 ν)

Inversion (49 ν)

Inversion (44 ν)

Inversion (41 ν)

Inversion (38 ν)
Target

Figure 5.28: (Le� panel) Illustration of the accuracy of the inversion of the SCore indicator
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Same for the SEnv indicator.

5.5 General Conclusion

In this chapter, we have presented how the SOLA method could be adapted to asteroseis-
mology through the inversion of integrated quantities. We presented 5 new indicators with
various goals and carried out additional investigations for the mean density, developed by
D. R. Reese, Marques, et al. (2012). We showed that basing our reasoning on structural
considerations, we could use variable changes in the variational expression to derive
linear functionals sensitive to various aspects of stellar structure and evolution.

Various tests have been carried out to determine the stability and reliability of the
inversion for conditions similar to those found for the best asteroseismic targets. The main
conclusion is that this adaptation of the SOLA method can provide stringent constraints
on stellar models beyond the capabilities of classical forward seismic modelling. It can
provide diagnostics for potential mismatches in the physical ingredients of stellar models,
thus greatly improving the determination of stellar fundamental parameters.

However, these successes are mitigated by three aspects that make the inversion
tedious to carry out:

1. The optimal target function for an indicator can vary from one target to another.
In other words, an essential quality of the technique can become its worst enemy,
since the freedom to chose the target can mean having the freedom not to �nd it.

2. The trade-o� problem has to be recalibrated for almost every reference model and
every observed target, leaving the method not always well suited for large-scale
automated studies but more specialised in speci�c, detailed studies.

3. Non-linearity has to be assessed individually for every target, using multiple reference
models to ensure at least a �rst diagnostic of potential problems.

In addition to these di�culties, the method is very demanding in terms of the quality
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of the seismic data. Typically, around 35 frequencies for modes with `= 0,1,2 and n as
low as 13 are su�cient to carry out inversions of ρ̄ , τ and SCore. Inversions of tu and
SEnv typically require more modes and are greatly improved by the presence of ` = 3
modes and lower n modes. The errors bars should be small, similar to those found in
Kepler observations. All these restrictions imply that the method will only be well-suited
for the best asteroseismic targets. Furthermore, the method has only been tested with
pressure modes of main sequence targets. Further extending the method to evolved targets
exhibiting mixed modes, or massive stars exhibiting gravity modes will probably require
additional developments and adaptations.

Last but not least, the treatment of surface e�ects and its impact on inversions needs
to be assessed. As stated previously, using the individual frequency di�erences exposes
the method to the impact of the upper layers and the importance of this e�ect has to be
assessed and accounted for in future applications to observed targets. To this day, two
solutions are possible:

1. to apply an empirical correction on the frequency di�erences before carrying out
the inversion,

2. to use frequency ratio perturbations instead of frequency di�erences in the variational
expression.

The �rst step is to quantify the impact of surface e�ects on the various indicators and to
see whether some indicators are more sensitive to these e�ects than others. For example,
the tu indicator seems to be linked to frequency ratios. Therefore, it is possible that the
impact of the surface e�ects for this indicator is naturally reduced. Such analyses will be
performed in the near future, since they are of paramount importance to avoid biased
determinations using the Kepler datasets.

Concerning large scale studies and targets exhibiting a smaller number of frequencies,
the method could be adapted to build certain combination of frequencies related to those
obtained by the inversion, but exhibiting smaller error bars, in a similar fashion to classical
seismic indicators. Such constraints could then be used in addition to or as a replacement
for classical seismic constraints like the r02 frequency ratios. Such studies would provide
an interesting basis for seismic modelling using a smaller number of constraints that still
encompass the information of the oscillation spectrum, and would help us understand
what exact amount of independant physical information can be extracted from seismic
observations.
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6. THE 16CYGNI BINARY SYSTEM

6.1 General Introduction

The Kepler spacecra� has provided the best set of asteroseismic data for solar-like stars
other than the Sun. Amongst the targets of this mission, the 16Cygni binary system holds
a special place. Indeed, these stars, found at 21.4 pc are some of the brightest targets
observed by the Kepler spacecra�, thus allowing a high number of frequencies to be
precisely determined. Therefore, they consistute the best targets for which to attempt
a structural inversion and to see whether additional information can indeed be gained
beyond the classical forward modelling approach.

In this chapter, we will present some inversion results for both 16CygA and 16CygB
using the full Kepler dataset from Davies et al. (2015). Sections 6.2 and 6.3 are composed
of the publications presented in Astronomy and Astrophysics under the references Buldgen,
D. R. Reese, and M. A. Dupret (2016) and Buldgen, S. J. A. J. Salmon, et al. (2016). We
will show that for both components, structural inversions can be performed and that
stringent constraints can be put on the age and chemical composition of this system.
However, as we will see in our conclusion, the quality of the seismic data implies the need
for a very high accuracy of the models and the seismic analysis techniques. While both
sections of this chapter show the advantage of using inversion techniques, in particular
the accuracy that can be gained from this approach, they certainly do not represent the
most constraining study that can be carried out for this system. Indeed, the publication
of new opacity tables by the Los Alamos National Laboratory (Colgan et al. (2016)), the
implementation of a new equation of state in Cles (Irwin (2012)), as well as the requirement
of an unbiased determination of helium using Cles models to calibrate the glitch in these
stars seem to call for a complete remodelling of the system using an indisputable frequency
set (see I. W Roxburgh (2016) for a discussion on the problems related to data treatment in
the Kepler LEGACY) for which the importance of the surface e�ect corrections are tested.
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6.2 Constraints on the structure of 16 Cyg A and 16 Cyg B using inversion tech-
niques

6.2.1 Introduction

In a series of previous papers (Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015) and
Buldgen, D. R. Reese, and M. A. Dupret (2015)), we analysed the theoretical aspects of the
use of seismic inversion techniques to characterise extra mixing in stellar interiors. Instead
of trying to determine entire structural pro�les, as was successfully done in helioseis-
mology (Basu, Christensen-Dalsgaard, Chaplin, et al. (1997), Basu, Christensen-Dalsgaard,
Schou, et al. (1996), Basu and Christensen-Dalsgaard (1997b))1, we make use of multiple
indicators, de�ned as integrated quantities which are sensitive to various e�ects in the
structure. These indicators are ultimately new seismic constraints using all the available
information provided by the pulsation frequencies.

In this section, we apply our method to the binary system 16Cyg, which was observed by
Kepler, for which data of unprecedented quality is available. Moreover, this system has
already been extensively studied, particularly since the discovery of a red dwarf and a
Jovian planet in it (see Cochran et al. (1997)). Using Kepler data, this system has been
further constrained by asteroseismic studies (Metcalfe, Chaplin, et al. (2012), Gruberbauer
et al. (2013), Mathur et al. (2012)), interferometric radii have also been determined (see
White, Huber, et al. (2013)) and more recently, Verma, Faria, et al. (2014) have determined
the surface helium abundance of both stars and Davies et al. (2015) analysed their rotation
pro�les and tested gyrochronologic relations for this system.

The excellent quality of the Kepler data for these stars enables us to use our inver-
sion technique to constrain their structure. We use the previous studies as a starting
point and determine the stellar parameters using spectroscopic constraints from Ramı́rez,
Meléndez, and Asplund (2009) and Tucci Maia, Meléndez, and Ramı́rez (2014), the surface
helium constraints from Verma, Faria, et al. (2014) and the frequencies from the full length
of the Kepler mission used in Davies et al. (2015) and check for consistency with the
interferometric radius from White, Huber, et al. (2013). The determination of the stellar
model parameters is described in Sect. 6.2.2. We carry out a �rst modelling process
then determine the acoustic radius and the mean density using the SOLA technique
(Pijpers and Thompson (1994)) adapted to the determination of these integrated quantities
(see Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015), D. R. Reese, Marques, et al.
(2012)). In Sect. 6.2.3, we brie�y recall the de�nition and purpose of the indicator tu and
carry out inversions of this indicator for both stars. We then discuss the accuracy of
these results. Finally, in Sect. 6.2.4, we use the knowledge obtained from the inversion
technique to provide additional and less model-dependent constraints on the chemical
composition and microscopic di�usion in 16CygA. These constraints on the chemical and
atomic di�usion properties allow us to provide accurate, yet of course model-dependent,
ages for this system, using the most recent observational data. The philosophy behind
our study matches the so-called “à la carte” asteroseismology of Lebreton and Goupil
(2012) for HD52265, where one wishes to test the physics of the models and quantify
the consequences of these changes. However, we add a substantial qualitative step by
supplementing the classical seismic analysis with inversion techniques.

1Also see Christensen-Dalsgaard (2002) for an extensive review on helioseismology.
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6.2.2 Determination of the reference models parameters
Initial �ts and impact of di�usion processes

In this section, we describe the optimization process that led to the reference models for
the inversions. We carried out an independent seismic modelling of both stars using the
frequency spectrum from Davies et al. (2015), which was based on 928 days of Kepler
data. A Levenberg-Marquardt algorithm was used to determine the optimal set of free
parameters for our models. We used the CLES stellar evolution code and the LOSC
oscillation code (Scu�aire, Théado, et al. (2008), Scu�aire, Montalbán, et al. (2008)) to
build the models and calculate their oscillation frequencies. We used the CEFF equation of
state (Christensen-Dalsgaard and Daeppen (1992)), the OPAL opacities from Iglesias and
Rogers (1996), supplemented at low temperature by the opacities of Ferguson et al. (2005)
and the e�ects of conductivity from Potekhin et al. (1999) and Cassisi et al. (2007). The
nuclear reaction rates we used are those from the NACRE project (Angulo et al. (1999)),
supplemented by the updated reaction rate from Formicola et al. (2004) and convection was
implemented using the classical, local mixing-length theory (Böhm-Vitense (1958)). We also
used the implementation of microscopic di�usion from Thoul, Bahcall, and Loeb (1994), for
which three groups of elements are considered and treated separately: hydrogen, helium
and the metals (all considered to have di�usion speeds of 56Fe). No turbulent di�usion,
penetrative convection and rotational e�ects have been included in the models. The
empirical surface correction from Kjeldsen, Bedding, and Christensen-Dalsgaard (2008)
was not used in this study. The following cost function was used when carrying out the
minimization:

J =
1

N−M

N

∑
i

(
Ai

obs−Ai
theo

)2

σ2
i

, (6.1)

where Ai
obs is an observational constraint (such as individual frequencies or frequency

separation, average values thereof, etc.), Ai
theo the same quantity generated from the

theoretical model, σi is the observational error bar associated with the quantity Ai
obs,

N the number of observational constraints, and M the number of free parameters used
to de�ne the model. We can already comment on the use of the Levenberg-Marquardt
algorithm, which is inherently a local minimization algorithm, strongly dependent on the
initial values. In the following section, particular care was taken to mitigate the local
character of the results since at least 35 models were computed independently for each
star, using various observational constraints and initial parameter values. As far as the
error bars are concerned, we looked at the scatter of the results with changes in the
physical ingredients rather than the errors given by the Levenberg-Marquardt algorithm.
The constraints vary according to the following two cases:

1. The model does not include any microscopic di�usion: We used the individual small
frequency separations, the average large frequency separation and the e�ective
temperature as Ai for the cost function. The chemical composition was �xed to
the values given by Verma, Faria, et al. (2014) and Ramı́rez, Meléndez, and Asplund
(2009). The �t used three free parameters since the chemical composition is �xed:
the mixing-length parameter, denoted αMLT, the mass and the age.

2. The model includes microscopic di�usion: We used the individual small frequency
separations, the average large frequency separation, the e�ective temperature, the
surface helium and surface metallicity constraints in the cost-function2. We used �ve

2The inclusion in the cost function of the surface composition constraints is of course due to the impact
of microscopic di�usion and comes from the intrinsic di�erence between the initial chemical composition,
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free parameters: the mixing-length parameter, αMLT, the mass, the age, the initial
hydrogen abundance, X0 and the initial metallicity, Z0.

In the case of the additional �ts described in Section 6.2.2, we simply replaced the
average large frequency separation by the mean density ρ̄ and the acoustic radius τ , thus
increasing by one the number of constraints used in the cost function J .

We wish to emphasise that the use of other algorithms to select a reference model
does not reduce the diagnostic potential of the inversions we describe in the next sections.
Indeed, inversions take a qualitative step beyond forward-modelling techniques in the
sense that they explore solutions outside of the initial model parameter space.

We used various seismic and non-seismic constraints in our selection process and focussed
our study on the importance of the chemical constraints for these stars. Indeed, there is a
small discrepancy in the literature. In Verma, Faria, et al. (2014), a less model-dependent
glitch-�tting technique was used to determine the surface helium mass fraction, Yf . It was
found to be between 0.23 and 0.25 for 16CygA and between 0.218 and 0.26 for 16CygB
(implying an initial helium abundance, Y0, between 0.28 and 0.31, provided atomic di�usion
is acting). In the seismic study of Metcalfe, Chaplin, et al. (2012), various evolutionary codes
and optimization processes were used and the initial helium abundance was 0.25±0.01
for a model that includes microscopic di�usion. In fact, the seismic study of Gruberbauer
et al. (2013) already concluded that the initial helium mass fraction had to be higher than
the values provided by Metcalfe, Chaplin, et al. (2012), which could result from the fact that
they used three months of Kepler data for their study. Therefore, the starting point of
our analysis was to obtain a seismic model consistent with the surface helium constraint
from Verma, Faria, et al. (2014) and the metallicity constraint from Ramı́rez, Meléndez,
and Asplund (2009). We started by searching for a model without including microscopic
di�usion, and therefore the �nal surface abundances Yf and Z f are equal to the initial
abundances Y0 and Z0. The metallicity can be determined using the following equation:[

Fe
H

]
= log

(
Z
X

)
− log

(
Z
X

)
�
, (6.2)

where
( Z

X

)
� is the solar value consistent with the abundances used in the spectroscopic

di�erential analysis. We point out that in the spectroscopic study of Ramı́rez, Meléndez,
and Asplund (2009), the “solar” references were the asteroids Cérès and Vesta. Their
study is thus fully di�erential and does not depend on solar abundance results. In this
study, we used the

( Z
X

)
� value from AGSS09 (Asplund, Grevesse, Sauval, and Scott (2009))

to determine the value of the metallicity Z. From the error bars provided on these chemi-
cal constraints, we can determine a two-dimensional box for the �nal surface chemical
composition of the model (which is the initial chemical composition if the model does not
include any extra mixing). A summary of the observed properties for both components
is presented in Table 6.1. The quality of the seismic data is such that we have 54 and
56 individual frequencies for 16CygA and 16CygB respectively, determined with very
high precision (typical uncertainties of 0.15µHz). The uncertainties on the constraints
in Table 6.1 were treated as allowed ranges for the model parameters and checked for
consistency for each model we built. An initial reference model without microscopic
di�usion was obtained using the e�ective temperature, Teff, the arithmetic average of the
large frequency separation < ∆ν >, and the individual small frequency separations δνn,`.

denoted with a 0 subscript and the surface chemical composition at the end of the evolution, denoted with a
f subscript.
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Table 6.1: Summary of observational properties of the system 16CygA and 16CygB consid-
ered for this study.

16CygA 16CygB References
R (R�) 1.22±0.02 1.12±0.02 White, Huber, et al. (2013)

Teff,spec (K) 5830±7 5751±6 Tucci Maia, Meléndez, and Ramı́rez (2014)
Teff,phot (K) 5839±42 5809±39 White, Huber, et al. (2013)

L (L�) 1.56±0.05 1.27±0.04 Metcalfe, Chaplin, et al. (2012)
[Fe/H] (dex) 0.096 0.051 Ramı́rez, Meléndez, and Asplund (2009)

Yf [0.23,0.25] [0.218,0.260] Verma, Faria, et al. (2014)
< ∆ν > (µHz) 103.78 117.36 Davies et al. (2015)

We did not include individual large frequency separations because these quantities are
sensitive to surface e�ects in the frequencies and they would have dominated our cost
function. This would have been unfortunate since we want to focus our analysis on core
regions. As we see from Table 6.2, the model SA,1 was also able to �t constraints such
as the interferometric radius from White, Huber, et al. (2013) and the luminosity from
Metcalfe, Chaplin, et al. (2012) although these quantities were not included in the J of the
original �t. The agreement between the observed and theoretical seismic constraints is
illustrated in Fig. 6.1. These results might seem correct, but since we did not even include

Table 6.2: Optimal parameters obtained for 16CygA.
SA,1 SA,2 SA,3

Mass (M�) 1.052 1.025 1.002
Radius (R�) 1.240 1.229 1.218
Age (Gyr) 8.232 7.784 7.335

Teff (K) 5825 5802 5801
L (L�) 1.589 1.536 1.508

Z0 0.0165 0.0190 0.0205
Y0 0.24 0.271 0.2945

αMLT 1.618 1.640 1.672
D 0.0 0.5 1.0

< ∆ν > (µHz) 103.74 103.79 103.98
J 1.18 1.19 1.30

microscopic di�usion, we should consider this model as rather unrealistic in terms of
mixing processes3. Therefore, we computed a few supplementary models assuming a �nal
surface chemical composition of Yf = 0.24 and

( Z
X

)
f = 0.0222 which included microscopic

di�usion following the prescriptions of Thoul, Bahcall, and Loeb (1994). In this case, the �t
was carried out using �ve free parameters, the mass, the age, the mixing length parameter,
αMLT, the initial hydrogen abundance, X0 and the initial metallicity, Z0. We used the same
constraints as for the �rst �t without di�usion, supplemented by the constraints on the
surface chemical composition, Yf and (Z/X) f providing direct and strong constraints on
the initial chemical composition.

The e�ect of di�usion was mainly to reduce the mass, age and radius of the model,

3One should note that we do not imply here that microscopic di�usion is the only mixing process needed
in a “realistic model”.
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Table 6.3: Optimal parameters obtained for 16CygB.
SB,1 SB,2 SB,3

Mass (M�) 1.008 0.977 0.943
Radius (R�) 1.123 1.107 1.098
Age (Gyr) 8.16178 7.71671 7.37336

Teff (K) 5749 5742 5739
L (L�) 1.236 1.196 1.174

Z0 0.0151 0.0173 0.0185
Y0 0.24 0.273 0.3015

αMLT 1.567 1.603 1.615
D 0.0 0.5 1.0

< ∆ν > (µHz) 117.36 118.00 117.37
J 0.81 0.85 0.88

as illustrated in Fig. 6.2. This plot illustrates the e�ects of di�usion for various chemical
compositions and di�usion velocities. The subscripts 0.0, 1.0, 0.5 are respectively related
to a model without di�usion, with standard di�usion velocities and with half of these
velocity values. We denote this factor D in the tables presenting the results. Each colour
is associated with a particular surface chemical composition of these stars. All these
models were �tted using the method described previously, and thus are compatible with
all constraints that can be found in the literature for 16CygA. Therefore, the e�ect observed
here is related to the impact of di�usion for a given model associated with a given set of
frequencies. It is obvious that the reductions of the mass and radius are correlated since
the mean density is kept nearly constant through the �t of the average large frequency
separation. Therefore, the conclusion of this preliminary modelling process is that we
obtain a degeneracy, meaning that we could build a whole family of acceptable models,
inside the box of the chemical composition, with or without di�usion. This implies
important uncertainties on the fundamental properties, as can be seen from the simple
example in Fig. 6.2 for 16CygA. In the following section, we see how the use of inversion
techniques and especially the inversion of tu can help us reduce this scatter and restrict
our uncertainties on fundamental properties.

Even when considering di�usion based on the work of Thoul, Bahcall, and Loeb (1994),
one should note that the di�usion velocities are said to be around 15−20% accurate for
solar conditions. Therefore, in the particular case of 16CygA, for which we have strong
constraints on the chemical composition, one can still only say that the mass has to be
between 0.97 M� and 1.07 M�, that the radius has to be between 1.185 R� and 1.230 R�
and that the age has to be between 6.8 Gy and 8.3 Gy for this star. In other words, we
have a ±5% mass uncertainty, ±3% radius uncertainty and ±8% age uncertainty.

Inversion of acoustic radii and mean densities

In this section, we brie�y present our results for the inversion of the mean density and the
acoustic radius. The technical aspects of the inversions have been described in previous
papers (see D. R. Reese, Marques, et al. (2012), Buldgen, D. R. Reese, M. A. Dupret, and
Samadi (2015), Buldgen, D. R. Reese, and M. A. Dupret (2015) for example) but we recall
them brie�y at the beginning of Sect. 6.2.3. First, we note that the inverted results
for the mean density and the acoustic radius are slightly di�erent. There is a scatter of
around 0.5% for both ρ̄ and τ depending on the reference model used for the inversion.
We therefore consider that the results are τA = 4593± 15s and ρ̄A = 0.830± 0.005g/cm3



6.2 Constraints on the structure of 16 Cyg A&B using inversion techniques 183

1400 1600 1800 2000 2200 2400 2600 2800 3000
0

2

4

6

8

10

12

S
m
al
l
S
ep
ar
at
io
n
δ̃
ν
n
,l
(µ
H
z
)

Observed Frequency νobs (µHz)

1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
−5

0

5

10

15

20

S
m
al
l
S
ep
ar
at
io
n
δ̃
ν
n
,l
(µ
H
z
)

Observed Frequency νobs (µHz)

δ̃ν
Diff
0,2

δ̃ν
Nodiff
0,2

δ̃νObs
0,2

δ̃ν
Diff
1,3

δ̃ν
Nodiff
1,3

δ̃νObs
1,3

Figure 6.1: Upper panel: Fits of the small frequency separations δ̃02 and δ̃13 for 16CygA.
Lower panel: Same as the upper panel for 16CygB. The observational values are the
green symbols with error bars, the red symbols are associated with models including
solar-calibrated di�usion and the blue symbols are associated with models without
di�usion.
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Figure 6.2: E�ect of the progressive inclusion of di�usion in a model of 16CygA. Each
model still �ts the observational constraints.

to be consistent with the scatter we observe. For 16CygB, we obtain similar results,
namely τB = 4066±15s and ρ̄B = 1.066±0.005g/cm3. The kernels are well �tted, as can
be seen for a particular example in Fig. 6.3. One should note that the results for the
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mean density are dependent on the ad-hoc surface corrections that is included in the
SOLA cost function (D. R. Reese, Marques, et al. (2012)). If one does not include the surface
correction, the mean density obtained for 16CygA is ρ̄A = 0.817± 0.005g/cm3 and for
16CygB: ρ̄B = 1.045±0.005g/cm3. This implies a shi� of around 1.5% in the inverted values.
From our previous test cases, we have noted that inversion of the mean density including
the surface regularization term can produce accurate results but in terms of kernel �ts,
the values without surface correction should be favoured. In what follows, the shi� in
the mean density value does not have a strong impact on the �nal conclusions of the
results, but this issue should be further investigated in future studies since mean densities
inversions could o�er strong constraints on models obtained through forward-modelling
approaches.

The scatter obtained because of the variations in the reference models justi�es the
fact that linear inversions are said to be “nearly model-independent”. We emphasise
that the physical ingredients for each model were di�erent and that the scatter of the
results is smaller than 0.50%. Before the inversion, the scatter of the mean density was
of about 0.95% and signi�cantly di�erent from the inversion results. In that sense, the
model dependency of these methods is rather small. However, the error bars determined
by the simple ampli�cation of the observational errors are much smaller than the model
dependency, so that one has to consider that the result is accurate within the scatter
owing to the reference models rather than using the error bars given by the inversion.
Nevertheless, this scatter is small and therefore these determinations are extremely accu-
rate.

We also observed that including additional individual large frequency separations in
the seismic constraints could improve determination of both the acoustic radius and the
mean density of the model. However, this can reduce the weight given to other seismic
constraints and as we see in the next section, we can improve the determination of
reference models using the acoustic radius and the mean density directly as constraints in
the �t. We also note that neither the mean density nor the acoustic radius could help us
disentangle the degeneracy observed in the previous section for the chemical composition
and the e�ects of di�usion. Indeed, these quantities are more sensitive to changes in the
mixing-length parameter, αMLT , or strong changes in metallicity. However, as described in
the following section, they can be used alongside other inverted structural quantities to
analyse the convective boundaries and upper layers of these stars.

Determination of new reference models

A�er having carried out a �rst set of inversions using the acoustic radius and the mean
density, we carried out a supplementary step of model parameter determination, replacing
the average large frequency separation by the acoustic radius and the mean density
themselves. We obtained a new family of reference models that were slightly di�erent
from those obtained using the average large frequency separation. We used the following
naming convention for these models: the �rst letter, A or B is associated with the star,
namely 16CygA or 16CygB; the second letter is associated with the chemical composition
box in the right-hand panel of Fig. 6.7, where C is the central chemical composition, L
the le�-hand side, R the right-hand side, U the upper side, and D the lower side (D for
down); the number 1 or 2 is associated with di�usion, 1 for models without microscopic
di�usion, and 2 for models including the prescriptions of Thoul, Bahcall, and Loeb (1994)
for microscopic di�usion. The numerical results of these supplementary �ts are given in
Table 6.7 for the A component and in Table 6.8 for the B component. A summary of the
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Figure 6.3: Upper panel: Example of Kernel �ts for the inversion of the acoustic radius of
16CygA (Averaging kernel on the le� and cross-term kernel on the right). Lower panel:
Kernel �ts for the inversion of the mean density for 16CygA (Averaging kernel on the le�
and cross-term kernel on the right). The target functions are in green and the SOLA
kernels in blue.

two steps of forward modelling and the naming conventions associated with the models
can be found in Table 6.4.

Table 6.4: Description of the naming conventions for both forward modelling steps.
First set of models (using 〈∆ν〉) along with Te f f , individual δ̃ ν , Yf and

( Z
X

)
f

Star A = 16Cyg A or B = 16 cyg B
Di�usion 1= no di�usion; 2 = half of standard di�usion velocity; 3 = with di�usion

Second set of models (using ρ̄ and τ) along with Te f f , individual δ̃ ν , Yf and
( Z

X

)
f

Star A = 16Cyg A; B = 16 cyg B
Chemical composition C = central; L = le�; R = right; U = up; D = down
Di�usion 1 = no di�usion; 2 = with di�usion

If we compare the model parameters obtained using τ and ρ̄ for the model with
Yf = 0.24 and (Z/X) f = 0.0222 (following our naming convention, model SA,C,1) with those
obtained with < ∆ν >, presented in Table 6.2 for model SA,1, we note that there is a
tendency to reduce the mass slightly and to increase the mixing length parameter. The
same tendency is observed for the corresponding models including microscopic di�usion.
What is more surprising is that when computing individual frequency di�erences between
the observed stars and the reference models, we see that using the acoustic radius and
the mean density allows us to obtain signi�cantly better individual frequencies. This is a
by-product of the use of inversion techniques that could be used to characterise stars in a
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pipeline such as what will be developed for the upcoming PLATO mission (Rauer et al.
(2014)).

Considering that these models are improved compared to what was obtained using
the large frequency separation4, we computed a family of models for di�erent values
of Yf and

( Z
X

)
f . For each particular chemical composition, we computed models with

and without microscopic di�usion. The properties of some models of this family are
summarised in Table 6.7. As can be seen, some of the models do not reproduce the results
for the e�ective temperature or the interferometric radius well. This means that we can
use non-seismic constraint as indicators of inconsistent models in our study, although one
should be careful about the conclusions derived from these quantities. For instance, the
interferometric radii are di�erent from the radii computed with the Clés models and some
di�erences might result from the very de�nition of the radius. One should also note that
these results are not totally incompatible since White, Huber, et al. (2013) conclude that
the radius of 16CygA is 1.22±0.02 R� and we �nd values around 1.185 and 1.230, outside
the 1σ errors for the lower part of our scatter. The stellar luminosity also depends
on these radii values and so should be considered with care. Ultimately, the e�ective
temperature can be constraining although there might be a slight di�erence stemming
from discrepancies between the physical ingredients in the stellar atmosphere models
used for the spectroscopic study of Ramı́rez, Meléndez, and Asplund (2009) and Tucci Maia,
Meléndez, and Ramı́rez (2014) and those used in the Clés models in this section. However,
the inconsistencies observed for some of these models are too important and therefore
these models should be rejected. The combination of all the information available are
described in Sect. 6.2.4. In the next section, we use these models as references for our
inversions of the tu indicator. One should note that this �rst step was bene�cial since
obtaining reference models as accurate as possible for these stars is the best way to
obtain accurate results for the more di�cult inversion of the tu indicator.

6.2.3 Inversion results for the tu core condition indicator
De�nition of the indicator and link to mixing processes
In Buldgen, D. R. Reese, and M. A. Dupret (2015), we de�ned and tested a new indicator
for core conditions, which is applicable to a large number of stars5 and very sensitive to
microscopic di�usion or chemical composition mismatches in the core regions between
the target and the reference model. The de�nition of this quantity was the following:

tu =
∫ R

0
f (r)

(
du
dr

)2

dr, (6.3)

where u is the squared isothermal sound speed, de�ned as u = P
ρ
, f (r) is a weighting

function de�ned as follows:

f (r) = r (r−R)2 exp
(
−7
( r

R

)2
)
. (6.4)

Owing to the e�ects of the radius di�erences between the observed target and reference
model, we noted that the quantity measured was tu

G2R6
tar

, where Rtar is the target radius. In
Fig. 6.4, we illustrate the changes in the quantity from the e�ects of di�usion for two of

4Since they provide better �ts of the individual frequencies and are more consistent with the acoustic
radius and the mean density values provided by the inversion, which are less dependent on surface e�ects.

5Provided that there is su�cient seismic information for the studied stars.
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our reference models, having the same surface chemical composition and �tting the same
observational constraints. One can also see the e�ects of surface helium and metallicity
changes on the pro�le of the integrant of Eq. 6.3. The whole parameter set of these
models is given in Table 6.7 along with the explanation of the naming convention. The
diagnostic potential of the tu inversion is therefore clear, although the weighting function
could be adapted to suit other needs if necessary. The inversion of this integrated quantity
can be made using both the (u0,Γ1) or the (u0,Y ) kernels.
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Figure 6.4: Le� panel: E�ect of di�usion, metallicity changes and helium abundance changes
on the core regions for models SA,C1, SA,C2, SA,L1, SA,U1 on the target function of tu. Since
the quantity is integrated, the sensitivity is greatly improved. Right panel: the Y (x) pro�le
of these models is illustrated, thus showing the link between tu and chemical composition
and thus, its diagnostic potential.

The SOLA inversion technique
To carry out inversions of integrated quantities, we use the SOLA linear inversion technique
developed by Pijpers and Thompson (1994). This technique uses the linear combinations
of individual frequency di�erences to induce structural corrections. It is commonly used
in helioseismology and has been recently adapted to the inversion of integrated quantities
for asteroseismic targets. The philosophy of the SOLA inversion technique is to use a
kernel-matching approach to derive the structural corrections. For the particular example
of the tu inversion, one would be using the following cost function:

Jtu =
∫ 1

0

[
KAvg−Ttu

]2 dx+β

∫ 1

0
K2

Crossdx+ tan(θ)
N

∑
i
(ciσi)

2

+η

[
N

∑
i

ci− k

]
, (6.5)

where KAvg is the so-called averaging kernel and KCross the so-called cross-term kernel
de�ned as follows for the (u,Y ) structural pair:

KAvg =
N

∑
i

ciKi
u,Y , (6.6)

KCross =
N

∑
i

ciKi
Y,u. (6.7)
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The symbols θ and β are free parameters of the inversion and thus can change for a
given indicator or observed frequency sets. Here, θ is related to the compromise between
reducing the observational error bars (σi) and improving the averaging kernel, whereas
β is allowed to vary to give more weight to elimination of the cross-term kernel. One
should note that, ultimately, adjusting these free parameters is a problem of compromise
and is made through hare-and-hounds exercises that have been presented in our previous
papers. Various sanity checks can be used to analyse the robustness of the results. For
example, one can use various reference models and analyse the variability of the inversion
results or one can also use di�erent structural pairs and see if this e�ect changes the
results signi�cantly.

In this expression of the kernels, N is the number of observed frequencies, ci are the
inversion coe�cients, used to determine the correction that will be applied on the tu
value, η is a Lagrange multiplier and the last term appearing in the expression of the
cost-function is a supplementary constraint applied to the inversion. Ultimately the
correction on the tu value obtained by the inversion is

N

∑
i=1

ci
δνi

νi
≡
(

δ tu
tu

)
inv

(6.8)

One should note that the value obtained is an estimate whereas the previous equality is a
de�nition. In fact, the inversion depends on some hypotheses that are used throughout the
mathematical developments of the relation between frequency di�erences and structural
di�erences and the de�nition of tu. One should note that the particular de�nition of the
cost function given above is very similar to the general expression for any integrated
quantity and local correction, since one only has to change the target function, here
denoted Ttu , to obtain other corrections.

Inversion results for 16CygA

The inversion results are summarised in Fig. 6.7 (represented as orange × in the ρ̄− tu
G

2R6

plot) and illustrated through an example of kernel �ts in Fig. 6.5. We tried using both
the (u0,Γ1) and the (u0,Y ) kernels. The high amplitude of the Γ1 cross-term leads us to
present the results from the (u0,Y ) kernels instead although they are quite similar in terms
of the inverted values. However, one should note that the error bars are quite important,
and we have to be careful when interpreting the inversion results.

This e�ect is due to both the very high amplitude of the inversion coe�cients and
the amplitude of the observational error bars. When compared to the somewhat underes-
timated error bars of the acoustic radius and mean density inversion, it illustrates perfectly
well why it is always said that two inversion problems can be completely di�erent. In
this particular case, using various reference models allows us to already see a trend in
the inversion results. We clearly see that the value of tu for our reference models is too
low and that the scatter of the inversion results is rather low, despite the large error
bars. One should also note that the quality of the kernel �t is also a good indicator of the
quality of the inverted result. For most cases, the kernels were very well �tted and the
low scatter of the results means that there is indeed information to be extracted from the
inversion. We will see how this behaviour is di�erent for 16CygB.

Nevertheless, one could argue that a small change in tu could be easily obtained through
the use of di�usion or chemical composition changes. We see in Sect. 6.2.4 how combining
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all the information with new constraints from the inversion technique can be extremely
restrictive in terms of chemical composition and di�usion processes. Indeed, tu should not
be considered as a model-independent age determination or as an observed quantity that
disentangles all physical processes occurring in stellar cores. In fact, it is simply a nearly
model-independent determination of a structural quantity optimised to be more sensitive
to any change in the physical conditions in stellar cores than classical seismic indicators.
The amplitude of the error bars reminds us that this sensitivity comes at a cost and in
this study we consider that having a reference model with a tu

G2R6
re f
≈ 3.2 or 3.3 g2

cm6 will

be acceptable if it still �ts the other observational constraints.
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Figure 6.5: Example of kernel �ts for the tu inversion. The le� panel is associated with the
averaging kernel and the right panel is associated with the cross-term kernel. The target
functions are in green and the SOLA kernels in blue.

Inversion results for 16CygB

The case of 16CygB is completely di�erent. In fact, while the inversion for the acoustic
radius and the mean density have been successful and we could build improved models
for this star, the inversion of the tu indicator was less successful. The results were good,
in the sense that the kernels are well �tted. However, we can see from Fig. 6.6 that
the ampli�cation of the observational errors was too high to constrain the microscopic
di�usion e�ects or the chemical composition. In fact, it is not surprising since the error
bars on the observed frequencies are larger than for 16CygA.

As a matter of fact, the observational errors dominate the inversion result, as can be easily
shown in Fig. 6.6. We see that the relative change in tu is smaller when microscopic
di�usion is included in the model but this is because the inversion result is closer to the
reference value rather than the opposite. This therefore means that tu can be used as a
consistency check for future investigations to ensure that we stay within the error bars of
the inverted value, but it seems that we cannot gain additional information for this star
from this indicator.

6.2.4 Constraints on microscopic di�usion and chemical composition
Reducing the age, mass and radius scatter of 16CygA

In this section, we use the information given by tu to further constrain chemical composi-
tion and microscopic di�usion. Previously, we always ensured that the reference models
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Figure 6.6: tu inversion results for 16CygB. The red + are the reference models and the
blue × the inverted results. The lower + are associated with the upper × and refer to
models including solar-calibrated di�usion.

were inside the chemical composition box that was de�ned by the constraints on surface
helium obtained by Verma, Faria, et al. (2014) and the spectroscopic constraints on surface
metallicity obtained by Ramı́rez, Meléndez, and Asplund (2009). In Sect.6.2.3, we concluded
that our model should have at least a tu

G2R6
re f
≈ 3.2 or 3.3 g2

cm6 or higher. The �rst question

that arises is whether it is possible to obtain such values for tu
G2R6 given the constraints on

chemical composition. The second question is related to the impact of microscopic di�usion.

In fact, tu is a measure of the intensity of the squared isothermal sound speed, u0,
gradients in the core regions. Thus, since u0 ≈ T

µ
, where T is the temperature and µ

the mean molecular weight, including di�usion will increase the µ gradients, since it
leads to the separation of heavy elements from lighter elements. It is then possible to
increase the di�usion speed of the chemical elements signi�cantly and to obtain a very
high value of tu for nearly any chemical composition. However, in Thoul, Bahcall, and
Loeb (1994), the di�usion speed is said to be accurate to within ∼ 15−20% and suited to
solar conditions. Moreover, since increasing di�usion also accelerates the evolution, we
could also end up with models that are too evolved to simultaneously �t tu, the chemical
composition constraints and the seismic constraints. Looking at the parameters of our
reference models, we note that we are indeed very close to solar conditions, and we
suppose that our di�usion speed should not be ampli�ed or damped by more than 20%.
The results of this analysis are summarised in Fig. 6.7, which is a ρ̄− tu

G2R6 plot where the
reference models and the inverted results are represented. In what follows, we describe
our reasoning more precisely and refer to Fig. 6.7 when necessary. We used a particular
colour code and type of symbol to describe the changes we applied to our models. One
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should keep in mind that these models are still built using the Levenberg-Marquardt
algorithm and thus still �t the constraints used previously in the cost function. Firstly,
colour is associated with the �nal surface helium mass fraction Yf : blue for Yf = 0.24,
red if Yf < 0.24, and green if Yf > 0.24. Secondly, the symbol itself is related to the( Z

X

)
f : a × for

( Z
X

)
f < 0.0222, a ◦ for

( Z
X

)
f = 0.0222, and a � for

( Z
X

)
f > 0.0222. The

size of the symbol is related to the inclusion of microscopic di�usion, for example the
large blue and red circles in Fig. 6.7 are related to models that include microscopic di�usion.

Since increasing di�usion should increase the tu value, we computed a model with
Yf = 0.24 and

( Z
X

)
f = 0.0222, including di�usion from Thoul, Bahcall, and Loeb (1994) and

�tting the seismic constraints and the e�ective temperature. This model is represented
by the large blue dot and we note that including di�usion improves the agreement, but
is not su�cient to reach what we de�ned to be our acceptable values for tu

G2R6 . This is
illustrated by the fact that in Fig. 6.7, the large blue circle is above the small blue dot.
Therefore we decided to analyse how tu depends on the chemical composition. To do so,
we computed a model for each corner and each side of the chemical composition box.
These models are represented in Fig. 6.7 by the �, ◦, and × of various colours. From these
results, we see that increasing the helium content, namely considering that Yf ∈ [0.24,0.25]
increases tu, as does considering

( Z
X

)
f ∈ [0.0209,0.0222]. In simpler terms, we see that

the green circle and the blue circle are above the blue dot in Fig. 6.7. The �rst tendency
is quickly understood since increasing the helium abundance leads to higher central µ

and therefore a local minimum in the u0 pro�le. Because tu is based on
(du

dx

)2
, this does

not imply a reduction in the value of the indicator, but an increase due to a secondary
lobe developing exactly in the same way as what happens when including di�usion (see
Fig. 6.2). The second tendency can be understood by looking at the central hydrogen
abundance. In this case, we see that the central hydrogen abundance is reduced and thus
the mean molecular weight is increased and leads to a minimum in u0 in the centre. One
should note that this e�ect is not as intense as the change in helium but is still non-negligible.

Therefore, our seismic analysis favours models that lie within Yf ∈ [0.24,0.25] and
( Z

X

)
f ∈

[0.0209,0.0222]. Including di�usion in these models increases the tu
G2R6 value even more

and brings it in the range of the 3.2, 3.3 g2

cm6 values, which is much more consistent
with the inversion results. These �nal models are represented in Fig. 6.7 by the large
green +. One should also note that an upper boundary can be drawn from the e�ective
temperature, interferometric radius and the seismic constraints. In other words, the
�t of the other quantities can increase J slightly up to values of 1.6 and thus slightly
reduce the quality of the �t. This is not alarming but still means that one should not
put all the weight of the �t of the model on the inversion results but try to �nd a
compromise between seismic, spectroscopic, and inverted constraints. Looking at Fig.
6.7, we can also see that the models do not �t the mean density values. This is due to
improper �tting in the Levenberg-Marquardt algorithm. In fact, to build Fig. 6.7, we put
more weight on the surface chemical composition, the acoustic radius and the seismic
constraints at the expense of the mean density. This does not change the results on
the tu inversion since the vertical trend can also be seen for a model �tting the mean
density value used in Fig. 6.7. It is also noteworthy to mention that the mean density
values obtained for the models presented in Fig. 6.7 correspond to the value obtained
without the polynomial surface correction. As we stated before, only further investigations
with models including strong surface e�ects will be able to distinguish which of both
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Figure 6.7: Results of the tu inversions for 16CygA (le� panel) and positions of the reference
models in the chemical composition box derived from spectroscopic and seismic constraints
(right panel). The orange × are the inversion results whereas the other symbols are
associated with various reference models the positions of which are shown in the right-
hand plot. The colour is associated with the Yf value, the type of symbol with the
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f

value, and the size of the symbol with the inclusion of di�usion.

values for the mean density inversions should be used. Ultimately, when considering
models built with the Levenberg-Marquardt algorithm that are compatible with the tu
values, we are able to reduce the scatter previously observed. We thus conclude that
the mass of 16CygA must be between 0.96 M� and 1.0 M�, and its age must be between
7.0 Gy and 7.4 Gy. These values are subject to the hypotheses of this study and they
depend on the physics used in the stellar models (opacities, nuclear reaction rates, abun-
dances). We recall here that there is no way to provide a seismic fully model-independent
age, but inversions allow us to at least check the consistency of our models with less
model-dependent structural quantities. These consistency checks can lead to a re�nement
of the model parameters and, in this particular case, to constraints on microscopic di�usion.

For the sake of completion, we also analysed the importance of the abundances used
to build the model. Because the [Fe/H] constraint are extremely dependent on the solar( Z

X

)
�, we wanted to ask the question of whether the inversion would have also provided

a diagnostic if we had used the GN93 abundances to determine the metallicity. Using these
abundances and the associated

( Z
X

)
� which is equal to 0.0244, one ends up with models

having much higher metallicities, of the order of 0.0305 when no di�usion is included in
the model. In fact we ended up with the same tendencies in the chemical composition box,
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Table 6.5: Accepted parameters obtained for 16CygA when taking the constraints from the
inversion of tu into account.

Accepted 16CygA models
M (M�) 0.96−1.00

Age (Gy) 7.0−7.4
Y0 0.30−0.31
Z0 0.0194−0.0199
D 1.00−1.15

αMLT 1.75−1.90
L (L�) 1.49−1.56
R (R�) 1.19−1.20

but with completely di�erent values of
( Z

X

)
, implying slightly higher masses of around 1.03

M� and slightly lower ages around 6.8Gy. However, when carrying out the tu inversion,
we noted that we still had to increase the helium content, include di�usion, and reduce the( Z

X

)
. The interesting point was that even the lowest

( Z
X

)
, associated with the highest Yf

with increased di�usion could not produce a su�ciently high value of tu. In that sense, it
tends to prove what we already suspected, that the GN93 abundances should not be used
in the spectroscopic determination of the

( Z
X

)
for this study. In this particular case, we

see that the inversion of tu is able to detect such inconsistencies, thanks to its sensitivity
to metallicity mismatches. However, if the model is built with the

( Z
X

)
determined from

the AGSS09 solar reference value, but using the GN93 solar heavy element mixture, we
cannot detect inconsistencies. In fact, we obtain the same conclusion as before since these
models are nearly identical in terms of internal structure.

Impact on the mass and radius scatter of 16CygB

In the previous section, we used the tu inversion to reduce the age, mass and radius scatter
of 16CygA. Moreover, we know from Sect. 6.2.3 that the inversion of tu for 16CygB can
only be used to check the consistency of the model but not to gain additional information.
However, since these stars are binaries, we can say that the age values of the models
16CygB must be compatible with those obtained for 16CygA. From the inversion results
of 16CygA, we have also deduced that we had to include atomic di�usion in the stellar
models and since both stars are very much alike, there is no reason to discard microscopic
di�usion from the models of the B component when we know that it has to be included
in the models for the A component.

Therefore, we can ask the question of what would the mass and radius of 16CygB
be if one includes di�usion as in 16CygA and ensures that the ages of the models remain
compatible. The question of the chemical composition is also important since Ramı́rez,
Meléndez, and Asplund (2009) �nd a somewhat lower value for the [Fe/H] of the B com-
ponent and Verma, Faria, et al. (2014) found larger uncertainties for the surface helium
abundance, although the centroid value was the same as that of 16CygA. To build these
new models, we imposed that they include atomic di�usion with a coe�cient D of 1.0 or
1.15. The age was to be between 7.0 Gy and 7.4 Gy. The metallicity was required to be
within the error bars provided by Ramı́rez, Meléndez, and Asplund (2009) and the surface
helium abundance was to be within [0.24,0.25]. We used the same constraints as before
to carry out the �ts using the Levenberg-Marquardt algorithm and found that the mass
was to be within 0.93 M� and 0.96 M�, thus a 1.5% uncertainty and the radius was to
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Table 6.6: Accepted parameters obtained for 16CygB when taking the constraints on
16CygA into account.

Accepted 16CygB models
M (M�) 0.93−0.96

Age (Gy) 7.0−7.4
Y0 0.30−0.31
Z0 0.0151−0.0186
D 1.00−1.15

αMLT 1.65−1.80
L (L�) 1.17−1.24
R (R�) 1.08−1.10

be within 1.08 R� and 1.10 R�, hence a 1% uncertainty. We would like to emphasise here
that these values do of course depend on the results of the modelling of 16CygA and are
thus more model-dependent since they do not result from constraints obtained through
seismic inversions. They are a consequence of the binarity of the system. It is clear that a
change in the values of the fundamental parameters for 16CygA will induce a change in
the values of 16CygB.

Discussion

The starting point of this study was to determine fundamental parameters for both
16CygA and 16CygB using seismic, spectroscopic, and interferometric constraints. However,
the di�erences between our results and those from Metcalfe, Chaplin, et al. (2012) raise
questions. One could argue that the inversion leads to problematic results and that the
diagnostic would have been di�erent if the surface helium determination from Verma,
Faria, et al. (2014) would have not been available.

Therefore, for the sake of comparison, we asked the question of what would have
been the results of this study if we had not included the surface helium abundance from
Verma, Faria, et al. (2014) in the model-selection process. We carried out a few supplemen-
tary �ts, using the mass, age, αMLT , X0 and Z0 as free parameters, using all the previous
observational constraints as well as the prescription for microscopic di�usion from Thoul,
Bahcall, and Loeb (1994), but excluding the Yf value. The results speak for themselves since
we end up with a model for the A component having a mass of 1.09M� and an age of
7.19Gy compatible with the results from Metcalfe, Chaplin, et al. (2012). This means that the
determining property that leads to the changes in the fundamental parameters of the star
was, as previously guessed, the surface helium value. Without this Yf constraint, therefore,
one would end up with two solutions with completely di�erent masses and ages, but solu-
tions that �t the same observational constraints. This does not mean that the results from
Metcalfe, Chaplin, et al. (2012) are wrong, but that they were simply the best results one
could obtain without the surface helium constraint and with three months of Kepler data.
In fact, this is only an illustration of the importance of chemical composition constraints
in stellar physics. The Y0−M trend has already been described in Baudin et al. (2012) and
that we �nd lower masses when increasing the helium abundance is, ultimately, no surprise.

At this point, we wanted to know what the inversion results would have been if we had
used reference models with similar parameters as obtained in Metcalfe, Chaplin, et al.
(2012). We ended up with similar results for both the acoustic radius and the mean density
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inversion, but more interestingly, the tu inversion also provided non-negligible corrections
for this model. In fact, even with microscopic di�usion, the tu,re f

R6
Re f

value was: 2.72g2/cm6

whereas the inverted result was tu,inv

R6
obs

= 3.5±0.5g2/cm6. Therefore the diagnostic potential

of the indicator is still clear, since it could have provided indications for a change in the
core structure of the model. Assuming that di�usion velocities are accurate to around 20%,
one could have invoked either an extra-mixing process or a change in the initial helium
composition to explain this result. Disentangling both cases would then have probably
required additional indicators.

6.2.5 Conclusion

In this section, we have applied the inversion techniques presented in a series of previous
papers to the binary system 16CygA and 16CygB. The �rst part of this study consisted in
determining suitable reference models for our inversion techniques. This was done using
a Levenberg-Marquardt algorithm and all the seismic, spectroscopic and interferometric
observational constraints available. We used the oscillation frequencies from Davies
et al. (2015), the interferometric radii from White, Huber, et al. (2013), the spectroscopic
constraints from Ramı́rez, Meléndez, and Asplund (2009) and Tucci Maia, Meléndez, and
Ramı́rez (2014), and the surface helium constraints from Verma, Faria, et al. (2014).

These constraints on the surface chemical composition mean that our results are di�erent
from those of Metcalfe, Chaplin, et al. (2012). The test case we made without using the
constraint on surface helium from Verma, Faria, et al. (2014) demonstrates the importance
of constraints on the chemical composition for seismic studies. In fact, having to change
the initial helium abundance from 0.25 to values around 0.30 is of course not negligible.
This emphasises that we have to be careful when using free parameters for the stellar
chemical composition in seismic modelling. The same can be said for the constraints
on the stellar [Fe/H] from the study of Ramı́rez, Meléndez, and Asplund (2009). For this
particular constraint, we have to add the importance of the solar mixture used in the
spectroscopic study. Owing to the important changes in the

( Z
X

)
� from the GN93 abun-

dances to the AGSS09 abundances, we tested both abundances and found that the latter
produces better results. We note that our reference models tend to be consistent with the
spectroscopic, seismic and interferometric constraints and that independent modelling
of both stars leads to consistent ages. We also note the presence of a certain modelling
degeneracy in terms of chemical composition and microscopic di�usion. Accordingly, we
could obtain rather di�erent values for the mass, the radius and the age of both stars
by assuming more intense di�usion and changing the chemical composition within the
error bars from both Ramı́rez, Meléndez, and Asplund (2009) and Verma, Faria, et al. (2014).

Having obtained suitable reference models, we then carried out inversions for the mean
density ρ̄ , the acoustic radius τ , and a core condition indicator tu. The �rst two quantities
were used to improve the quality of the reference models. As a by-product, we noted that
models �tting both ρ̄ and τ were in better agreement in terms of individual frequencies. We
also found that both of these quantities could not di�erentiate the e�ect of the degeneracy
in terms of di�usion and chemical composition. However, they could be well suited to
analysing uppers layers along with other quantities.

A�er the second modelling process, we carried out inversion for the tu indicator and noted
that the degeneracy in terms of chemical composition and di�usion could be li�ed for
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16CygA. In fact, to agree with the inverted result, one has to consider the same di�usion
speed as used in Thoul, Bahcall, and Loeb (1994) for the solar case or slightly higher
(by 10% or 15%). Values higher than 20% were considered not to be physical by Thoul,
Bahcall, and Loeb (1994) and were therefore not analysed in this study. Ultimately, we
come up with a lower scatter in terms of mass and age for 16CygA, namely that this
component should have a mass between 0.97M� and 1.0M�, a radius between 1.188R�
and 1.200R� and an age between 7.0Gy and 7.4Gy. Again the slight di�erences between
the seismic radius provided here and the interferometric radius might stem from di�erent
de�nitions of the interferometric radius and the seismic one. We also conclude that the
tu inversion for 16CygB could only be used as a consistency check but could not help
reduce the scatter in age. However, as these stars are binaries, a reduced age scatter for
one component means that the second has to be consistent with this smaller age interval.
Therefore, we were able to deduce a smaller mass and radius scatter for the second
component, namely between 0.93 M� and 0.96 M� and between 1.08 R� and 1.10 R�.
We also note that when not considering the constraints on surface helium, we obtained
results compatible with Metcalfe, Chaplin, et al. (2012) but the tu values were too low even
when di�usion was included in the models. This reinforces the importance of constraints
on the chemical composition and illustrates to what extent inversions could be used given
their intrinsic limitations.

Finally, we draw the attention of the reader to the following points. The age values
we obtain are not model-independent, because we assumed physical properties for the
models and assumed that the agreement in tu was to be improved by varying the chemical
composition within the observational constraints and by calibrating microscopic di�usion.
This does not mean that no other mixing process has taken place during the evolutionary
sequence that could somehow bias our age determination slightly. In that sense, further
improved studies will be carried out, using additional structural quantities, more e�cient
global minimization tools for the selection of the reference models, and possibly improved
physical ingredients for the models. In conclusion, we show in this study that inversions
are indeed capable of improving our use of seismic information and therefore, through
synergies with stellar modellers, of helping us build new generations of more physically
accurate stellar models.

6.2.6 Appendix: Intermediate results of the forward modelling process

A�er the �rst step of forward modelling, we carried out supplementary �ts to obtain
new reference models for both 16CygA and 16CygB. In fact, we replaced the average large
frequency separation by the acoustic radius and the mean density, as discussed in Sect.
6.2.2. We recall here the naming convention for these models: the �rst letter, A or B is
associated with the star, namely 16CygA or 16CygB; the second letter is associated with
the chemical composition box in the right panel of Fig. 6.7: C is the central chemical
composition, L the le�-hand side, R the right-hand side, U the upper side, and D the
lower side (D for down); the number 1 or 2 is associated with di�usion, 1 is for models
without microscopic di�usion, 2 is for models including the prescriptions of Thoul, Bahcall,
and Loeb (1994) for microscopic di�usion. These results are illustrated in the following
tables for both stars:
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Table 6.7: Optimal parameters obtained for 16CygA using the acoustic radius and the mean
density rather than < ∆ν >.

SA,C1 SA,C2 SA,U1 SA,U2 SA,D1 SA,D2 SA,R1 SA,R2 SA,L1 SA,L2

M (M�) 1.049 0.999 1.039 0.994 1.060 1.007 1.055 1.001 1.049 0.983
R (R�) 1.221 1.201 1.216 1.198 1.227 1.203 1.222 1.201 1.220 1.195

Age (Gyr) 8.30 7.38 8.09 6.77 8.33 7.53 8.34 7.31 8.11 7.33
Teff (K) 5852 5828 5903 5992 5842 5811 5827 5837 5912 5877
L (L�) 1.570 1.494 1.613 1.662 1.574 1.482 1.546 1.504 1.633 1.529

Z0 0.0165 0.0205 0.0162 0.0195 0.0167 0.0200 0.0174 0.0210 0.0155 0.0188
Y0 0.240 0.295 0.250 0.308 0.230 0.286 0.240 0.297 0.240 0.299

αMLT 1.68 1.74 1.75 1.97 1.69 1.72 1.67 1.76 1.75 1.78
D 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0

Table 6.8: Optimal parameters obtained for 16CygB using the acoustic radius and the
mean density rather than < ∆ν >.

SB,C1 SB,C2

M (M�) 1.008 0.961
R (R�) 1.106 1.088

Age (Gyr) 8.162 7.236
Teff (K) 5793 5829

L� (L�) 1.235 1.228
Z0 0.0151 0.0181
Y0 0.240 0.292

αMLT 1.667 1.780
D 0.0 1.0

6.3 In-depth study of 16CygB using inversion techniques

6.3.1 Introduction

In a previous paper (Buldgen, D. R. Reese, and M. A. Dupret (2016)), we studied the binaries
16CygA and 16CygB using the full Kepler dataset from Davies et al. (Davies et al. (2015)).
The system is in fact more complex since a red dwarf orbits the A component and a
Jovian planet orbits the B component (Cochran et al. (1997), Holman, Touma, and Tremaine
(1997), Hauser and Marcy (1999)). We carried out a forward modelling process of both stars
without taking into account binarity as a constraint and used our inversion techniques
to further constrain their fundamental parameters, and demonstrated the importance of
microscopic di�usion. The inversion technique provided strong constraints on the chemical
composition and mixing of 16CygA, the brightest of the two components. However, when
carrying out the same inversion for 16CygB, we faced the problem of the ampli�cation of
the observational error bars. The problem is well-known in the context of inversions,
since the results are always a trade-o� between amplifying the errors and �tting the target
function of the inversion (Pijpers and Thompson (1994)). In the context of asteroseismology,
since more weight has to be given to the �t of the target function due to the small number
of observed frequencies compared to the solar case, we are always limited in terms of
error ampli�cation. Trying to reduce the error bars by amplifying the trade-o� parameters
can result in a signi�cant reduction of the quality of the �t, thus implying that what is
gained by reducing the propagation of observational error bars is lost due to the poor
quality of the averaging kernel.

In the following sections, we re-analyse the trade-o� problem of 16CygB and show
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that the seismic information is su�cient to analyse this star independently with the tu
indicator. To explain the trend seen with the inversion, we try unsuccessfully to restore
the agreement by modifying the surface chemical composition of this star. Since this leads
to inconsistencies with the 16CygA results of our previous paper, we analyse the potential
necessity of an additional mixing process, which has already been mentioned to explain
the lithium depletion in this star (Deal, Richard, and Vauclair (2015)). We emphasise that
the solution we propose for consistency with the inversion result is hypothetical and is
subject to the same limitations and model-dependencies as our previous study on 16CygA.
We compute models using a parametrised approach of the extra mixing which should not
be considered as a physical solution but rather a hint that a certain amount of mixing is
required in deep regions of the B component in order to reconcile the modelling of both
components.

This section is structured as follows, we start by brie�y presenting additional reference
models in Sect 6.3.2. We then present our inversion results as well as the regularisation
in Sect 6.3.3. These results are further analysed and discussed in Sect 6.3.5 in light of the
possible necessity for extra mixing in 16CygB. We then conclude with the implications
and perspectives of this study in Sect 6.3.6.

6.3.2 Reference models

In this section, we will describe the forward modelling process that has been carried out
to obtain the reference models for the inversion. The process has been already described
in Buldgen, D. R. Reese, and M. A. Dupret (2016), but we recall it here for the sake of
clarity. Nevertheless, the number of models computed has been increased to improve the
diagnostic process of the inversion and to ensure unbiased results.

In practice, we computed these models independently from the modelling of 16CygA
presented in our previous paper. We used the frequency spectrum from Davies et al.
(2015), which was based on 928 days of Kepler data6. A Levenberg-Marquardt algorithm
was used to determine the optimal set of free parameters for our models. We used the
CLES stellar evolution code and the LOSC oscillation code (Scu�aire, Théado, et al. (2008),
Scu�aire, Montalbán, et al. (2008)). The stellar models used the CEFF equation of state
(Christensen-Dalsgaard and Daeppen (1992)), the OPAL opacities from Iglesias and Rogers
(1996) supplemented at low temperatures by the opacities of Ferguson et al. (2005). The
nuclear reaction rates are those from the NACRE project (Angulo et al. (1999)), including
the updated reaction rate for the 14N(p,γ)15O reaction from Formicola et al. (2004) and
convection was implemented using the classical, local mixing-length theory (Böhm-Vitense
(1958)). We also used the implementation of microscopic di�usion from Thoul, Bahcall, and
Loeb (1994), for which three groups of elements are considered and treated separately:
hydrogen, helium and the metals (all considered to have the di�usion speed of 56Fe). No
additional transport mechanism, beside microscopic di�usion, was included in the models.
No surface correction of the individual frequencies was used in this study since we used
quantities that are naturally less sensitive to these e�ects.

Moreover, since the inversion results for 16CygA implied that microscopic di�usion had
to be included in the stellar models and since both stars are very similar, we considered
that we had to include atomic di�usion in the models of 16CygB. We also emphasise that
obtaining consistent results in age for both components is impossible if one considers that
one component of the binary system is subject to microscopic di�usion e�ects while the
other is not. Yet, we also want to stress that the implementation of microscopic di�usion

6The frequency tables are public and can be found at the url: http://mnras.oxfordjournals.org/

lookup/suppl/doi:10.1093/mnras/stu2331/-/DC1.

http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/stu2331/-/DC1
http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/stu2331/-/DC1
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has its own uncertainties. First, we consider here the implementation from Thoul, Bahcall,
and Loeb (1994) which considers only three components to the mixing; secondly, in their
own paper, Thoul, Bahcall, and Loeb (1994) consider the di�usion velocities obtained to be
accurate within approximately 15%; thirdly, it may be possible that radiative accelerations
play a role in competing with gravitational settling e�ects. Thus, the use of microscopic
di�usion as a solution to be consistent with the inversion results for 16CygA is a �rst
hypothesis of this study. It does not mean that another combination of mixing processes
could not successfully reproduce the trends previously seen with the inversion technique
for this star.

In this study, we substantially increased the number of reference models used to
carry out the inversions for 16CygB but did not use any hypothesis on the chemical
composition of this star. In fact, surface chemical composition di�erences between the A
and B components have been claimed by Tucci Maia, Meléndez, and Ramı́rez (2014) when
carrying out a di�erential spectroscopy analysis between both stars. Moreover, although
the centroid of the present surface helium abundance, Yf , interval found by Verma, Faria,
et al. (2014) is the same, the scatter is larger for the B component, and if microscopic
di�usion is included in the stellar models, it is also clear that surface chemical composition
di�erences will be seen since this mixing will not have the same e�ciency for stars of
di�erent masses7.

Nevertheless, it should be noted that chemical composition di�erences between 16CygA
and 16CygB are still under some debate since their existence has been claimed by Ramı́rez,
Meléndez, and Asplund (2009) and Tucci Maia, Meléndez, and Ramı́rez (2014) as well as
by previous studies (see Deliyannis et al. (2000)) but could not be con�rmed by Schuler
et al. (2011). In Tucci Maia, Meléndez, and Ramı́rez (2014), one �nds [Fe/H]A = 0.101±0.008
and [Fe/H]B = 0.054±0.008 whereas Schuler et al. (2011) �nds [Fe/H]A = 0.07±0.05 and
[Fe/H]B = 0.05±0.05. These results are not totally incompatible, and what is more striking
is the di�erence in error bars between various studies.

Moreover, these values depend on the reference solar metallicity assumed in the study
since the observational constraint provided is the [Fe/H] value which must be translated
in a Z

X value using the Sun as a reference. In our previous paper, we used the most recent
abundance tables given by AGSS09 (Asplund, Grevesse, Sauval, and Scott (2009)) and
found that they led to a better agreement with the inversion results for 16CygA. In this
study, we computed most models with the AGSS09 abundances but also used some models
with the older GN93 abundances (Grevesse and Noels (1993)). We explain our motivations
for using such models in Sect. 6.3.5. We summarise the observational constraints used for

Table 6.9: Summary of observational properties of the system 16CygA&B used in this
study.

16CygB References
R (R�) 1.12±0.02 White, Huber, et al. (2013)

Teff,spec (K) 5751±6 Tucci Maia, Meléndez, and Ramı́rez (2014)
Teff,phot (K) 5809±39 White, Huber, et al. (2013)

L (L�) 1.27±0.04 Metcalfe, Chaplin, et al. (2012)
[Fe/H] (dex) 0.052±0.021 Ramı́rez, Meléndez, and Asplund (2009)

Yf [0.218,0.260] Verma, Faria, et al. (2014)
< ∆ν > (µHz) 117.36±0.55 Davies et al. (2015)

16CygB in table 6.9 and the fundamental parameters obtained for some of the reference
7The di�erences due to di�usion should nonetheless remain small.
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models in table 6.10. In this table, we also recall the intervals from the forward modelling
process of 16CygA obtained previously. The forward modelling war carried out starting
from various initial conditions with the Levenberg-Marquardt algorithm. The set-up of
the minimization process was the following:

• Constraints: individual small frequency separations d0,2 d1,3, inverted mean density
(ρ̄) for which conservative error bars of 0.005 g/cm3 were considered, acoustic
radius (τ) for which conservative error bars of 30 s were considered, present surface
metallicity (Z f /X f ) from Ramı́rez, Meléndez, and Asplund (2009), present surface
helium abundance (Yf ) from Verma, Faria, et al. (2014) and the e�ective temperature
from Tucci Maia, Meléndez, and Ramı́rez (2014), for which we considered error bars
of 30K.

• Free parameters: Mass, age, initial hydrogen abundance (X0), initial abundance of
heavy elements (Z0), mixing-length parameter (αMLT ).

In total, we had 5 free parameters for 31 constraints. In addition to these constraints, we
checked the values of the luminosity L, surface gravity logg and radius R a�er the forward
modelling to see if they were consistent with the constraints from the literature. Models
which were completely inconsistent with these additional constraints were disregarded.
An additional comment should be made on some error bars used in the forward modelling.
Firstly, we considered the errors from Tucci Maia, Meléndez, and Ramı́rez (2014) to be
unrealistic and assumed a conservative 30K error bar which is already very accurate
but more consistent with other studies. Secondly, both the inverted mean density and
acoustic radius are known to have underestimated error bars with the SOLA method,
from the multiple hare and hounds we performed to calibrate the inversion techniques,
we noticed that a error bars of 0.5% were to be expected as a conservative error bar for
the inverted values of the mean density. For the acoustic radius, the precision has to be
assessed from the dispersion of the inverted values, in this particular case this led to a
precision of around 0.7% was achieved. Consequently, we used these conservative error
bars in the Levenberg-Marquardt algorithm rather than the error bars derived directly
from the SOLA method.

Table 6.10: Parameters of the reference models of 16CygB
Reference 16CygB Models Reference 16CygA Models

Mass (M�) 0.93-1.05 0.96-1.08
Radius (R�) 1.07-1.13 1.19-1.24
Age (Gyr) 6.97-8.47 6.90-8.30
L� (L�) 1.05-1.25 1.48-1.66

Z0 0.0165-0.0194 0.0155-0.0210
Y0 0.25-0.32 0.250-0.299

αMLT 1.70-1.86 1.67-1.97
D 0.5-1.1 0.0−1.1

We can see that the scatter of fundamental parameters is very similar to that obtained
for 16CygA. However, we only give the results for models including di�usion in table 6.10,
as can be seen by looking at the values of the D parameter. This parameter is related to the
implementation of di�usion we use, it is a multiplicative factor of the microscopic di�usion
velocities such that if D = 1.0, one uses the di�usion velocities of standard solar models.
We can see that some models have radii and luminosities that are below the observed
values. Thus, these models can already be rejected or at least questioned in terms of
quality. The age and chemical composition intervals are completely consistent with the
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values obtained for the reference models of 16CygA recalled in the third column of table
6.10. We recall here that the models associated with ages above 7.4 Gy were rejected for
16CygA, based on the tu inversion results and their implications on microscopic di�usion
and chemical composition. A successful modelling of the binary system implies �nding
similar ages and initial chemical composition for both stars as well as being consistent
with the seismic, spectroscopic and interferometric constraints at hand. Ultimately, the
models shall also be compatible with the inversion results. This is not an easy task and
requires a careful analysis and a good trade-o� between all of the constraints.

6.3.3 Inversion results

In this section, we present updated inversion results for 16CygB. In our initial work, we
faced the problem of large error bars for the tu inversion. These error bars implied that
we could not derive any additional constraints on the structure of 16CygB. In fact the
inversion results showed that all models should be accepted, regardless of whether they
included di�usion or not. However, we will show in the following sections that a more
careful look at the frequency data can lead to an independent diagnostic with the inversion
and provide additional interesting insights on the structure of this star.

The inversion technique we present is based on the linear integral equations presented
in D. O. Gough and Thompson (1991) derived for the squared isothermal sound speed
u = P

ρ
and the helium mass fraction, Y . The basic equation of the inversion is then written:

δνn,`

νn,` =
∫ R

0
Kn,`

u,Y
δu
u

dr+
∫ R

0
Kn,`

Y,uδY dr, (6.9)

where the notation δx
x stands for the relative di�erence between observed quantities and

quantities of the reference model, de�ned as follows:

δx
x

=
xobs− xre f

xre f . (6.10)

The most striking di�erence between inversions in asteroseismology and inversions in
helioseismology is the number of observed frequencies, leading to the fact that the classical
linear kernel based inversion methods cannot be used to derive full structural pro�les of
observed stars. In previous studies, we have adapted the SOLA inversion techniques from
Pijpers and Thompson (1994) to carry out inversions of structural integrated quantities
(see D. R. Reese, Marques, et al. (2012), Buldgen, D. R. Reese, and M. A. Dupret (2015),
Buldgen, D. R. Reese, M. A. Dupret, and Samadi (2015) for various examples). Amongst
the indicators derived, we de�ned a core condition indicator in Buldgen, D. R. Reese, and
M. A. Dupret (2015) as follows:

tu =
∫ R

0
f (r)

(
du
dr

)2

dr, (6.11)

with f (r) = r(r−R)2 exp(−7 r2

R2 ), the weight function used for this inversion with R the
stellar radius and r the radial coordinate associated with each layer inside the model, u is
the squared isothermal sound-speed previously de�ned.

First, we recall a few basic equations of seismic inversion techniques. It is important to
remember that seismic diagnostics using classical inversion techniques involve individual
relative frequency di�erences (de�ned as in Eq. 6.10). In that sense, any inverted result is
generated from a recombination of these frequency di�erences. When we use the linear
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SOLA technique (Pijpers and Thompson (1994)), we build a linear combination of frequency
di�erences. In the case of the tu inversion, for example, we have:

N

∑
i

ci
δνi

νi
≡
(

δ tu
tu

)
inv

, (6.12)

with the ci being the inversion coe�cients, which are determined by �nding the optimal
value of the SOLA cost function for given trade-o� parameters values. The SOLA cost
function is de�ned as follows for the tu indicator and denoted Jtu :

Jtu =
∫ 1

0

[
KAvg−Ttu

]2 dx+β

∫ 1

0
K2

Crossdx+ tan(θ)
N

∑
i
(ciσi)

2

+η

[
N

∑
i

ci− k

]
, (6.13)

where Ttu is the target function associated with the indicator, KAvg is the averaging kernel,
and KCross the cross-term kernel, de�ned with respect to the fractional radius position
x = r

R . η is a Lagrange multiplier, k is a regularization factor related to the non-linear
generalisation of indicator inversions (see Buldgen, D. R. Reese, and M. A. Dupret (2015) for
details), σi are the errors associated with each individual frequency and β and θ are the
free parameters of the SOLA method, related to the trade-o� with the cross-term and
the ampli�cation of observational errors and the accuracy of the �t of the target function.
Nevertheless, for this particular inversion, no additional terms used to deal with surface
e�ects have been added since they o�en bias the results and reduce the quality of the �t
of the target function. This is also justi�ed by the fact that the tu indicator probes core
regions and that its target function has low amplitude in the surface.

The averaging and cross-term kernels are de�ned as follows for the (u,Y ) structural
pair, with Y the helium mass fraction and u = P

ρ
, the squared isothermal sound speed and

the functions Ki
u,Y and Ki

Y,u the structural kernels associated with u and Y respectively:

KAvg =
N

∑
i

ciKi
u,Y , (6.14)

KCross =
N

∑
i

ciKi
Y,u. (6.15)

The fact that we have two free parameters in the SOLA cost function is due to the ill-posed
nature of the problem and leads to the well-known trade-o� problem when using inversion
techniques. In this particular case, the question of the trade-o� is particularly important
since we have three oscillation modes in particular that have larger error bars than the
all the others and two of these could sometimes see their individual frequencies �tted
within their error bars.

Another speci�city of asteroseismic inversions is that they are performed with little or
no knowledge of the radius of the observed target, noted Rtar. In section 2.1 of Buldgen,
D. R. Reese, and M. A. Dupret (2015), we analysed the impact of this problem on equations
of the type of Eq. 6.9. It was then shown that the inversion implicitely scaled the observed
target to the same radius as the reference model used to perform the inversion while
keeping its mean density constant. This meant that the target studied by the inversion
was not de�ned by a mass Mtar and a radius Rtar but was a scaled target de�ned by a

mass
MtarR3

re f

R3
tar

and a radius Rre f .
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This does not restrict the diagnostic potential of the inversion technique but means
that if we want to compare results from various reference models, we need to compare
values of tu/R6

tar to get rid of the implicit scaling process introducing a dependency in Rre f

in the inversion process.

Analysis of the error contributions

In Fig. 6.8, we illustrate in orange the initial inversion results of tu/R6
Tar with their quite

large error bars, RTar being the target photospheric radius. They seemed disappointing
since the kernel �ts were excellent and implied that there were enough kernels to �t the
target function of the tu inversions.

This implied that the problem was simply stemming from the observational errors
propagation term in the cost function of the SOLA method. The classical way to deal
with this problem is to increase the θ parameter in the cost function thus reducing
the propagation of observational errors. While this may be a solution, changing the θ

parameter can lead to a much less accurate �t of the target function and thus reduces the
quality of the inversion. This implies larger errors on the inverted result coming from the
kernel �t as shown in Buldgen, D. R. Reese, and M. A. Dupret (2015). From our previous
test cases, we also know that around 50 frequencies is su�cient to obtain an inverted
value for tu, especially if octupole modes are available. Consequently, we looked at the
observed frequencies for which there were large uncertainties and found that the `= 3,
n = 14 mode, the `= 3, n = 15 mode and the `= 3, n = 16 had much larger uncertainties
than the other modes of similar radial order. The error bars on the individual frequencies
were sometimes even larger than the frequency di�erences between 16CygB and the
computed reference models with the Levenberg-Marquardt algorithm. This is of course
somewhat ine�cient since it implies that we are using frequency di�erences that cannot
be exploited by the inversion techniques.

In fact, frequency di�erences with large error bars can dominate the error contribution
in the inversion results, especially if the inversion coe�cient associated with the particular
mode is important. This is in fact simply due to the form of the term associated with the
error propagation in the SOLA cost-function which is written:

N

∑
i
(ciσi)

2. (6.16)

It is thus clear that modes with high inversion coe�cients and large uncertainties
contribute the most to the error propagation. Although the SOLA method tends to mitigate
the impact of the modes with large uncertainties, the result is always a compromise
between precision and accuracy. This trade-o� is realised through the change of the
free parameters of the inversion.In the context of asteroseismic inversions, the fact that
each oscillation spectra has its own error bars, that each star is �tted individually within
a given accuracy that can be variable and that each star occupies a di�erent position
in the HR diagram for which the linear approximation might be irrelevant to a certain
degree, makes each inversion process unique. Therefore, from the mathematical point of
view, each inversion has to be analysed di�erently, although trends in terms of inversion
parameters can be seen and are understandable since they are linked to the data and
model quality which can be objectively assessed.

The trade-o� problem of inversion techniques is illustrated by the so-called “trade-o�”
curves that can be seen in the original paper on the OLA method by Backus and Gilbert
(1967) or Pijpers and Thompson (1994) for the SOLA method. Typically, each frequency set
de�nes the number of coe�cient available, thus the resolution of the inversion. However,
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this resolution is mitigated by the error bars of these individual modes which limit the
amplitude of the coe�cient that can be built to �t the target function. The trade-o�
curve materialises this competition with respect to the parameter θ of the inversion. We
describe a little bit more in depth the trade-o� problem and the e�ect of eliminating
modes in the frequency spectrum in Sect. 6.3.7.
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Figure 6.8: In orange, inversion results for the tu indicator and ρ̄ with the full set of modes
for 16CygB. In green, inversion results for the same models excluding the modes with the
largest error bars in the frequency set. The blue squares are associated with inversion
results for which the trade-o� parameter θ has been slightly enhanced. In red, blue and
magenta, tu and ρ̄ values in the reference models (See text for the explanation of the colour
code).

Important error bars can indeed be seen for the ` = 3, n = 14 mode, which is the
octupole mode of lowest radial order. We know indeed from our previous test cases (see
Buldgen, D. R. Reese, and M. A. Dupret (2015)) that the tu inversion uses preferentially the
low order modes and tends to bene�t from the presence of octupole modes and use them
as much as possible. Since this particular mode has the highest error bar, we wanted to
see how eliminating it from the frequency set used for the inversion could help us obtain
a smaller error propagation. As previously explained, inversion techniques use individual
frequencies to extract information. However, this is only possible if the frequencies used
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by the inversions are not �tted within their observational error bars. Typically, if one
eliminates a mode with large error bars, one reduces the ampli�cation of the errors but
also the resolution of the inversion. Ultimately, eliminating a mode from the frequency
set is only justi�ed if its detection is arguable or if it is already �tted within the error
bars. Otherwise, reducing the error bars is more e�ciently done by increasing slightly
the value of the θ parameter.

In the particular case of 16CygB, some individual modes could be �tted within their
error bars and thus could not bring any additional seismic constraints if used in an
inversion process. Finally, eliminating the worst o�enders in terms of error bars is a
process that has also been described in helioseismic inversions (see Basu, Chaplin, et
al. (2009)), since they can have strong impact on SOLA inversions when adjusting the
trade-o� parameters for the inversion.

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

Position r/R

K
u
,Y

A
v
g
,t
u

θ = 10−5

Reduced spectrum
θ = 5 × 10−5

Ttu

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

Position r/R

K
u
,Y

C
r
o
s
s
,t
u

Figure 6.9: Le� panel: averaging kernels for the core conditions indicator (tu) for various
θ values and reduced frequency spectrum. Right panel: same �gure for the cross-term
kernels of the tu inversion. We used the (u,Y ) structural pair in both plots.

In Fig. 6.8, we show the impact of the modes with the largest error bars on the �nal
inversion error propagation and values of tu and ρ̄ for reference models. The new result
with reduced error bars are illustrated in green and light-blue. The green results are
obtained by eliminating problematic modes and the light-blue results are those obtained
by slightly increasing the value of the θ parameter. We associated the following colour
code for the values inferred from the reference models: a blue cross means that the tu value
agrees will all inversion results, a magenta cross that it agrees with some inversion results
and a red cross that it does not agree with any result. We can see that eliminating the
modes with large uncertainties reduces signi�cantly the error bars on the inverted result,
without changing much the actual inverted value. A change in the inverted value would
have meant that the mode had a signi�cant impact on the inversion result. In practice,
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this could be seen by a change in the �t of the target function by the averaging kernel.
This could be the case if one had fewer individual frequencies and that the problematic
oscillation mode was used by the inversion despite its large error bars. In �gure 6.9, we
illustrate the change in the averaging and cross-term kernel �t that is induced by the
elimination of the most problematic modes in terms of observational error bars and an
increase of the trade-o� parameter θ . As was the case for the inverted tu values, the
di�erences on the averaging kernels are minimal. Hence, an independent study of 16CygB
in terms of tu can be performed. In the next section, we present new inversions results
using a greater number of models for di�erent surface chemical compositions, yet within
the observational constraints, and for di�erent di�usion coe�cients, in much the same
way as what was done in our previous study, more focused on 16CygA.

tu Inversion for 16CygB
In this section, we present the results for the tu inversions for 16CygB. Using the reference
models computed with our Levenberg-Marquardt algorithm and the more regularised
inversions, we were able to obtain a value of tu for 16CygB with lower error bars. However,
the uncertainties are still non-negligible. Thus, we have to combine our analysis with
other diagnostics and carefully discuss our �nal results, as was done in our previous
study of 16CygA. In Fig 6.10, we present our results for various models with various
surface chemical composition and changes of the factor D associated with atomic di�usion
in Scu�aire, Théado, et al. (2008). The results we obtain are slightly model-dependent,
which is very similar to what was obtained for 16CygA, but the trend is in this particular
case opposite to what was seen before. Indeed, in Buldgen, D. R. Reese, and M. A. Dupret
(2016), we saw that including microscopic di�usion provided much more consistent values
of the tu indicator when compared to the inverted values. For 16CygB, models with lower
helium surface abundances, higher surface metallicities and less di�usion are favoured. In
fact, reducing the tu value is directly related to a reduction of the gradient of u = P

ρ
≈ T

µ
,

with T the temperature and µ the mean molecular weight. Consequently, reducing tu
implies reducing the mean molecular weight gradient within the star or changing the
temperature gradient in the regions where the tu indicator is sensitive. Reducing the mean
molecular weight gradient can �rst be done by eliminating microscopic di�usion in the
models. Indeed, this process tends to accumulate heavy elements in the deeper regions
since for stars around 1.0M�, gravitational settling dominate the transport mechanism in
the deep radiative regions. However, as stated before, not including this process leads to
inconsistent ages and chemical compositions for both stars. Therefore, the reason for this
discrepancy has to be explained using a more subtle e�ect.

We show in Fig. 6.11 the di�erences in chemical composition and in the weight function
involved in the integral expression for the tu indicator for two of our reference models in
the chemical composition box. Model1 is a model with a higher helium content (YS = 0.26),
lower metallicity ((Z/X)S = 0.0208) and microscopic di�usion (D = 1.0), thus following
the prescription derived from our previous study. Consequently, it is also less massive
(M = 0.91M�) and within the “young” range of our reference models (Age = 7.32Gy). Due
to the higher helium content and e�cient microscopic di�usion, this model is rejected
by the tu inversion. Model2 has a low helium content (YS = 0.22) and a higher metallicity
((Z/X)S = 0.0214) and a less e�cient microscopic di�usion (D = 0.5). This model is
signi�cantly more massive than Model1 (M = 1.01M�) but has a quite similar age of 7.54Gy.
The strong di�erence in mass is due to the well known degeneracy associated with the
helium abundance. It should be noted that this model is validated by the tu inversion.

This illustrates the fact that simply changing the surface chemical composition or
microscopic di�usion has a strong impact on the fundamental parameters of the star and
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implies strong changes in the internal structure even if the model �ts all the observational
constraints (although Model1 should be rejected due to its lower radius). Both models
were chosen because they were extreme cases and illustrated well the strong degeneracy
due to helium abundance.

Comparison with 16CygA

If we consider again 16CygA, the models with masses around 1.01M�, high helium content
and ages 7.2Gy around were considered to be the best models of this star since they
reproduced the tu trend seen in our previous paper. This would mean that we would
chose a model closer to Model1 to be consistent in terms of the initial chemical composition
of both components. However, since in this case we have to reduce the tu values, and thus
apply the opposite changes to the chemical composition and microscopic di�usion, the
16CygB have higher masses and ages (like Model2 mentionned above), going up to 1.03M�
and 8.0Gy.

The fact that the inversion is able to distinguish between Model1 and Model2 proves
again the diagnostic potential of this approach. In this particular case, due to the fact that
both stars are within a binary system, we are even able to see whether our selected result
will be consistent with the previously determined parameters for 16CygA. Due to the very
similar chemical composition derived spectroscopically and seismically, due to the results
of independent forward modelling of both components leading to similar ages and initial
chemical composition, we rather consider that the di�erences seen with the inversion
technique is to be explained by inaccuracies in the models rather than considering the
binary system to have merged from two isolated stars.

We also illustrate in Fig. 6.10 the results for one model using the GN93 abundances
and models which were computed using the AGSS09 abundances and assuming a similar
initial chemical composition to what was derived for 16CygA in our previous study. These
models show values of tu/R6

tar around 3.7 g2/cm6 whereas the model with GN93 is more
consistent with the inversion results of 3.0±0.5 g2/cm6. It is clear that models computed
assuming the same ingredients as 16CygA are incompatible from the point of view of
the inversion. However, since these stars form a binary system and thus are thought to
have formed together, we should be able to derive similar values of the initial chemical
abundance and similar ages for both components of the system. This problem is also
re�ected in the e�ective temperature and radii determination. The well-known helium
mass degeneracy leads to smaller radii for models with higher helium abundances, for
example. We also tried using larger error bars on the e�ective temperature and looked
at models with Te f f between 5600 K and 5900 K to see if this could a�ect the results.
Ultimately, no trend was found since they are ultimately related to the chemical abundances
and the way the elements are mixed within the star. These e�ects are well-known to
a�ect the position of the models in the HR diagram at the end of its evolution. Thus, in
what follows, we will focus on these aspects to try to reconcile our models of 16CygB
with those of 16CygA and the inverted results.

In terms of precision and accuracy, it should be noted that neither the model-
dependency, nor the regularisation can be held responsible for an inaccurate result.
Hence, as shown in this section, in particular thanks to the large variety of reference
models, we can see that surface chemical composition changes are not su�cient to explain
the inverted values of tu. In fact, taking θ = 10−4 still implies very similar inversion results
with reduced error bars and a slightly worse �t to the target function. Moreover, we know
from our previous numerous test cases that the tu inversion provided accurate seismic
diagnostic of core regions (see Buldgen, D. R. Reese, and M. A. Dupret (2015)).
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Figure 6.10: Le� panel: mean density (ρ̄) vs core conditions indicator (tu) plot. The
inversion results are plotted in orange with their respective error bars. The crosses are
values for the reference models computed with the Levenberg-Marquardt algorithm with
AGSS09, the black × shows one example of a model computed with GN93 and Yf = 0.25.
Right panel: surface chemical composition box for 16CygB. The colour code used allows
direct trend comparisons between the surface chemical composition and the tu values.
The size of the symbols is related to the intensity of microscopic di�usion, the smaller
the symbol, the smaller the D coe�cient. The + and the ♦ illustrate the impact of the
metallicity on the tu value.

6.3.4 In�uence of physical parameters on tu

When analysing the e�ects of microscopic di�usion, the problem is even worse, since if
we trust the values of Yf ∈ [0.24 0.25] for the �nal surface helium abundance of 16CygA,
we should obtain higher Yf values for its less-massive counterpart due to the fact that its
convective envelope goes slightly deeper and implies less-e�cient microscopic di�usion.
One should note that similar conclusions can be drawn for the surface heavy element
abundance of this star. In fact, increasing the amount of heavy elements in the stars
increases the opacity in the deep radiative regions where the tu indicator is sensitive
(see Fig. 6.9). Thus, it implies an increase of the temperature gradient, dT

dr . Now, since

tu ∝
(du

dr

)2
(see Eq. 6.11), it is worth looking more in depth at the behaviour of this indicator

with changes in the stellar structure. Using the ideal gaz approximation, we have a
straightforward relation between u, T and µ .
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Figure 6.11: Le� panel: In blue, helium abundance pro�le (Y ) for one model with a lower
surface helium abundance, around 0.22. In red, Y pro�le for a model with a higher
surface abundance, around 0.26. Right panel: the pro�le of the target function of the core
conditions indicator (tu) is plotted in corresponding colours for both models.

(
du
dr

)2

≈ T 2

µ2

(
d lnT

dr
− d ln µ

dr

)2

. (6.17)

This formula implies that the behaviour of the indicator depends on the values of
the gradients themselves. As can be seen in the right panel of Fig. 6.12, it is not always
straightforward to say whether an increase of the mean molecular weight gradient through
di�usion will imply an increase of tu. For example, below 0.1 R, with R the stellar radius,
it will be the case because di�usion will increase the depth of the minimum just below
0.1 R. However, adding extra mixing around 0.2 R or 0.3 R will smooth the transition
towards the chemically homogeneous convective envelope (around 0.7 for this model)
thereby decreasing the value of tu. Similarly, increasing the temperature gradient below
0.1 will reduce tu, and reducing dT

dr above 0.1 (thus sharpening the transition towards
the convective envelope) will imply the same reduction for the indicator. One can see
these e�ects in Fig. 6.12 where we illustrated the impact of di�erent types of mixing on
the temperature and µ gradients and thus on the tu indicator. This gives us a clue as to
what could be modi�ed in the models to reconcile the inversion results with the other
constraints. However, it does not mean that this is the only solution to the problem we
presented previously. For the sake of illustration, we also illustrate the hydrogen gradient
and the Brunt-Väisälä frequency of these models, showing the change of the slope of the
hydrogen gradient at the bottom of the convective zone but also a signi�cant deplacement
of the base of the convective zone for these models due to the use of the new opacities
from the OPAS project. The OPAS opacities are new opacity tables speci�cally designed
for solar-like conditions, where great care has been given to the details of the absorption
lines considered. These models also used the latest version of the OPAL equation of state
(Rogers and Nayfonov (2002)). These changes of course a�ect the strati�cation below the
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Figure 6.13: Le� panel: plot showing the hydrogen gradient of the same models as in Fig.
6.12. Le� panel: plot showing the Brunt-Väisälä frequency of these models.

convective zone and thus the behaviour of the tu indicator. Turbulent di�usion also implied
a change of the Brunt-Väisälä frequency in the very deep regions (below 0.1 R), this is
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particulary seen for the model associated with constant turbulent di�usion.
In practice, all thermodynamic quantities are coupled through the equation of state.

For example, adding a mixing process will a�ect the chemical composition, thus the
mean molecular weight, but it will also a�ect the opacity and indirectly the temperature
gradient. Consequently, the tu inversion o�ers a new insight on some di�erences between
the target and the reference model, but does not provide the physical cause of the observed
di�erences in structure.

6.3.5 Impact of physical ingredients on the core conditions indicator

Adding extra mixing

Because of the tu inversion results, we are faced with a very peculiar problem. We have
two stars, in a binary system, with very similar surface chemical composition, similar
masses and radii, that show signi�cantly di�erent seismic behaviours when carrying
out inversions of their structure. The problem is that the models for both stars cannot
be consistent with the inversion results and simultaneously present similar chemical
composition and age. Small discrepancies in chemical composition between both stars
have proven not to be su�cient to eliminate the discrepancy with the inverted tu values.
Therefore, we had to assume that something was neglected in the models for 16CygB, or
16CygA, or for both stars. In what follows, we study supplementary models including a
parametrised approach for an additional mixing process. The physical nature of this mixing
process is not discussed here, but we demonstrate that the tu indicator is, as expected,
able to discriminate between various processes inside the star. Figure 6.14 shows various
tu inversion results for di�erent implementations of di�usion yielding di�erent chemical
compositions. At �rst, we still wish to see whether there is a way reconcile the chemical
composition of 16CygB with that of 16CygA.

The parametrization of this additional mixing is based on an implementation of turbulent
di�usion used in previous studies (see Miglio, Montalbán, and Maceroni (2007) for details).
We tested di�erent implementations of this mixing. First, we added a constant turbulent
di�usion coe�cient of around 20cm2s−1 acting in the entire stellar structure and computed
a few models �tting the observational constraints for 16CygB. The impact of the constant
turbulent di�usion coe�cient is quite strong. Indeed, gradients are quickly attenuated and
the tu value decreases, as can be seen in Fig. 6.14 with the positions of the blue ♦ in the
le� panel. However, disagreement with other constraints is quickly found if this mixing
is further increased. For example, it is impossible to �t the individual small frequency
separations when the extra-mixing is too important although the acoustic radius, the
mean density and other constraints of the cost function of the forward modelling can be
accurately �tted.

We also computed models with a di�usion coe�cient implemented as an exponential
decay starting either from the bottom of the convective envelope or from the surface.
Two parameters are used for this formalism, one multiplicative constant and the rate of
exponential decay. From previous studies (Miglio, Montalbán, and Maceroni (2007)), we
know that a multiplicative coe�cient of around 100cm2s−1 is consistent with the e�ects of
rotation expected in solar-like stars. This value was used as a benchmark for the order of
magnitude of the mixing, but we did not limit ourselves to this value since we wanted
to investigate the e�ects of this parametric implementation on the tu indicator. We thus
allowed changes of up to ±50cm2s−1 in the value of this di�usion coe�cient. From Fig.
6.14, where the models with the implementation of turbulent di�usion as an exponential
decay starting from the surface are represented by blue +, we can see that it can indeed
help to reconcile the models with the tu values for 16CygB, even if a higher present surface
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helium value is considered, as had to be done for 16CygA. The fundamental parameters of
these models are presented in table 6.11, we note that they have slightly higher masses
and ages than the models without turbulent di�usion for the same chemical composition.
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Figure 6.14: Le� panel: mean density (ρ̄) vs core conditions indicator (tu) plot. The
inversion results are plotted in orange with their respective error bars. The × are values
for the reference models computed with the Levenberg-Marquardt algorithm without
extra mixing. The � are related to models with a decaying exponential turbulent di�usion
coe�cient starting at the bottom of the convective envelope. The + show models with
a decaying exponential di�usion coe�cient starting from the surface and the ♦ use a
constant turbulent di�usion coe�cient. The ∗ depict models using the new OPAS opacities
and the decaying exponential coe�cient starting from the surface. Right panel: surface
chemical composition box for 16CygB. The colour code allows direct trend comparisons
between the surface chemical composition and the tu and ρ̄ values as in Fig. 6.10.

As expected, additional mixing can indeed help to reconcile the chemical compositions
of both stars, but does not reconcile them in age since some of the models computed
with the extra mixing have ages up to 8Gy even if most are still around 7.4−7.7Gy. It
is also noticeable that the masses of the models in the present study tend to be slightly
higher than those previously found in Buldgen, D. R. Reese, and M. A. Dupret (2016) using
constraints from the 16CygA modelling. However, all of these models are still consistent
with the radius, luminosity and logg constraints from the litterature. A clear trend is also
seen in the fact that increasing the mixing improves the agreement between the reference
models and the inversion. However, as the models come closer to the inverted values for
tu, they tend to be less consistent with the small frequency separation values, meaning that
the extra mixing should not be too intense. Indeed, reducing the rate of exponential decay
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(thereby extending the e�ects of extra mixing to lower regions) or increasing directly the
turbulent di�usion coe�cient leads to the same disagreement with the small frequency
separations. To better understand the problems here, we plot the e�ects of the extra
mixing on both the metallicity and helium pro�les in Fig. 6.15. We see that the main
e�ect is to reduce a metallicity peak right under the convective region. The more reduced
the peak is, the closer the tu values to the inverted ones. But in the meantime, we also
degrade the agreement with the small frequency separations. Changes are also seen for
the helium pro�le right under the convection zone. During the �tting process with the
Levenberg-Marquardt algorithm, this a�ects the initial helium abundance required to be
within the constraints from Verma, Faria, et al. (2014) and thus indirectly the hydrogen
pro�le and thus the metallicity constraint.
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Figure 6.15: Le� panel: helium abundance plot for three models with di�erent implementa-
tions of turbulent di�usion. For the red curve, a constant mixing coe�cient was applied
throughout the structure and the evolution of the model. For the blue curve, we used an
exponential decay starting from the base of the convective envelope of the model. For the
green curve, we used an exponential decay starting from the surface of the model. For
the magenta curve, we used a model including only microscopic di�usion. Right panel:
The metallicity pro�les of the three models described above.

Changing the opacities

To further investigate the problem, we computed additional models with the new OPAS
opacities (Mondet et al. (2015), Le Pennec et al. (2015)) including atomic di�usion and
the implementation of turbulent di�usion using a exponential decaying function starting
from the surface. We used our forward modelling approach to compute these models
and analysed whether they models could agree better with both the small frequency
separations and the inverted values of tu. As stated before, adding extra mixing could
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reduce the agreement with the small frequency separations if its intensity was too high.
However, when using the new opacities, we were able to further increase the intensity of
the extra mixing, and thus the agreement with the tu inversion, without degrading the
agreement with the small frequency separations. As such, they provide a partial help to
the problem of �tting the all constraints, as can be seen from the position of the blue
∗ in Fig. 6.14, but do not solve completely the problem. We can see the in�uence of
these increased opacities, slightly moving deeper the base of the convective envelope and
changing the e�ciency of the mixing right below the base of the convective zone. We recall
here that these models were still selected with the Levenberg-Marquardt algorithm using
the observational constraints of 16CygB. The fundamental parameters of these models
computed with were very similar to those obtained previously, but these models tended
to show a slightly lower luminosity around 1.18L� and mass around 0.98M� and are thus
responsible for the ”lower” part of the intervals given in table 6.11.

Table 6.11: Parameters of the models of 16CygB with extra mixing and OPAS opacities
16CygB models 16CygB models

(Mixing) (OPAS + mixing)
Mass (M�) 0.98-1.00 0.96-0.99
Radius (R�) 1.07-1.10 1.07-1.09
Age (Gyr) 7.2-7.6 7.3-7.5
L� (L�) 1.19-1.22 1.17-1.20

Z0 0.0180-0.0190 0.185-0.019
Y0 0.28-0.30 0.28−0.30

αMLT 1.78-1.90 1.75-1.8

It can also be seen that when using a turbulent di�usion coe�cient decaying from
the lower boundary of the convective region, the e�ect on tu is slightly more e�cient, as
illustrated by the position of the blue � in the ρ̄− tu diagram of Fig. 6.14. Nevertheless,
we did not seek here to �ne-tune the parameters in this study since we are using a
parametric approach to the problem without any physical background.

At this stage, we can already conclude that reconciling both models in terms of chemical
composition and age will also probably need to remodel 16CygA to analyse whether e�ects
other than di�usion could not be held responsible for the trend in tu previously observed.
In that sense, looking at constraints from the lithium abundance (King et al. (1997)) and
combining these constraints in the modelling of both stars might change the derived
fundamental parameters by a few percents.

6.3.6 Conclusion

In this section, we updated our study of the 16Cyg binary system by focusing our attention
on 16CygB. From a re-analysis of the data, we were able to extract information from the tu
inversion and analyse the impact of extra mixing on the tu values and other classical seismic
indicators. First, we illustrated and solved the problem associated with the propagation
of observational errors for inversions in 16CygB by analysing the impact of trade-o�
parameters and the presence of modes which in some cases were useless for the inversion
technique. Ultimately, this approach could be used in similar situations for other observed
targets.

From the tu inversion, we were able to expose a problem in the surface chemical
composition of 16CygB when compared to its companion. We computed a new set of
models for this star, varying the surface chemical composition and restricting the e�ect of
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di�usion. We then observed that when the models were consistent with the inversion
results, they were systematically inconsistent with the surface chemical composition we
obtained for 16CygA. Since changing the chemical composition was not the solution, we
sought to implement an extra mixing process in the models of 16CygB and tried to analyse
its potential impact on the tu values. As intuitively guessed, an extra mixing in the form of
turbulent di�usion was found to be able to reconcile the models both with the surface
chemical composition of 16CygA and the inversion results. Furthermore, using the new
OPAS opacity tables further improved the agreement with the inversion. One could
argue that other implementations could be tested, such as extra mixing in the form of
undershooting using the prescription of Zahn (1991) as was found in HD 52265 by Lebreton
and Goupil (2012). However, as was described in Lebreton and Goupil (2012), this extra
mixing would leave an oscillatory pattern in the rr01 and rr10 seismic indicators. Due to
the quality of the seismic data of 16CygB, we were able compute these indicators and
found no evidence for an oscillatory pattern but rather a decreasing trend with frequency
that is well reproduced by models without undershooting.

To conclude, we can state that various physical processes could improve the agreement.
For example, a change in opacity would further change the results of the forward modelling
process and thus the stellar parameters obtained with the Levenberg-Marquardt algorithm,
these new models could potentially be in agreement with the inversion of the tu indicator.
In this study, extra-mixing in the form of turbulent di�usion was invoked to reduce the
disagreement between the inversion and the models. However, we did not seek to provide
a physical explanation for this mixing and while it helps reducing the disagreement, further
studies need to be performed to completely solve the problem. One �rst point would be
to re-analyse 16CygA in the scope of the impact of extra-mixing. Indeed, we have shown
here that turbulent di�usion can change the tu values. It is also well-known that rotation
induces such type of extra-mixing and it is believed to be responsible for the destruction
of lithium in stars. Therefore, a �rst step would be to perform a thorough study of the
impact of extra-mixing on lithium abundances and inversion results for 16CygA. The case
of 16CygB should be re-analysed a�erwards, since it is well-known that this star shows
even lower lithium abundances and is believed to have triggered thermohaline di�usion
by accreting planetary matter (see Deal, Richard, and Vauclair (2015)). As such, combining
spectroscopic and seismic constraints in this binary system may provide new insights on
stellar modelling of solar-like stars.

Moreover, additional indicators obtained through inversions seem to be a promising
way to analyse the boundaries of convective envelopes. Consequently, from the sensitivity
of seismic inversions and the quality of additional constraints, we are convinced that a
re-analysis of the 16Cyg binary system with new stellar models should shed new lights
on extra mixing processes in stellar interiors.

6.3.7 Appendix: The trade-o� problem for tu inversions

Origin of the trade-o� problem

As described in section 6.3.3, the SOLA inversion technique we use to obtain values of
the tu indicator computes a linear combination of individual frequency di�erences. These
coe�cients are obtained through the minimization of the cost-function de�ned as Eq. 6.13.
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We recall this de�nition here to better analyse the di�erent contributions:

Jtu =
∫ 1

0

[
KAvg−Ttu

]2 dx+β

∫ 1

0
K2

Crossdx+ tan(θ)
N

∑
i
(ciσi)

2

+η

[
N

∑
i

ci− k

]
, (6.18)

The �rst integral is associated with the averaging kernel, denoted KAvg, this term de�nes
the accuracy of the inversion technique, the better the �t of the target function, here Ttu ,
the more accurate the inversion is.

The second integral is associated with the cross-term kernel, denoted KCross. The
cross-term stems from the presence of a second integral in Eq. 6.9, here for example
associated with Y . Since the inversion only wants to extract information from the variable
u, the contribution associated with Y as here to be damped. The trade-o� between the
reduction of the cross-term and the �t of the target function is calibrated by the free
parameter β . In the case of the tu inversion, the use of Y means that cross-term kernels
have naturally smaller amplitudes due to the intrinsic small amplitude of helium kernels,
as can be seen by comparing the right and le� panels of Fig. 6.9. From previous hare and
hounds, we know that the cross-term contribution is much smaller then the errors from
the averaging kernels and have a negligible e�ect on the inversion results.

The third term of Eq. 6.18 is associated with the propagation of observational errors.
This term regulates the precision of the inversion technique by damping the coe�cients
associated with large error bars. Since large coe�cients are required for the tu inversion,
this term has an important impact on the �nal outcome of the inversion is at the centre of
the trade-o� problem we will discuss. The importance given to the observational error
bars of individual oscillation mode is materialised by the free parameter θ . Ultimately, the
SOLA method comes down to a trade-o� between precision and accuracy. In practice,
a large value of θ will imply small error bars, but also potentially a very bad �t of the
target function and the reduction its accuracy. On the opposite, a very small value of θ

means that the target function is well-�tted, but the result cannot be trusted due to its
large error bars.

The fourth term is associated with an additional regularization based on homologous
relations. The proper justi�cation of the value of the coe�cient k can be found in Sect.
3.2 of Buldgen, D. R. Reese, and M. A. Dupret (2015) and additional examples can be found
in D. R. Reese, Marques, et al. (2012) and Buldgen, D. R. Reese, M. A. Dupret, and Samadi
(2015) for other indicators. Eta is thus no free parameter but a Lagrange multiplier.

E�ects of θ variations and mode suppression
As we stated in the previous section, the SOLA inversion is a compromise between
precision and accuracy. This compromise is materialised by what is called a trade-o�
curve. It presents the accuracy of the result, in the form of the �t of the target function
in abscissa plotted against the observational error ampli�cation in ordinate for di�erent
values of the θ parameter. An example of a trade-o� curve for the full-set of observation
is plotted in Fig. 6.16.

As we can see, this trade-o� curve is an L-shaped curve and it is also quickly understood
that the optimal value of the free parameter θ is found nearby the edge of the trade-o�
curve. This position is associated with the best compromise achievable between precision
and accuracy given a set of observational data. For the particular case of 16CygB, we
started with values of θ = 10−5 and found out that values around 5×10−5 were better
in terms of compromise between precision and accuracy. This is indeed seen in the
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Figure 6.16: Trade-o� curves for the tu inversion using SOLA for the full dataset and for
the dataset not using the three octupole modes with lowest radial order.

plot of the trade-o� curve were we zoomed on regions associated with θ = 10−5. The
green line is the trade-o� curve obtained with the full set of data while the blue curve
is associated with the trade-o� curve when the `= 3 and n = 14,15 and 16 modes have
been suppressed from the data set. The green vertical line indicates the position on the
green trade-o� curve (full data set) associated with θ = 5×10−5 while the blue vertical
line indicates the position on the blue trade-o� curve (restricted data set) for θ = 10−5.
We can see that both positions are very close to each other in terms of error bars and �t
of the target function values. However, the fact that the blue curve is always above and
to the right of the green curve means that the compromise achieved with the restricted
dataset will always be sub-optimal when compared to the compromise achieved with
the full dataset. One can also see that the changes in error bars are quite quick when
reducing θ to lower values. For example, if one considers the initial value of θ = 10−5,
the error bars are 30% larger then at θ = 5×10−5 (which is even more striking then the
example given in Fig. 6.8).

To illustrate the reason why we tried to eliminate the modes associated with `= 3 and
n = 14,15 and 16, we plot in Fig. 6.17 the individual relative frequency di�erences with
increasing frequencies. It can be seen that these three modes are well �tted and have
larger error bars, this is why suppressing them helped us �nd a better compromise for
the inversion technique. However, as stated above, this compromise is still sub-optimal in
the strict mathematical sense due to the positions of the trade-o� curves with respect to
each other.

Further illustrations are provided in Fig. 6.18 and Table 6.12. In Fig. 6.18, we illustrate
the variation of the �t of the averaging kernel for various sets of observed frequencies.
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Figure 6.17: Relative frequency di�erences plotted with respect to the observed frequencies.

Each �t is also associated with a result in table 6.12. For the set of 47 frequencies and 39
frequencies, we suppressed modes with small error bars and low n, that are known to
be used by the inversion. It can be seen that the degradation of the kernel is correlated
with a reduction in accuracy and some instability of the inversion results. This is basically
due to the fact that each time we change the dataset, we are on a di�erent position on a
di�erent trade-o� curve. Also, this does not mean that change θ will always be a solution,
because at some point the seismic information will simply be insu�cient to infer some
diagnostic using the tu inversion.

Table 6.12: Degradation of inversion results due to modes suppresion: tu results.
Number of modes tu values (θ = 10−5)

56 (full set) 2.97±0.69
54 2.94±0.55
50 2.92±0.42
47 3.47±0.55
40 3.01±0.32
39 3.28±0.30

6.4 General Conclusion

As we have seen from this chapter, the 16Cyg binary system o�ers great opportunities
for asteroseismology. To this day, it might the best laboratory for stellar models of
solar-like stars (a�er the Sun, of course). The combination of high-quality seismic spectra
with interferometric and spectroscopic observations are the key elements enabling such
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Figure 6.18: E�ects of modes suppression on the averaging kernel of the tu inversion,
illustrating the decrease in quality of the target function (in green) �t for various frequency
sets. The degradation of the kernel �t is associated with instabilities in the tu values given
in Table 6.12.

detailed studies. With the Gaia data releases and the advent of large scale spectroscopic
surveys like the Apogee project, such studies could be carried out for additional targets.
However, it should be stressed that generalizing such analyses does not mean automatising
them. Indeed, detailed studies of speci�c high quality targets require adjusting multiple
physical parameters and testing various hypotheses for the model. Currently, such tests
are not achievable in large scale studies as found in Chaplin, Basu, et al. (2014) or Silva
Aguirre et al. (2017a). While such approaches are crucial to providing the uncertainties
of standard models and the internal error bars of the modelling process, going beyond
this framework and increasing the accuracy of stellar modelling can only be achieved by
minutious characterizations of benchmark stars such as those of the 16Cyg binary system.

In the future, a re-analysis of this system would be of primary importance to investigate
whether the di�erences between the A and B components, hinted at by the structural
inversions, are further con�rmed by additional seismic studies. Aside from providing
stringent constraints on the fundamental properties of both stars, such investigations
would also provide insights on the physical ingredients of stellar models and potentially
on the formation of the planetary system around 16CygB, informing us on how this could
a�ect stellar properties.





7. A DIGRESSION INTO GLOBAL HELIOSEISMOLOGY

7.1 General Introduction

In the last 50 years, helioseismology has been one of the most successfull �elds of
astrophysics. The ability to seismically probe the internal structure of the Sun radically
changed the picture for solar and stellar modelling. Historically, the �rst solar oscillations
were detected in 1962 by Leighton, Noyes, and Simon (1962). During the next decade,
additional observations by Mein (1966), Frazier (1968), Ulrich (1970), con�rmed these results
and Deubner (1975) unambiguously proved that the solar 5 min oscillations were due
to trapped acoustic waves. In 1977, Rhodes, Ulrich and Simon published independent
observations (Rhodes, Ulrich, and Simon (1977)), thereby con�rming the acoustic nature
of the oscillations and realising the �rst helioseismic inference by deriving constraints
on the mass and depth of the solar convective zone. Meanwhile, additional observations
were carried out by the Birmingham group, led by Georges Isaak (Brookes, Isaak, and
van der Raay (1976)) and at the Crimean observatory under the direction of Andrei Severny
(Severnyi, Kotov, and Tsap (1976)). In 1979, the Birmingham group observed for the �rst
time very low degree acoustic modes and con�rmed observationally the predictions of
Vandakurov (Vandakurov (1967)) on the regularity of acoustic oscillation spectrum. The
same year, Rhodes, Ulrich, and Deubner (1979) observed the �rst rotational splittings in the
solar oscillation frequencies. First inferences on di�erential rotation in the solar interior
were made by Kosovichev in 1988 (Kosovichev (1988)) from the data of Brown in 1987
(T. M. Brown and Morrow (1987)). The results, in contradiction with the classical theoretical
predictions of stellar rotation, are still not fully explained, as is evident from the extensive
litterature discussing angular momentum transport in stars as well as the modelling of
the solar tachocline. Multiple solutions have been proposed to explain the solar rotation
pro�le, including the interaction between various processes such as horizontal turbulence,
the meridional circulation, the magnetic �eld and the transport of angular momentum by
waves (Kumar, Talon, and Zahn (1999), Spruit (1999), Eggenberger, Maeder, and Meynet
(2005), Charbonnel and Talon (2005)).

In the following decades, additional observational facilities were developed, such as
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the GONG and BiSON networks and dedicated spacecra�s, such as the SOHO mission,
increased signi�cantly the quality of the data. In parallel to these developments of global
helioseismology, one should also mention the Solar Dynamics Observatory and the future
Solar Orbiter mission, which focusses on solar activity and local helioseismology, a �eld
not described in this thesis, specialising in probing the three-dimensional structures of
the upper convective region of the Sun.

Along with the improvement of the data quality, theoretical developments led to the
�rst structural diagnostics in the late 1980s. Using the asymptotic formula of Duvall (1982),
Christensen-Dalsgaard, Duvall, et al. (1985) carried out asymptotic sound-speed pro�le
inversions. This methodology was quickly generalised thanks to the variational integral
relations and non-asymptotic inversions were carried out (Antia and Basu (1994b), Antia
(1996), S. V. Vorontsov (2001) , Marchenkov, I. Roxburgh, and S. Vorontsov (2000)) for
the adiabatic and isothermal sound-speed, density, adiabatic exponent, and convective
parameter pro�les. Thanks to the development of a general formalism for the change of
variables in the integral relations (Kosovichev (1999)), any function of acoustic variables
could be probed by helioseismology. Perhaps the most famous inversion is that of the
squared adiabatic sound speed, which has been carried out using various approaches.

These diagnostics led to some of the key achievements of helioseismology, but also
exposed the weaknesses of standard solar models (Bahcall, Huebner, et al. (1982)). These
achievements include the very precise positioning of the base of the solar convection zone
and the necessity of microscopic di�usion in the computation of solar models (Kosovichev
and Fedorova (1991), Basu and Antia (1997a), Basu, Christensen-Dalsgaard, Schou, et al.
(1996)). However, sound speed inversions also revealed a hump at the base of the convective
zone, showing that while microscopic di�usion signi�cantly improved solar models, it
failed to reproduce correctly the strati�cation just below the envelope. This disagreement
with standard model was soon identi�ed as the trace of additional mixing below the
convection zone, due to the e�ects of shear turbulence, convective penetration, and
potentially magnetism, which changed both the temperature and chemical composition
gradients. Theoretical developments performed by Jean-Paul Zahn provided dynamical
models of the tachocline and the phase shi�s of solar oscillations (I. W. Roxburgh and S. V.
Vorontsov (1994a)) led to analyses of the strati�cation in the layers that were penetrated by
turbulent convective motions. However, as con�rmed by the current extensive litterature
on this topic we will shortly discuss in section 7.4, the modelling of the tachocline is far
from clari�ed.

In addition to acoustic variable determinations, helioseismology provided an estimate
of the helium mass fraction in the convective envelope (Antia and Basu (1994a), Richard,
Dziembowski, et al. (1998), Basu and Antia (1995)). The current estimates vary from 0.24
to up to 0.255, and are strongly in�uenced by the microphysical ingredients used in solar
models such as the equation of state or the opacities. Ultimately, all helium determinations
are based on model calibrations and therefore, unlike the acoustic variables determinations,
a certain degree of model dependence has to be assumed.

The successes of helioseismology were also highlighted by the outcome of the so-called
solar neutrino problem. This crucial issue was �rst noticed in the 1960s when the �rst
neutrino measurement experiments were carried out. The observed �ux of neutrinos
was much lower than predicted by the solar models and the discrepancy was thought to
stem from an inaccurate modelling of the solar core. However, with the development of
helioseismic techniques, the standard solar models were validated and it became clear
that the solution was to be found in neutrino physics. Ultimately, the explanation was
found to be the neutrino oscillations, con�rmed by the Super-Kamiokande Observatory
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in 1998 and the Sudbury Neutrino Observatory in 2001. The teams responsible for the
observation of the de�cit and the con�rmation of the neutrino oscillations were both
awarded the Nobel Prize in Physics in 2002 and 2015, respectively.

However, a new problem was soon encountered by the standard solar models when
the heavy elements abundances were revised in 2004 (Asplund, Grevesse, Sauval, Allende
Prieto, and Kiselman (2004), Asplund, Grevesse, Sauval, Allende Prieto, and Blomme
(2005)). Before this revision, microphysical ingredients in standard models had already
been updated several times, for example the radiative opacities in 1996 (Iglesias and Rogers
(1996)) and the equation of state in 2002 (Rogers and Nayfonov (2002)). The Anders and
Grevesse (1989) abundances were also slightly revised in 1993 (Grevesse and Noels (1993))
and 1998 (Grevesse and Sauval (1998)), but these small changes did not signi�cantly alter
the agreement with helioseismology. The scenery changed a few years later, when Asplund
et al. revised the abundances using 3D models and a careful selection of the spectral
lines to avoid blends. This revision led to a 20 to 30% decrease of the solar metallicity.
It should be noted that such changes were deemed possible according to a metallicity
inversion by Takata in 2001 (Takata and Shibahashi (2001)).

The metallicity change led to a reduction of the opacity at the base of the convective
envelope, inducing a disagreement between the new standard solar models and every
helioseismic diagnostic. Ever since, the solar abundance problem, or solar metallicity
problem, awaits a solution. A further revision of the abundances in 2009 led to a slight
reincrease of the metallicity (Asplund, Grevesse, Sauval, and Scott (2009)) and independent
calculations were performed in 2011 (Ca�au et al. (2011)). From these works, we now know
that the 3D models, although not perfect, agree with each other and that the remaining
di�erences are due to the selection of the spectral lines. Nevertheless, none of these
calculations led to a metallicity as high as the determinations of the 90s. As said in A.
Serenelli (2016), “What seems clear, however, is that the low metallicity solar abundances
are here to stay” and the exact origin of the disagreement between the Sun and the solar
models is still unknown.

From the helioseismic point of view, this disagreement led to attempts to determine
the metallicity in the convective envelope from the oscillation frequencies. Initial attempts
were performed by Takata and Shibahashi (2001), followed by attempts by Basu, Antia
and Lin in 2006 and 2007 (Antia and Basu (2006), Basu and Antia (2006), Lin, Antia, and
Basu (2007)), which concluded on multiple occasions that the solar metallicity agreed
with the value derived from the 1D atmospheric models. More recently, S. V. Vorontsov
et al. (2013) and S. V. Vorontsov et al. (2014) carried out a reanalysis of the problem by
using solar envelope models and found a metallicity partially in agreement with the more
recent spectroscopic determinations.

The main weakness of helioseismic determinations of metallicity is its dependency on
additional microphysical ingredients, such as the opacity tables or the equation of state.
This results from the intrinsic inability of seismology to directly probe other variables
than those of the acoustic structure of the Sun. Therefore, all conclusions of these seismic
studies are valid provided that the microphysical ingredients of solar models are correct.
This is actually a very bold assumption given the ongoing debate on opacity calculations,
illustrated by the extensive litterature following the recent experimental measurement of
iron opacity by Bailey and collaborators (Bailey et al. (2015), Nahar and Pradhan (2016),
Blancard, Colgan, et al. (2016)). Indeed, opacity calculations are not free of uncertainties
(Krief, Feigel, and Gazit (2016), Iglesias and Hansen (2017), Mendoza (2017)) and we will see
in the next section that the latest opacity tables calculated at the Las Alamos National
Laboratory do not solve the problem of solar models, but rather lead to a more complex
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picture. Besides the uncertainties on opacities, intrinsic di�erences in the equations of
state used to compute solar models also exist (see Baturin et al. (2013) for a comparison),
further complexifying the issue.

Unfortunately, to the uncertainties on the ingredients of the standard solar models,
we have to add the possible impact of non-standard processes, like rotation, radiative
accelerations, convective penetration, ... as discussed in section 2.3. This means that while
further revisions of the opacities (expected from various studies Nahar and Pradhan (2016),
Iglesias and Hansen (2017), Mendoza (2017)) will likely change the picture, the fact that the
highest disagreement between standard models and the Sun is found in the vicinity of
the tachocline, the exact region were the standard solar models are the most uncertain,
is not to be neglected. In fact, theoretical studies favor a certain degree of convective
penetration and some di�usive extra-mixing below the limit of the convective zone given
by the temperature gradient transition. The main di�culty is the absence of a theoretical
formulation to depict this transition region due to the uncertainties linked to the exact
physical mechanisms acting within it.

In conclusion, the solar metallicity problem is the materialization of the central questions
of stellar physics and while the debate seems linked to speci�c points of stellar structure,
the consequences of the outcome of this problem are quite far-reaching since the standard
solar model de�nes the basic recipe used to compute stellar models, which are then used
as references in multiple �elds of astrophysics.

In this chapter, we will present three new studies in the �eld of global helioseismology.
Section 7.2 presents a study which has been accepted for publication in Astronomy and
Astrophysics, section 7.3 presents a study which is accepted for publication in the Monthly
Notices of the Royal Astronomical Society and section 7.4 presents a study which is
currently submitted to the Monthly Notices of the Royal Astronomical Society.

7.2 Seismic inversion of the solar entropy: A case for improving the standard
solar model

7.2.1 Introduction

Helioseismology, the science of interpreting the acoustic oscillations of the Sun to probe
its internal structure, has led to striking success stories. The precise location of the base
of the convective envelope at a fractional radius of 0.713±0.001 (Kosovichev and Fedorova
(1991), Christensen-Dalsgaard, D. O. Gough, and Thompson (1991), Basu and Antia (1997b)),
the inversion of the solar sound speed, density and rotation pro�les (Antia and Basu (1994b),
Elsworth et al. (1990), Kosovichev, Schou, et al. (1997)), the determination of the helium
mass fraction in the convective envelope at Y = 0.2485±0.0035 (Basu and Antia (1995)), and
the outcome of the “solar neutrino problem” (Couvidat and Turck-Chieze (2004),Bahcall
and Peña-Garay (2004)) are considered to be the greatest achievements in this �eld. In
the 90s, the internal structure of the Sun was extremely well reproduced by standard
solar models (herea�er SSMs). Consequently, the physical ingredients of these numerical
models, particularly the solar chemical element abundances (Grevesse and Noels (1993),
herea�er GN93), were applied to stars other than the Sun and used in the computation of
grids of stellar models. Such grids are one of the basic components in various �elds such
as stellar population analysis, Galactic evolution, and exoplanetology for example.

The physical ingredients of the solar models, such as the equation of state (Rogers and
Nayfonov (2002)) or the heavy element abundances were continuously re�ned (Grevesse
and Sauval (1998), herea�er GS98), but the changes being quite small , the agreement
of the models with helioseismology remained. However, two re�nements with stronger
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impacts were more recently brought forward.

The �rst one addressed the solar chemical mixture with a new set of heavy element
abundances published by Asplund and collaborators (Asplund, Grevesse, Sauval, Allende
Prieto, and Kiselman (2004), Asplund, Grevesse, Sauval, Allende Prieto, and Blomme (2005)).
The most abundant heavy elements (C,N,O) saw a strong decrease of their abundances,
when compared to GN93 and GS98, linked to the updated physics, the careful selection
of atmospheric spectral lines and the use of 3D convection simulations in the spectral
synthesis calculations. Consequently, the metallicity of the Sun was reduced by about
30%. Using these new abundances led to strong disagreements between standard solar
models and every helioseismic diagnostic. The convective zone was too shallow, the
helium abundance too low and the sound speed pro�le incompatible with that of the
Sun (A. M. Serenelli et al. (2009)). Further revision of the spectroscopic determinations
(Asplund, Grevesse, Sauval, and Scott (2009), herea�er AGSS09) led to slight reincreases
of the metallicity, but these values were still too low to restore the agreement with
helioseismology. The updated oxygen abundances were compared with the values found
in the solar environment (Turck-Chièze, Couvidat, et al. (2004)), and the disagreement
with helioseismology was suggested to originate in additional physical processes acting
in the solar radiative zone. Solar models including some examples of processes were
studied (Kumar, Talon, and Zahn (1999), Castro, Vauclair, and Richard (2007)), but could
provide a clear and decisive answer on the issue. Simultaneously, other studies used
seismology to estimate the solar metallicity. Some analyses con�rmed the GS98 value
(Basu and Antia (2006)) while others agreed with the AGSS09 value (S. V. Vorontsov et al.
(2014)), illustrating the stalemate of this problem.

The second important change in solar modelling is the revision of the stellar material
opacity. The solar abundance problem has indeed been linked to the opacity at the
base of the convective envelope and a physical process inducing a local increase of the
opacity has recurrently been proposed as the solution to the controversy (Basu and Antia
(2008)). Until recently, the most commonly used opacity values were those computed
from the OPAL opacity tables (Iglesias and Rogers (1996)) and an underestimate of the
opacity in more massive stars was convincingly revealed by di�erent studies (Zdravkov
and Pamyatnykh (2008), S. Salmon et al. (2012), Cugier (2012),Turck-Chièze, Gilles, et al.
(2013)). These �ndings initiated both innovative opacity measurements with high-energy
laser facilities as well as numerical computational e�orts to improve the determination of
the solar opacity. Great care was devoted to the knowledge of the oxygen and iron spectral
opacities, which are the atomic species that contribute the most to light absorption at the
base of the solar convective envelope (Blancard, Cossé, and Faussurier (2012)). Reaching
the physical conditions prevailing near the base of the solar convective envelope with laser
experiments is an intricate problem, but the �rst results for iron revealed an important
discrepancy with theoretical expectations (Bailey et al. (2015)). In parallel, two new sets of
theoretical opacities were developed, one dedicated to the Sun from the OPAS consortium
(Mondet et al. (2015)) and the other covering the wide range of stellar conditions, by the
Los Alamos National Laboratory (Colgan et al. (2016), herea�er OPLIB opacities), which
could become commonly used in stellar models, like the OPAL tables.

The solar issue impacts astrophysics as a whole since the “metallicity scale”, used to
relate spectroscopic observations to the metallicity of stellar models, is widely applied in
other astrophysical �elds. This scale uses the Sun as its reference and a 25% change in the
reference obviously induces a 25% change for all stars. To this day, the so-called “solar
metallicity problem” remains a tedious issue which is not only linked to the metallicity, but
to the whole micro- and macrophysical representation of the solar structure. Asteroseismic
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results have indeed already shown that our depiction of transport processes in stellar
models is imperfect (Deheuvels, Doğan, et al. (2014), Mosser, Goupil, et al. (2012)). Due
to the quality of the solar data, the Sun still constitutes our best laboratory to test the
ingredients of stellar models. Consequently, providing new seismic diagnostics allowing
a more in-depth probe of the solar structure is crucial. With this study, we provide
such a new diagnostic by performing structural inversions of an entropy proxy. The
sensitivity of this inversion to the strati�cation just below the convective zone paves the
way for a re-analysis of the importance of additional physical processes required in the
description of the solar structure. A�er having presented classical helioseismic tests and
their limitations, we will show how our new diagnostic sheds new light on the solar
structure problem.

7.2.2 Classical helioseismic tests of updated solar models

The models considered in this study are standard solar models (Christensen-Dalsgaard,
Dappen, et al. (1996)), built using the Liège stellar evolution code (CLES, Scu�aire, Théado,
et al. (2008)), for which the frequencies were computed with the Liège oscillation code
(LOSC, Scu�aire, Montalbán, et al. (2008)). All models presented in this section are
computed using the FreeEOS equation of state and either the OPAL, OPAS, or OPLIB
opacity tables. In order to fully estimate the e�ects of a change in the heavy element
abundances, we adopted the two extreme mixtures, namely GN93 and AGSS09.

The structural kernels and the inversions were computed with an adapted version of
the InversionKit so�ware (D. R. Reese, Marques, et al. (2012)) using both the SOLA (Pijpers
and Thompson (1994)) and RLS techniques (Antia and Basu (1994b)). We used the same
solar seismic dataset as in (Basu, Chaplin, et al. (2009)) and followed their de�nitions of
the error bars for the SOLA technique.

The acoustic structure of a star is de�ned by a given set of thermodynamical quantities
found in the pulsation equations, such as the pressure, P, the density, ρ , or the so-called
Brunt-Väisälä frequency, N2... The inversion technique allows us to seismically determine
the relative di�erences between structural quantities of numerical solar models and the
Sun itself, thus revealing whether these models accurately reproduce the solar acoustic
structure. A classical test of the solar models is to compute the inversion of the relative
di�erences of the squared adiabatic sound speed pro�le, denoted c2, de�ned as Γ1P

ρ
, with(

∂ lnP
∂ lnρ

)
S
, being the adiabatic exponent, with S the entropy of the plasma. We start in

Fig. 7.1 by presenting inversion results for the squared adiabatic sound speed for various
models using both the GN93 and AGSS09 abundances and di�erent opacity tables. The
blue and orange curves illustrate the results obtained with the past OPAL opacities (Iglesias
and Rogers (1996)), namely an excellent agreement for GN93 and the worsening of this
agreement when using AGSS09. Fig. 7.1 also presents the inversion results for models using
GN93 (in red) and AGSS09 (in green) computed with OPLIB. First we note that although
the convective zone is still too shallow in AGSS09 models, as can be seen in table 7.1, there
is a signi�cant improvement when compared to the performances of AGSS09 with the old
OPAL opacities (Iglesias and Rogers (1996)). The level of agreement for the GN93 model is
reduced when the new OPLIB opacities are used. However, this disagreement for the GN93
model is not that dramatic and it still seems that the GN93 mixture is performing better. It
is only below 0.4 solar radii that the agreement of the AGSS09 standard models with the
OPLIB becomes better or as good as the GN93 mixture. In conclusion, the sound speed
inversion does not seem to imply that the use of the OPLIB opacities has signi�cantly
changed the picture of the solar metallicity problem, as was also found in (Guzik, Fontes,
et al. (2015)).
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In addition to the OPLIB opacities, we have also tested the OPAS opacity tables, which
have been optimised for the base of the convective zone. Although they lead to a very
slightly deeper convection zone (Guzik, Fontes, et al. (2015)), these tables do not cover the
full solar conditions and thus were not optimal for full structural inversions of the Sun
(Some results using OPAS are presented in the supplementary material.).

The improvements in AGSS09 models computed with the OPLIB opacities are however
mitigated by an increased discrepancy with the helium abundance in the convective
envelope. The helium abundance of these new models is found to be lower than with
previous opacities, whether GN93 or AGSS09 abundances are used. This reduction in
helium is linked to the fact that the OPLIB opacities are slightly lower in most parts of
the solar structure. This opacity reduction induces a lower mean molecular weight in the
solar models, thus a lower initial helium abundance, to ensure that the model reproduces
the solar luminosity.

The issue becomes more intricate when one analyses the ratios of the small frequency
separation to the large frequency separation (see supplementary material). These ratios,
denoted r02 and r13, are used to probe the solar core conditions (I. W. Roxburgh and
S. V. Vorontsov (2003)) and show a clear preference for the latest AGSS09 mixture when
the OPLIB opacities are used. This constitutes a clear change from the previous SSMs with
the OPAL opacities, which showed better agreement with higher metallicity abundances,
such as the GN93 or GS98 tables. Hence, the situation is quite confusing since the sound
speed inversion seems to favor the old GN93 mixture when using the OPLIB opacities
while the frequency ratios better agree with low metallicity models using the same opacity
tables. It seems fair to admit that no clear solution emerges from classical helioseismic
diagnostics.

rConv/R� YConv

Helioseismic measurements 0.713±0.001 0.2485±0.0035
SSM (AGSS09, FreeEOS, OPAL) 0.720 0.236
SSM (AGSS09, FreeEOS, OPLIB) 0.718 0.230
SSM (AGSS09, FreeEOS, OPAS) 0.717 0.232
SSM (GN93, FreeEOS, OPAL) 0.711 0.245
SSM (GN93, FreeEOS, OPLIB) 0.708 0.240

Table 7.1: Comparison of the depth of the convective zone and the helium mass fraction be-
tween helioseismic results and various standard solar models. The ingredients (abundance
tables, equation of state, opacity tables) are listed in parentheses.

7.2.3 Inversion of the solar entropy: a new seismic diagnostic

To shed new light on the problem illustrated in Sect. 7.2.2, we propose a new seismic
diagnostic. It consists in inverting a solar entropy proxy, de�ned as, which reproduces
the behaviour of the entropy of the solar plasma. The constraining nature of the entropy
proxy inversion originates in the plateau that is formed by this quantity in convective
regions. This plateau is due to the high e�ciency of convection in the deep layers of
the solar envelope, where this phenomenon operates adiabatically. In turn, the height of
the plateau is a direct marker of the way we model the radiative zones of the Sun. In
the layers below the convective envelope, radiation dominates energy transport and the
strati�cation is very sensitive to both opacity and chemical abundances. Consequently,
a change in opacity, whatever its origin, or a variation of the abundances will impact
both the temperature and mean molecular weight gradients and thus the height of the
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Figure 7.1: Sound speed inversions using the SOLA method for four SSMs. The crosses of
various colours are related to GN93 standard models, blue crosses being associated with a
model using the old OPAL opacities and the red crosses with a model using the latest
OPLIB opacities. The circles are related to AGSS09 standard models, green denoting the
use of the OPLIB opacities and orange the use of the former OPAL opacities. All models
used the FreeEOS equation of state. Horizontal error bars show the interquartile width of
the averaging kernels while the vertical error bars are the 1σ errors from the propagation
of the observational 1σ errors.

plateau in a given solar model. Testing this height through seismic inversions o�ers a
straightforward diagnostic. Indeed, as shown in the supplementary materials, there is
a clear relation implying that an increased opacity at the base of the convective zone
induces a lower entropy plateau in the convective zone. Moreover, non-standard processes
may also change the height of the plateau, making this diagnostic a very sensitive probe
of the layers just below the convective envelope, which are precisely the ones for which
the disagreement with the solar model is the largest and where the physical hypotheses
of the standard models are the most uncertain.

The inversion of the entropy proxy pro�le was made possible by the derivation of new
structural kernels using a method mentioned in a previous paper (Buldgen, D. R. Reese, and
M. A. Dupret (2017)). Inversions were conducted using both the SOLA and RLS methods
to guarantee the reliability of the results. We followed previous studies (Rabello-Soares,
Basu, and Christensen-Dalsgaard (1999), Basu and Thompson (1996)) to calibrate the free
parameters of both methods and hare-and-hounds exercises were also performed to
further assess the robustness of this new seismic inference (see supplementary).

Inversion results of the entropy proxy pro�le are given in Fig. 7.2 for two solar models
using the GN93 abundances and either the former OPAL or the new OPLIB opacities. The
plateau of the entropy proxy is shi�ed by about 2% due to the opacity changes between
the OPAL and OPLIB opacity tables (blue and red results). While the agreement between
the Sun and the GN93 SSMs is still of the order of 0.7%, which is quite good, the sign of the
di�erences in the plateau has critical implications. A positive di�erence between the Sun
and the GN93 model means that the entropy plateau in the model is too low. If one were
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to reconcile the GN93 abundances with the entropy pro�le of the Sun, it would necessarily
require some change inducing a reduction of the opacity at the base of the convective
zone in order to raise the entropy plateau up to the solar value. This appears to be in
contradiction with the experimental results of Bailey et al. (Bailey et al. (2015)) for iron
in the physical conditions present at the base of the envelope. Furthermore, theoretical
calculations of iron spectral opacity in these conditions are still a matter of debate and
could as well change in the future (Iglesias and Hansen (2017), Nahar and Pradhan (2016),
Blancard, Colgan, et al. (2016)). It is worth noting that the height of the plateau is nearly
independent of the equation of state. We show in the supplementary material that it is
hardly shi�ed if one uses the OPAL equation of state (Rogers and Nayfonov (2002)) instead
of the FreeEOS equation of state adopted in our models.

The inversion of the entropy proxy for the AGSS09 standard models is presented in
Fig. 7.3. The orange circles illustrate the disagreement found in solar models built using
the old OPAL opacities. Switching to the OPLIB tables (green circles) induces an improved
agreement at all fractional radii. As can be seen, these models are in better agreement
in the radiative region of the solar structure and still show negative di�erences in the
convective envelope. It is worth noting that the linear trend seen in the plateau seems
to come from both the wrong position of the base of the convective envelope and the
formalism used for convection (here the mixing-length theory). This means that for the
low-metallicity AGSS09 solar models, a further opacity increase as seen in experimental
measurements could improve the agreement with the Sun. In additional test cases, we
showed that a global uniform 5% increase of the opacity induced a 0.4% change of the
position of the entropy plateau. This of course only serves as an indication. Using ad-hoc
localised increases of the opacity just below the convective zone, we observed a lowering
of around 1% of the height of the entropy plateau in SSMs. This indicates that the entropy
inversion is very sensitive to the layers right below the convective zone. This sensitivity
can e�ciently constrain non-standard processes. Indeed, additional mechanisms would
alter both temperature and mean molecular weight gradients and the changes would be
clearly seen in the variations of the height of the plateau.

7.2.4 Conclusion

The change of scenery caused by the use of the OPLIB tables in SSMs points out weaknesses
for both high- and low-metallicity abundances tables. An intermediate metallicity value
or an increased opacity at the base of the convective envelope could marginally restore
the agreement for standard models, but the discrepancies in helium seem to point out
additional mechanisms, some physical ingredients that have to be included in the solar
models whatever abundance tables are used. The uncertainties illustrated in this study and
the sensitivity of the seismic diagnostic we developed lead us to advocate for a re-opening
of the case of potential additional ingredients in helioseismic analyses using constraints
such as the lithium abundance and the solar rotational pro�le in combined studies using
simultaneously all seismic information available. Changes in the physical ingredients of solar
and stellar models will impact our determinations of stellar fundamental parameters. It is
a necessary step if we want to bring these models to a new level of physical accuracy. For
that purpose, seismic inversions of the entropy pro�le o�er unprecedented opportunities
to further test the structure of the Sun.
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Figure 7.2: E�ects of the opacities on the entropy pro�le of GN93 SSMs. The symbols of
various colours illustrate inversion results for the entropy proxy solar pro�le, S5/3. The
di�erence between the purple and red crosses emphasises the e�ects of changing the
opacity table when building solar models. The horizontal and vertical error bars are
de�ned as in 7.1
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Figure 7.3: Comparison of the entropy pro�le between AGSS09 and GN93 SSMs. The
red crosses illustrate inversion results for the pro�le of the entropy proxy in the Sun
for the GN93 SSM built with the OPLIB opacities. The green circles and orange crosses
illustrate the e�ects of changing from the old OPAL opacities to the recent OPLIB opacities
in AGSS09 SSMs.
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7.2.5 Supplementary Materials

Checking the frequency ratios of low degree modes

Another classical helioseismic test consists in comparing the frequency ratios denoted
r02 and r13 of stellar models with those of the Sun. These frequency combinations are
thought to be very sensitive to the core conditions of the Sun and were thought to be
able to constrain the mean molecular weight of the solar core (Chaplin, A. M. Serenelli,
et al. (2007)). In Fig. 7.4, we illustrate the agreement between the ratios obtained from
solar data and that from standard solar models using both the GN93 and the AGSS09
abundances along with the OPAL and OPLIB opacities and the FreeEOS equation of state.
The dashed lines illustrate the results obtained for OPAL tables, with the GN93 abundances
(orange) agreeing almost perfectly to the solar values while the AGSS09 abundances (green)
clearly disagreed. This result was interpreted as a requirement for a high metallicity to
reproduce the mean molecular weight gradients in the deep layers of solar structure
(Chaplin, A. M. Serenelli, et al. (2007)). However, from the results obtained with the OPLIB
opacities, illustrated as plain lines, we can see that the AGSS09 abundances are now
clearly favored. This is also seen in the sound speed and entropy inversions where the
AGSS09 abundances perform much better below 0.4 solar radii than the GN93 mixture.
This increases the complexity of the problem since we no longer have one heavy element
mixture that agrees better with the solar structure at all radii. In addition, this con�rms
that these ratios actually depend on multiple ingredients which come into play in solar
core conditions rather than only the mean molecular weight.
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Figure 7.4: Frequency ratios r02 and r13 for the Sun and two SSMs. The observations
are given with their error bars in blue, while the dashed green line show the results for
an SSM built using the OPAL opacities, the FreeEOS equation of state and the AGSS09
abundance tables. The dashed orange line show the values of these ratios for an SSM
built with GN93 abundances, the OPAL opacities and the FreeEOS equation of state. The
plain green and orange lines show the changes in the ratios values when using the OPLIB
opacities instead of the OPAL opacities for the AGSS09 and GN93 abundances respectively.
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Additional veri�cations of the seismic diagnostic of the entropy proxy
Our entropy proxy, denoted S5/3 =

P
ρ5/3 comes from the Sackur-Tetrode equation for the

entropy of a mono-atomic non-degenerate ideal gas, which reads

S =
3kB

2

(
µmu ln

(
P

ρ5/3

)
+ f (µ)

)
, (7.1)

with kB the Boltzmann constant, µ the mean molecular weight, mu the atomic mass unit,
P the local pressure, ρ the density and f (µ) a function that only depends on the mean
molecular weight and physical constants. The most striking advantage of this proxy is its
unambiguous behaviour towards opacity changes just below the convection zone. Indeed,
if one takes the derivative of the natural logarithm of S5/3 with respect to the natural
logarithm of P for an ideal gas, one obtains

d lnS5/3

d lnP
=
−2
3

+
5
3

(
d lnT
d lnP

− d ln µ

d lnP

)
(7.2)

Now, for a given energy �ux (as determined by the solar luminosity), an increased
opacity below the convection zone induces a steeper temperature gradient against pressure,
i.e. more energy is absorbed by stellar matter. This, in turn, will increase the logarithmic
derivative of S5/3 and brings it closer to 0 since

d lnS5/3
d lnP is negative as can be seen in Fig.

7.5. Therefore, the increase in entropy versus the radius is thus smaller as the pressure
decreases and the height of the plateau is accordingly reduced with the steepening of the
temperature gradient just below the convective envelope. This e�ect is illustrated in Fig.
7.6, where the near 2% shi� results from changing the opacity tables used in the SSMs.
The steeper temperature gradient is a consequence of steeper dependence of the OPLIB
opacities with temperature (see Colgan et al. (2016)). Therefore, although they are lower
then the OPAL opacities in most of the solar structure, they can still induce a lower base
of the convective zone and a lower entropy gradient in SSMs. The e�ect of a localised ad
hoc opacity increase on this indicator has been observed in all test cases involving the past
OPAL and the latest OPLIB and OPAS opacities. These tests on structural models have
con�rmed the trends we can see using the equations of thermodynamics. We illustrate
these trends in Fig. 7.6 where we plot the temperature, mean molecular weight and
entropy gradients with respect to pressure. One can see the correlation between changes
in the gradient and the height of the entropy plateau, but changes are also seen in the
deep radiative regions, thereby explaining the disagreement of the GN93 abundances with
OPLIB with the solar structure for these layers.

Of course, the behaviour of this entropy proxy is slightly dependent on the equation
of state and small changes can be seen in the height of the plateau if di�erent equations of
state are used. In Fig. 7.7, we illustrate this e�ect by using the OPAL equation of state
instead of the FreeEOS equation of state in our SSM. The orange results are for OPAL and
the red results are for the FreeEOS equation of state. The changes are quite small, more
than ten times smaller than the di�erence between the Sun and SSMs or between models
which use OPLIB and OPAL opacities. As the equations of state are generally calibrated
on the Sun, it is not a surprise that changing this ingredient leads to limited variations.
Consequently, it seems very improbable that changes in the equation of state would
have a strong impact. The e�ects illustrated in Fig. 7.7 are seen with either abundance
tables. In conclusion, most of the changes in the entropy plateau are to be expected from
non-standard processes or updates in the opacity tables. Indeed, such e�ects would
imply signi�cant variations of both temperature and mean molecular weight gradients
that would be clearly witnessed by the entropy pro�le.
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As mentioned in the core of this section, we also computed SSMs with the AGSS09
abundances and the OPAS opacity tables that we combined with the OPLIB opacities. The
combination is required since the OPAS tables do not cover the whole range of density
and temperature necessary to build a solar model from the center to the photosphere. The
results for these models are illustrated in Fig. 7.7 in blue. The use of the OPAS tables leads
to a slightly lower opacity in the convective envelope, inducing a less steep temperature
gradient right below the envelope. Consequently, it is no surprise that the agreement is
slightly worse for these models than for models built only with the OPLIB opacities. The
main issue with the OPAS opacity tables is their limited range in temperature and density.
This induces uncertainties and makes them not very well suited for full inversions of the
solar structure. However, the behaviour of the plateau against the opacity changes proves
again the sensitivity of this seismic diagnostic and the trends that we expect in the case
of any localised opacity increase in the solar models, as could be induced by a change
in iron opacity. Unfortunately, these opacity tables have only been built for the AGSS09
mixture and could be not be tested with SSMs built using the GN93 abundance tables.
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Figure 7.5: Logarithm derivatives of temperature, mean molecular weight and entropy with
respect to pressure. The magenta, red and green curves are associated with a standard
solar model built with the GN93 and OPAL opacities, while the blue, orange and light
green dashed curves are associated with an SSM built with GN93 and the OPLIB opacities.

Additional tests of the inversion techniques
To further test the robustness of the inversions, we carried out some hare-and-hounds
exercises to see whether both the SOLA and the RLS techniques could recover the entropy
plateau of a given solar-like target model. We considered the same dataset as for our
solar inversions, using for each mode the actual observed uncertainties on the individual
frequencies of the Sun. We used one of the standard solar models from our sample built
with the AGSS09 abundance tables, the OPLIB opacities and the FreeEOS equation of
state as a hound and tried to reproduce the entropy pro�le of a target model, the hare,
which was chosen as another standard solar model built with the OPLIB opacities, the
OPAL equation of state and the GN93 abundances. From Fig. 7.8, we can see that both
methods reproduce the trends of the entropy pro�le, although very deep regions are not
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Figure 7.7: Inversion results for the OPAL equation of state and the OPAS opacity tables
using the SOLA technique. The red and orange crosses show the comparison between
the Sun and GN93 SSMs built respectively with the FreeEOS and the OPAL equation of
state. The blue circles show the comparison between the Sun and an SSM built using the
FreeEOS equation of state, the OPAS opacities and the AGSS09 abundance tables. Each
results is plotted with its uncertainties as de�ned in the core of this section.

always well reproduced. This uncertainty is linked to the fact we do not have oscillation
modes whose nature allows us to have a good resolution below 0.1 solar radii. It is also
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present for other structural inversions, such as sound speed inversions for example. We
can however see that the SOLA method reproduces very well the entropy plateau. This
constitutes a proof of concept of the method in terms of reliability and accuracy.

Further checks of the quality of the averaging kernels for the SOLA method were
performed, to ensure the accuracy of the results. We also compared the results of SOLA
inversions with RLS inversions. These results are compared in Fig. 7.9, where we present
in the le� panel inversion results for the RLS and SOLA techniques for an SSM with the
AGSS09 abundances, OPLIB opacities and the FreeEOS equation of state. We can see that
the entropy plateau is nearly at the same position for both methods and that very similar
trends are observed. In the right panel, we illustrate the averaging kernels of the SOLA
method for various positions inside the Sun. One can clearly see that the target function
in green is well reproduced at every depth, although some inaccuracies are present below
0.1 solar radii. This is expected since we lack very low degree and radial order modes
able to probe e�ciently the deepest layer of the solar structure.
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Figure 7.8: Results from the hare-and-hounds exercise between SSMs for the entropy
proxy inversion. The green curve illustrates the real di�erences between two SSMs for
the entropy proxy while the blue and magenta crosses show various SOLA results with
changes in the free parameters used for regularization. The red curve shows the same
pro�le as obtained from the RLS inversion technique. The red dashed lines show the 1σ
error bars on this inversion.

7.3 Determining the metallicity of the solar envelope using seismic inversion
techniques

7.3.1 Introduction

Helioseismology, the study of solar pulsations, has led to a number of successes. Amongst
these achievements, one �nds the determination of the position of the base of the solar
convective envelope (Basu and Antia (1997a) and Kosovichev and Fedorova (1991)), the
determination of the helium abundance in this region (Basu and Antia (1995)) as well as
the demonstration of the necessity of microscopic di�usion to accurately reproduce the
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Figure 7.9: (Le� panel) Comparison between SOLA and RLS inversions for the entropy
proxy pro�le inversion of the Sun. The red crosses illustrate the SOLA results with their
uncertainties while the red line shows the RLS inversion results with the 1σ envelope
given by the dashed red lines. (Right panel) Illustration of SOLA averaging kernels and
comparison with their target functions at various depth. The green curves show the
Gaussian target functions of the SOLA inversion for various depths inside the Sun while
the red dashed curves show the averaging kernels.

acoustic structure of the Sun (Basu, Christensen-Dalsgaard, Schou, et al. (1996)). Another
important result of helioseismology was the determination of the solar rotation pro�le
(T. M. Brown, Christensen-Dalsgaard, Dziembowski, et al. (1989), Kosovichev, Schou, et al.
(1997), and Schou, Antia, et al. (1998)). However, the agreement that existed between
solar models and structural inversions has been reduced since the publication of updated
abundance tables by Asplund, Grevesse, and Sauval (2005) which showed a signi�cant
decrease of the metallicity with respect to the value commonly used in the standard solar
models in the 90s (Grevesse and Noels (1993) and Grevesse and Sauval (1998) herea�er
GN93 and GS98, respectively) These tables were further improved in Asplund, Grevesse,
Sauval, and Scott (2009) and have been at the center of what is now called the “solar
metallicity problem”. Recently, Ca�au et al. (2011) published new abundance tables for
which the metallicity was again re-increased. Attempts were also made to carry out
seismic determinations of the solar metallicity, the �rst of which being that of Takata
and Shibahashi (2001) that hinted at a possible metallicity decrease 3 years before the
release of the new spectroscopic abundances, but could not conclude to the uncertainties
in their inversion results. Antia and Basu (2006) determined its value as 0.0172±0.002
using an analysis of the dimensionless sound-speed gradient, denoted W (r). In contrast,
S. V. Vorontsov et al. (2014) determined that it should lie within 0.008 and 0.013 using a
detailed analysis of the adiabatic exponent of solar envelope models for various equations
of state.

In this study, we present a new method to derive an estimate of the metallicity in the
solar envelope using the SOLA inversion technique (Pijpers and Thompson (1994)) and the
classical linear integral relations between frequency di�erences and structural corrections
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developped for metallicity kernels. In Sect. 7.3.2, we present the structural kernels used
and the target function of our metallicity estimate. We also present the possible causes of
uncertainties in this method. In Sect. 7.3.3, we test our methodology in hare-and-hounds
exercises and quantify the various contributions to the inversion errors. In Sect. 7.3.4, we
compute inversions of the solar metallicity for various trade-o� parameters and reference
models using di�erent equations of state, we then discuss the reliability of our results and
how further tests could complement and improve our study.

7.3.2 Methodology

To carry out our structural inversions, we use the linear integral relations obtained from
the variational developments of the pulsation equations. The classical formulation of these
relations is

δνn,`

νn,` =
∫ 1

0
Kn,`

ρ,c2

δρ

ρ
dx+

∫ 1

0
Kn,`

c2,ρ

δc2

c2 dx, (7.3)

which is used to carry out inversions of the solar sound speed pro�le. In this expression
the notation δ denotes di�erence according to the following convention

δx
x

=
xobs− xre f

xre f
, (7.4)

where x can be an individual frequency of harmonic degree ` and radial order n or a
structural variable such as the density, ρ , or the squared adiabatic sound speed, c2 = P

Γ1ρ
,

with P the pressure and Γ1 =
(

d lnP
d lnρ

)
S
, the adiabatic exponent, where S is the entropy.

The di�erences between structural variables are taken at �xed fractional radius r/R with
R the total radius and r the radial position. The Kn,` functions are the structural kernels
associated with the thermodynamical variables found in the variational expression. These
functions only depend on equilibrium quantities and the eigenfunctions of the so-called
reference model of the inversion.

Using appropriate techniques (see Buldgen, D. R. Reese, and M. A. Dupret (2017)), one
can derive structural kernels for a large number of variables. Amongst them, one �nds
the kernels related to the convective parameter, A, de�ned as

A =
d lnρ

d lnr
− 1

Γ1

d lnP
d lnr

, (7.5)

presented in Elliott (1996) as part of the (A,Γ1) structural pair. It was initially used to test
the equation of state. In this section, we use the kernels of the (A,Y,Z) triplet presented
in Buldgen, D. R. Reese, and M. A. Dupret (2017), where Y is the helium mass fraction and
Z the metallicity. We illustrate these kernels in �gure 7.10. The �rst interesting point to
notice is that the kernels associated with A have a very small amplitude compared to
those of Y and Z. In addition, A has the convenient property of being 0 in the adiabatic
region of the convective envelope. Similarly to Elliott (1996) who considered the (A,Γ1)
kernels for carrying inversions of the Γ1 pro�le in the Sun, the kernels we suggest in the
present study can be used to e�ciently carry out seismic inversions of both Y and Z
in convective regions. The variational relation we use to carry out our inversion hence
reads as

δνn,`

νn,` =
∫ 1

0
Kn,`

A,Y,ZδAdx+
∫ 1

0
Kn,`

Y,A,ZδY dx+
∫ 1

0
Kn,`

Z,Y,AδZdx, (7.6)
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with x the fractional radius.

Although this study focusses on determinations of Z, we also carried out inversions of
the helium abundance and found them to be in agreement with the classical helioseismic
result of 0.2485±0.0035, yet, less precise. As a comparison, S. V. Vorontsov et al. (2014)
found that the helium mass fraction in the solar envelope was betweeen 0.24 and 0.255,
which is also in agreement with the interval of [0.242 0.255] we �nd. The main uncertainty
in our determination is related to the physical ingredients in the models, leading to
di�erences in Γ1. Indeed, one uses the relation

δΓ1

Γ1
=

(
∂ lnΓ1

∂ lnP

)
ρ,Y,Z

δP
P

+

(
∂ lnΓ1

∂ lnρ

)
P,Y,Z

δρ

ρ
+

(
∂ lnΓ1

∂Y

)
P,ρ,Z

δY

+

(
∂ lnΓ1

∂Z

)
P,ρ,Y

δZ, (7.7)

to obtain perturbations of Y and Z in the variational expression. The main weakness in this
approach is that the state derivatives of Γ1 can vary not only with the equation of state
but also with the calibration. Indeed, the calibration process will lead to slight di�erences
in the acoustic structure when various physical ingredients (such as the opacity tables
or the heavy elements abundance) are used. To assess this dependency, we use various
physical ingredients in our hare-and-hounds exercises and our solar reference models
used to determine the solar metallicity. A �rst illustration can be made, by comparing
these derivatives for both the CEFF (Christensen-Dalsgaard and Daeppen (1992)) and
FreeEOS1(Irwin (2012)) equations of state in a standard solar model. Both derivatives with
respect to Y and Z are plotted in �gure 7.11 and illustrate that the general behaviour of
both curves is extremely similar. However, di�erences of nearly 0.001 can be seen in some
regions and this of course means that, at the level of precision demanded, the choice of
the equation of state will have an impact on the result. This is illustrated by the subplot
of Fig. 7.11, where we take a closer look at the di�erences between the state derivatives
with respect to Z.

We de�ne the target function of our indicator as follows,

δZ =

∫ 1
0 (1− x)2 exp−800(x−0.79)2

δZdx∫ 1
0 (1− x)2 exp−800(x−0.79)2 dx

=
∫ 1

0
TZ δZdx, (7.8)

which of course implies δZ = δZ in the envelope up to an excellent accuracy, �rstly
because the chemical abundances are constant in the fully mixed convective zone of the
Sun and secondly, the weight function of the indicator is virtually 0 outside of a small
interval (in normalised radius) within the envelope. The location of the Gaussian has been
chosen such that it is not close to the helium ionization zone, which would imply a very
strong correlation with the helium cross-term. The Gaussian width is also small enough
so that there is no intensity in the radiative zone, which is not fully mixed.

Looking at Figs. 7.10 and 7.11, one can also see that this region is characterised by a
rather large intensity in the Γ1 derivatives with respect to Z, hence its associated kernels
still having a non-negligible intensity around 0.8 while the helium kernels are nearly 0 at
those depths.

1http://freeeos.sourceforge.net/
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For this indicator, the cost function of the SOLA inversion is written as,

JZ =
∫ 1

0

[
KAvg−TZ

]2 dx+β

∫ 1

0
K2

Cross,Y dx+β2

∫ 1

0
K2

Cross,Adx

+ tan(θ)
N

∑
i
(ciσi)

2 +λ

[
1−

∫ 1

0
KAvgdx

]
, (7.9)

where KAvg, KCross,A and KCross,Y are the so-called averaging and cross-term kernels (Pijpers
and Thompson (1994)). The averaging kernel is responsible for the matching of the target
function of the inversion (thus the accuracy of the method). Meanwhile, the cross-term
kernels are contributions for the additional variables found in Eq. 7.6 and which cannot be
completely annihilated. For this particular inversion, two cross-terms have to be taken into
account since we work with a triplet of variables instead of a pair. This means that the
trade-o� problem (Backus and Gilbert (1967)) has to be analysed in depth and particular
care has to be taken to check for possible compensation of the various error contributions
in certain regions of the parameter space. The trade-o� problem is assessed in the classical
way, using the parameter θ to avoid a large contribution from the observational errors
and the parameters β and β2 to reduce each cross-term contribution. The variable λ is
no free parameter, but a Lagrange multiplier associated with the unimodularity constraint.

The trade-o� problem, and thus the quality of the inversion, is analysed by looking
separately at the amplitudes of the terms associated with the averaging and cross-term
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kernels in Eq. 7.9. These terms are denoted

||Kavg||2 =
∫ 1

0

[
KAvg−TZ

]2 dx, (7.10)

||KCross,Y ||2 =
∫ 1

0
K2

Cross,Y dx, (7.11)

||KCross,A||2 =
∫ 1

0
K2

Cross,Adx. (7.12)

However, these contributions do not contain all the information about the inversion
technique. It is also useful to analyse separately each term of the inverted correction in
hare-and-hounds exercises, to detect potential compensation e�ects. Therefore, we also
analyse each error source of the inversion separately, using the de�nitions of Buldgen,
D. R. Reese, and M. A. Dupret (2015), which for this speci�c case are

εAVG =
∫ 1

0

[
KAvg−TZ

]
δZdx, (7.13)

εCross,Y =
∫ 1

0
KCross,YδY dx, (7.14)

εCross,A =
∫ 1

0
KCross,AδAdx, (7.15)

εRes = ZTar−ZRe f −δZInv− εAVG− εCross,Y − εCross,A, (7.16)

with ZTar the metallicity of the target, which is known in a hare-and-hounds exercises,
ZRe f the metallicity of the hound, δZInv the inverted correction found using the inversion.
The residual error, εRes, which is obtained once all the other errors have been subtracted
from the inversion results, encompasses all aspects that are not properly treated by the
inversion. These include, in the hare-and-hounds exercises, the potential inadequacy of the
surface e�ect corrections or the non-linear aspects stemming from the non-veri�cation of
the linear equations 7.6 or the assumptions on the equation of state made through Eq. 7.7.

7.3.3 Hare-and-hounds exercises

Before carrying out the inversion on the actual solar seismic data, we carried out hare-
and-hounds exercises to test the reliability of the metallicity determination. The stellar
models used in the exercises were computed using the Liège stellar evolution code (CLES,
Scu�aire, Théado, et al. (2008)). Their frequencies and eigenfunctions were computed
using the Liège adiabatic oscillation code (LOSC, Scu�aire, Montalbán, et al. (2008)). The
inversions were computed using a customised version of the InversionKit so�ware (D. R.
Reese, Marques, et al. (2012)).

Methodology and results

We used a calibrated standard solar model built with the past solar GN93 (Grevesse and
Noels (1993)) abundances (high metallicity, Z) and the latest version of the OPAL equation
of state (Rogers and Nayfonov (2002)) as our hare. Furthermore, we used the latest
OPLIB opacities (Colgan et al. (2016)) supplemented at low temperature by the opacities
of Ferguson et al. (2005) and the e�ects of conductivity from Potekhin et al. (1999) and
Cassisi et al. (2007). The nuclear reaction rates implemented were those from the NACRE
project (Angulo et al. (1999)), supplemented by the updated reaction rate from Formicola
et al. (2004) and we used the classical, local mixing-length theory (Böhm-Vitense (1958)) to
describe convective motions. The hounds were �tted to the hare to ensure that they had
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exactly the same radii and similar luminosities. They were computed with the AGSS09
abundances and either the CEFF or the FreeEOS equation of state. There are two reasons
justifying the fact that we did not use the OPAL equation of state in our reference models.
Firstly, this allows us to test for the biases stemming from the equation of state in our
inversions. Secondly, the OPAL equation of state, being de�ned on a grid with �nite
resolution, is not well suited to compute the Γ1 derivatives numerically with high accuracy.
The CEFF and FreeEOS equations of state, being de�ned with analytical relations, do not
su�er from this problem and were thus favoured.

We summarise the properties of the hare and the hounds in table 7.2. As can be seen,
some of these reference models di�er signi�cantly from the target. These di�erences
result from the way the hounds were generated, which was not a classical solar calibration
as is usually done for the Sun. All hounds reproduce accurately the radius of target 1, a
given value of helium abundance in the convective envelope and the position of its base
within a less constraining accuracy. We did not limit the values of helium abundance and
position of the base of the convective envelope to those of target 1 to assess the e�ects of
those constraints on the cross-term contributions. To further assess the uncertainties,
additional changes were induced in Ref 1, 2 and 3 by not including microscopic di�usion
of the heavy elements. The changes in the position of the base of the convective envelope
for the various hounds were induced by changing the value of an undershoot parameter
within values up to 0.2 of the local pressure scale height before recalibrating the hounds.
As can be seen from the luminosity and age values in table 7.2, this calibration method
can lead to quite large di�erences between the models, hence sometimes implying larger
di�erences in acoustic structure between the hare and the hounds than in a classical solar
calibration approach.

We used the radius, the helium abundance in the convective envelope and the position
of its base as constraints for the �t of the hounds to the hare. Once a satisfying �t
was obtained, we changed an undershoot parameter and the di�usion velocities, while
still �tting the radius, to be able to analyze the behaviour of the inversion when facing
changes in A and Y . Consequently, some non-linearities could be observed for a few of
these perturbed models and could help us understand the cases were the inversion was
not so stable. To be as close to reality as possible, we used the exact same set of low
` oscillation modes observed for the Sun as presented in Basu, Chaplin, et al. (2009),
namely 2189 oscillation modes with ` from 0 up to 250, and used the same uncertainties
on the frequencies as those of the actual solar modes. We tested a total of 17 hounds and
analysed whether the inversion was e�cient in determining the metallicity of the hare.
Due to the large di�erences between the hitherto seismically determined values of the
solar metallicity, we wanted to assess whether our method would be able to distinguish
between several solutions.

The results of these inversions are given in table 7.3 and illustrated in Fig. 7.12. For all
the cases illustrated here, the inversion could determine an estimate of the metallicity in
the convective envelope. However, one can see that for reference models (hounds) 2, 10,
11 and 13, these estimates are not so accurate. Globally, a spread of around 4×10−3 is
found for the inversion results. This spread is due to multiple sources: e.g., for models
10, 11 and 13, the equation of state was the CEFF equation of state, which leads to much
larger di�erences in Γ1 with the OPAL equation of state than does the FreeEOS equation
of state. Besides the di�erences from the equation of state, intrinsic di�erences in Γ1 due
to di�erences in strati�cation of the model, can have a strong impact on the accuracy of
the method. It is important to bear in mind that the variables Y and Z are not directly
seismically constrained but are obtained via an equation of state which is furthermore



7.3 Determination of the metallicity of the solar envelope 243

Table 7.2: Characteristics of the models used in the hare-and-hounds exercises
Mass (M�) Age (Gy) Radius (R�) L (L�) YCZ ZCZ

( r
R

)
CZ EOS

Target 1 1.0 4.5794 1.0 0.9997 0.2397 0.01818 0.07087 OPAL
Ref 1 1.0 4.8073 1.0 0.9564 0.2307 0.01513 0.07087 FreeEOS
Ref 2 1.0 4.8038 1.0 0.9558 0.2294 0.01513 0.7125 FreeEOS
Ref 3 1.0 4.5097 1.0 0.9740 0.2342 0.01513 0.716 FreeEOS
Ref 4 1.0 4.2502 1.0 0.9933 0.2421 0.01513 0.7068 FreeEOS
Ref 5 1.0 4.4130 1.0 1.0107 0.2455 0.01373 0.7161 FreeEOS
Ref 6 1.0 5.0004 1.0 0.9749 0.2301 0.01375 0.7087 FreeEOS
Ref 7 1.0 4.8743 1.0 0.9817 0.2300 0.01373 0.7171 FreeEOS
Ref 8 1.0 4.4081 1.0 1.0100 0.2419 0.01381 0.7066 FreeEOS
Ref 9 1.0 4.5285 1.0 1.0035 0.2381 0.01369 0.7160 FreeEOS

Ref 10 1.0 5.3522 1.0 0.9695 0.2285 0.01358 0.7090 CEFF
Ref 11 1.0 5.2909 1.0 0.9731 0.2282 0.01349 0.7150 CEFF
Ref 12 1.0 5.2253 1.0 0.9761 0.2283 0.01345 0.7170 CEFF
Ref 13 1.0 4.7455 1.0 1.0046 0.2402 0.01373 0.7055 CEFF
Ref 14 1.0 4.8635 1.0 0.9982 0.2364 0.01361 0.7160 FreeEOS
Ref 15 1.0 4.7433 1.0 1.0054 0.2283 0.01355 0.7236 FreeEOS
Ref 16 1.0 4.5651 1.0 1.0155 0.2435 0.01376 0.7075 FreeEOS
Ref 17 1.0 4.5790 1.0 0.9993 0.2435 0.01344 0.7120 FreeEOS

Target 2 1.0 4.5787 1.0 1.0002 0.2386 0.01820 0.7080 FreeEOS

linearised using to Eq. 7.7. Consequently, errors in the derivatives of Γ1 can quickly arise
and reduce the accuracy of the results. Moreover, hounds having a poor representation
of the strati�cation of the hare model will also have rather large A di�erences and thus
intrinsically larger cross-term contributions. In Sect. 7.3.3, we further investigates this
point and discuss the determination of the trade-o� parameters and what they can teach
us about the characteristics of our approach.

Analysis of the stability of the inversion technique

Quality of the kernel �ts

We have seen in Sect. 7.3.3 that an indication of the metallicity of the Sun can be
provided by seismology. However, inversion techniques can sometimes provide accurate
results because of compensation of their errors. Therefore, their reliability and stability
should be properly assessed.

We propose to �rst assess the quality of the kernel �ts by looking at the amplitude
of the �rst three terms of Eq. 7.9, in the last columns of table 7.3. To give a better idea
of what these represent, we illustrate in Fig. 7.13 the �t of the averaging kernel and the
cross-term kernels for the inversion of Ref 3. From a �rst visual inspection, the �t of
the averaging kernel seems good and the contribution from the cross-term associated
with A seems close to 0. By inspecting the helium cross-term kernel, we can see a
strong correlation with the averaging kernel. However, the height of this peak is around
45 times smaller than the height of the averaging kernel. This means that the helium
contribution should be kept small, as can be seen in Fig. 7.14. This di�erence in amplitude
is a consequence of the choice of the position for the peak in the target function. Had we
chosen a target much closer to the helium ionization zones, then the correlation with the
helium kernels would have been much more problematic.

To analyse whether compensation is present in the inversion, we plot in �gure 7.14
the real error contributions for all hounds. The kernel �ts are informative of the quality
of the inversion. However plotting the real error contributions can indicate whether what
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Table 7.3: Inversion results for the hare-and-hounds exercises.
ZRe f ZInv ||KAvg−TZ ||2 ||KCross,Y ||2 ||KCross,A||2

Ref 1 0.01513 0.01914±4.35×10−4 0.0211 0.07683 5.000×10−3

Ref 2 0.01513 0.01996±4.26×10−4 0.02198 0.07680 4.53×10−3

Ref 3 0.01513 0.01841±4.25×10−4 0.02169 0.07602 4.549×10−3

Ref 4 0.01513 0.01936±2.15×10−5 0.02230 0.07538 1.816
Ref 5 0.01373 0.01803±5.09×10−5 0.1245 0.07144 1.409
Ref 6 0.01366 0.01894±4.15×10−4 0.0254 0.07376 0.02959
Ref 7 0.01355 0.01825×4.15×10−4 0.02036 0.07321 1.967×10−2

Ref 8 0.01382 0.01864±2.14×10−5 0.02026 0.07253 1.820
Ref 9 0.01370 0.01789±5.09×10−5 0.1245 0.07145 1.410

Ref 10 0.01358 0.02154±3.87×10−4 0.1230 0.07182 0.03715
Ref 11 0.01350 0.02161±3.71×10−4 0.05124 0.07404 0.04631
Ref 12 0.01373 0.01918±4.57×10−4 0.01603 0.07280 3.552×10−4

Ref 13 0.01346 0.02151±4.49×10−4 0.01666 0.07348 1.516×10−3

Ref 14 0.01361 0.01859±3.76×10−4 0.05211 0.07313 0.02439
Ref 15 0.01356 0.01818±4.23×10−4 0.02022 0.07238 4.572×10−3

Ref 16 0.01344 0.01744±4.48×10−4 0.01642 0.07257 1.509×10−3

Ref 17 0.01377 0.01768±4.24×10−4 0.0228 0.07246 4.578×10−3
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Figure 7.12: Inversion results for the hare-and-hounds exercises between the 17 reference
models and the target model of table 7.2.
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for the hare-and-hounds exercises.

appears visually as a satisfactory �t is actually the reason for the accuracy of the result.

Analysis of the parameter space

The main di�culty of carrying out the inversion is to �nd a given set of parameters
for which the real errors of the inversion, here de�ned as the εi in Eqs. 7.13 to 7.16,
are small and do not present compensation e�ects, and where the squared norm of the
di�erences between the averaging and cross-term kernels, de�ned in Eqs. 7.10 to 7.11,
and their respective targets have reduced amplitudes. Depending on the quality of the
reference model or the dataset, the trade-o� problem will be di�erent and multiple sets of
parameters can be found. Therefore, to further understand the reliability of the inversion
and its parameter dependency, we did for Ref 3 a brief scan of the parameter space, which
is illustrated in Fig. 7.15. Firstly, we note from the lowest le� panel in Fig. 7.15, illustrating
the di�erences between the inverted Z value and the target value of Z, that the changes in
the parameter do not induce a large deviation of the inversion results from the value found
with the optimal set of parameters. However, other inversions in our hare-and-hounds
exercises were not as stable, mainly due to an increase of the residual error or to the
cross-term contribution associated with the convective parameter. For this scan, we �xed
a value of β2 to 1.0 and varied θ from 10−4 to 10−9 and β from 10−2 to 101.5 (see eq. 7.9).
A �rst observation that can be made is that the variations of all quantities are regular
with the parameters. Sudden and steep variations in the accuracy of the solution and the
real error contributions would indicate that the inversion is not su�ciently regularised.
In such cases, one has no real control on the trade-o� problem and thus no means of
ensuring a correct result.

In Fig. 7.15, we can see that for a �xed value of β2 the optimum is found for a low θ

and a low β . However, the low β value has to be considered carefully when the helium
abundance di�erences are larger. For this particular test between Ref 3 and Target 1, the
di�erences is of the order of 0.005, thus intrinsically quite small, which naturally reduces
the value of εCross,Y . In addition to the helium cross-term contribution, the amplitude of
the error bars could be strongly increased by the reduction of the θ parameter. In this
particular case, the lower plot of Fig. 7.15 shows that the error bars remained quite small
for the whole scan but this will not necessarily be the case for other inversions.
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Overall, we can see from the lower plot of Fig. 7.15 that the inversion is very stable,
since the errors remain of the order of 10−4, with the exception of the residual error
that can reach is this case the order of 10−3 for a particular region of the parameter set.
This region is related to high values of β and β2 (which is �xed) and a range of low θ

values of around 10−8 and 10−9. This is a consequence of the regularising nature of the θ

parameter, which is used to adjust the trade-o� between precision and accuracy of the
method. In this particular case, the instability of the inversion is a consequence of the
very low weight given to the damping of the error bars, and thus the precision of the
method. A similar behaviour can also be observed in solar inversions of full structural
pro�les, were the observational error bars remain small, but the pro�le already shows an
unphysical oscillatory behaviour.

β and β2 Parameter

Our hare-and-hound exercises allowed us to de�ne various parameter values for which
the inversion was stable, depending on the reference model quality. In most cases, the
value of β , the free parameter associated with the helium contribution, was set between
approximately 0.1 and 10, as can be seen in table 7.4, depending on the intrinsic di�erence
in helium content between the target and the reference model. Indeed, if the helium
abundance value is naturally close to that of the target, it is unnecessary to strongly
damp the helium cross-term and penalise the elimination of the convective parameter
cross-term. Actually, it should be noted that β and β2 are correlated. As damping the
helium cross-term is done by reducing the amplitude of the inversion coe�cients, it can
sometimes have a similar e�ect on the convective parameter cross-term.

The value of β2, associated with the cross-term contribution of A, was set to 0.1 most
of the time, although some inversions required a value as high as 1 to e�ciently damp the
cross term contributions and others only required a value as low as 0.01. The values of
β2 for each individual inversion illustrated in Fig. 7.12 are also illustrated in table 7.4. An
important remark has to be made about the cross-term associated with A. Due to the fact
that A is exactly 0 in the convective envelope, damping the cross-term in A using β2 can
have unwanted consequences, as damping the total integral does not necessarily mean
that the real contribution to the error, stemming from the radiative zone, will be always
damped. For example, the inversions associated with a low β2 parameter show a high
peak in the convective envelope that contributes to the norm ||KCross,A||2, but does not
contribute to the real error, εCross,A. Increasing β2 reduces the peak in the convective zones
but increases the amplitude of the cross-term kernel in the radiative zone which leads to
an increase of the total error This e�ect is illustrated in Fig. 7.16. However, systematically
keeping very low values of β2 can also imply large contributions from the cross-term
associated with A, and thus an inaccurate inversion. It is clear that some compensation in
the integral de�nition of εCross,A is responsible for the very low error contribution for the
models having larger ||KCross,A||2, namely Refs 4, 5, 8 and 9.

θ Parameter

From table 7.4, we can see that optimal value of the θ parameter was found to vary
around 10−6 for most inversions. Four cases showed higher optimal values of θ , going
up to 10−3, marking a clear separation with most of the parameter sets which are very
similar. All these models showed slightly unstable behaviours and a higher θ value seems
logical since it is a regularization parameter. One can also point out that Refs 4 and
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Figure 7.15: Variations of various quality checks during scan of the β −θ plane for a �xed
β2 value of 1. (Upper line le�) ||KAvg−TZ ||2, de�ned in Eq. 7.10, (Upper line right) εAvg,
de�ned in Eq. 7.13, (Second line le�) ||KCross,Y ||2, de�ned in Eq. 7.11, (Second line right) εY ,
de�ned in Eq. 7.14, (Third line le�) ||KCross,A||2, de�ned in Eq. 7.12, (Third line right) εA,
de�ned in Eq. 7.15, (Fourth line le�) Accuracy of the result, de�ned as ZTar−ZInv, (Fourth
line right) εRes, de�ned in Eq. 7.16, (Lower plot) 1 σ error bars of the inversion results,
illustrated here for Ref 3 (The blue regions are associated with smaller errors.).
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Figure 7.16: Cross-terms from inversions with a di�erente β2 parameter. The red curve,
associated with a high β2 shows a lower amplitude than the green curve in the convective
zone, but a higher amplitude in the radiative zone, where A is non zero.

Table 7.4: Trade-o� parameters values for the hare-and-hounds exercises.
θ β β2

Ref 1,2,3,6,7,12,15,17 10−6 10 1.0
Ref 4,8 10−3 10 10−3

Ref 5 10−3 10−1 10−1

Ref 9 10−3 1 0.1
Ref 10 10−5 10 0.1
Ref 11 10−5 70 0.1
Ref 13 10−8 10 1.0

Ref 14,16 10−6 1.0 0.1

8 had much larger individual frequency di�erences2 with the hare. This implies that
the di�erences in acoustic structure between these models and the hare are larger than
between other references models and the hare. This is con�rmed by the observation

that these models showed larger discrepancies in
(

∂ lnΓ1
∂Z

)
P,ρ,Y

at the point where the

target function is located. These discrepancies are the main reason for the inaccuracies
of the method, since this factor directly multiplies the estimated metallicity. They can
arise from di�erences in Γ1 present either in the equation of state or stemming from
the calibration. These di�erences can also be seen in sound speed and density pro�le
comparisons. Physically, the reason why Ref 4 or Ref 8 shows larger discrepancies than
Ref 1 or Ref 6 is linked to the temperature gradient in the radiative region of the models.
Indeed, Ref 1 (respectively Ref 6) has the same metallicity than Ref 4 (respectively Ref 8)
but has a lower helium abundance, and thus a higher hydrogen abundance meaning that
overall, the opacity in the radiative region will be increased and thus lead to an acoustic
structure in better agreement with that of Target 1 which has a high metallicity.

Using the same equation of state in the hare and the hounds

To quantify more reliably the e�ects of the equation of state, we compare metallicity

2Ranging from a factor 2 up to a factor 10 when compared to individual di�erences of models such as
model 1 or 7.
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Figure 7.17: Inversion results for Ref 1, 2 and 3 of the hare and hounds exercises. The blue
squares depict inversion results for the target using the FreeEOS equation of state and
the blue circles depict the results for the target using the OPAL equation of state.

Table 7.5: Inversion results for the hare-and-hounds exercises for the target built with the
FreeEOS equation of state.

ZRe f ZInv ||KAvg−TZ ||2 ||KCross,Y ||2 ||KCross,A||2
Ref 1 0.01513 0.01846±4.35×10−4 0.02109 0.07683 5.000×10−3

Ref 2 0.01513 0.01916±4.26×10−4 0.02198 0.07680 4.543×10−3

Ref 3 0.01513 0.01757±4.25×10−4 0.02169 0.07602 4.549×10−3

inversions obtained from Ref 1, 2 and 3 for a calibrated standard solar model, denoted
target 2, built using the same physical ingredients as the target 1 of table 7.2, with the
exception of the equation of state which is the FreeEOS equation of state used in the
hounds. The chemical composition of this new target is only very slightly di�erent than
the one given in table 7.2, since the changes induced by using the FreeEOS equation of
state instead of the OPAL equation of state are very small. Indeed, the metallicity in the
envelope of this new target is ZCZ = 0.01820 and its helium abundance is YCZ = 0.2386.
The inversions are carried out using the optimal set of trade-o� parameters given in table
7.4. The inversion results are illustrated in Fig. 7.17, where we used circles as the notation
for the inversions on the target using the OPAL equation of state and squares for the
inversions on the target using the FreeEOS equation of state. Due to the closeness of the
value ZCZ , for both targets, we plotted only one metallicity value to ease the readibility of
�gure 7.17. Similarly, the error contributions are illustrated in Fig. 7.18, where we again
di�erentiated the two targets by using di�erent symbols. The kernels �ts are also given
in table 7.5.

From �gure 7.17, we can see that using the same equation of state improves the
inversion results for 2 of the 3 models. Analysing the results of table 7.5, we can see
that the kernel �ts have not changed when compared to the values found for the same
models in table 7.3. However, from �gure 7.18, it clearly appears that the variation of the
results is due to a variation of the residual error for all models. This is expected since it
is this error contribution that should be a�ected by the change in the equation of state.
For Refs 1 and 2, εRes is clearly reduced by using the same equation of state in the target
and reference model. Yet, the degradation of the results for Ref 3 illustrate that the good
quality of the results obtained for the target built with the OPAL equation of state might
sometimes be fortuitous.
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Figure 7.18: Error contributions, denoted εAvg,εCrossY ,εCross,A,εRes for the hare-and-hounds
exercises for both targets using OPAL and FreeEOS equations of state.

Table 7.6: Inversion results for the supplementary hare-and-hounds exercises between
reference models.

ZRe f ZInv ZTar ||KAvg−TZ ||2 ||KCross,Y ||2 ||KCross,A||2
Ref 1 to Ref 8 0.01513 0.01163±2.154×10−5 0.01381 0.02214 0.07680 1.832

Ref 4 to Ref 13 0.01513 0.01264±2.229×10−5 0.01373 0.03248 0.07518 1.765

Changing the di�erence in Z between the hares and the hound

The next step in analysing the behaviour of the inversion is to see how it would
behave if smaller metallicity di�erences were present. Indeed, in the previous test
cases, we speci�cally built our target and reference models such that they showed clear
di�erences in metallicity. Assessing the behaviour of the inversion if the metallicity is
already close is crucial since the real solar case is slightly more complicated. Indeed,
metallicity determinations have ranged from 0.0201 in Anders and Grevesse (1989) to 0.0122
in Asplund, Grevesse, and Sauval (2005), with intermediate values found in Grevesse and
Noels (1993), Grevesse and Sauval (1998) or Ca�au et al. (2011), and one has to be able to
assess the stability of the inversion for various di�erences in metallicity between reference
and target. This has already been done to some extent with the four �rst reference models,
which had a higher metallicity of 0.01513 in the convective zone.

We now supplement these test cases by carrying out metallicity inversions using Ref
8 and 13 as our new targets. We chose Ref 1 and Ref 4 for respective hounds of Ref 8 and
Ref 13. The results are given in table 7.6. They show that smaller changes in metallicity
can be seen but the inversion starts to be less reliable. This is expected since the value
of the residual error, illustrated in table 7.7, which can go as high as 3×10−3. Moreover,

Table 7.7: Error contributions for the supplementary hare-and-hounds exercises between
reference models.

εAvg εCross,Y εCross,A εRes

Ref 1 to Ref 8 −3.785×10−7 2.594×10−4 −6.667×10−4 2.598×10−3

Ref 4 to Ref 13 −4.4674×10−6 −4.301×10−5 −5.289×10−5 1.197×10−3
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Table 7.8: Properties of the solar models used for the inversion.
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Mass (M�) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Age (Gy) 4.58 4.58 4.58 4.58 4.58 4.58 4.58

Radius (R�) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
L (L�) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

YCZ 0.2385 0.2475 0.2445 0.2416 0.2432 0.2292 0.2435
ZCZ 0.01820 0.01803 0.01809 0.01813 0.01805 0.01370 0.01344( r

R

)
CZ 0.708 0.708 0.711 0.712 0.711 0.718 0.712

Opacity OPLIB OPLIB×1.05 OPLIB OPAL OPLIB OPLIB OPLIB
EOS FreeEOS FreeEOS FreeEOS CEFF FreeEOS FreeEOS FreeEOS

Abundances GN93 GN93 GN93 GN93 GN93 AGSS09 AGSS09

as δZ decreases, the importance of the contributions of the other integrals, associated
with δY and δA is increased, and the information on the metallicity is consequently more
di�cult to extract. However, these exercises also show that in such cases, the parameters
leading to an accurate inversion result are slightly di�erent than what is found before.
Indeed, the parameters were then β = 10, β2 = 10−2 and θ = 10−3, with the inversion
being rather stable around those values, but sometimes showing erratic behaviour since
the contribution from helium or the convective parameter are much higher compared to
the contribution of the metallicity in the frequency di�erences. Thanks to these results,
we are now able to assess the quality of the inversion of the real solar metallicity.

7.3.4 Solar inversions
Inverted results and trade-o� analysis

Using the parameter sets of table 7.4 and the analysis performed in our hare-and-hounds
exercises, we can now carry out inversions on the actual solar data. We used various
models calibrated on the Sun as references for the inversion. We used the solar radius,
luminosity and current value of

( Z
X

)
� according to the abundance tables used for the

model as constraints for the solar calibration. We started with models built using the
GN93 and AGSS09 abundance tables with multiple combinations of physical ingredients,
such as the CEFF or FreeEOS equations of state and the OPAL (Iglesias and Rogers (1996))
or OPLIB (Colgan et al. (2016)) opacity tables, summarised in table 7.8. It should also be
noted that Model 5 was built using a uniform reduction of 25% of the e�ciency of di�usion,
resulting in a higher helium abundance and shallower base of the convective zone than
Model 1. Similarly, Model 7 was built with an ad-hoc temperature-dependent modi�cation
of the di�usion coe�cients of the heavy elements that led to signi�cant changes in helium
abundance in the convection zone. In addition to this modi�cation, an undershoot of
0.15 of the local pressure scale height was added to improve the agreement with the
helioseismic determination of the base of the convection zone.

The inversions were carried out for the various combinations of parameters found in
the hare-and-hounds exercises and illustrated in table 7.4. We illustrate in Fig 7.19 the
�ts of the averaging and cross-term kernels of the inversion, showing that the quality of
the inversion in the solar case is comparable to that of the hare-and-hounds exercises.
The inversion results are illustrated in Fig 7.20 for various reference models identi�ed
by their number in abscissa, and where each symbol corresponds to one set of trade-o�
parameters. Namely, the triangles correspond to the sets associated with higher values
of θ and lower values of β2, whereas the other symbols are associated with values of θ

between 10−5 and 10−8.
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Figure 7.19: Same as Fig. 7.13 for a solar inversion.

The �rst result is that a very large majority of inversions favour a low metallicity, as
presented in S. V. Vorontsov et al. (2014). Only one small region of the parameter space, for
the inversion of Model 4, built with the CEFF equation of state, gives a high metallicity as a
solution. However, this solution is not very trustworthy since it is associated with a high
cross-term kernel of A. This high cross-term value is a consequence of the parameter set
used, which is that of the less stable inversions presented in Sect. 7.3.3. Inversions of the
convective parameter have shown that Model 4 presented large discrepancies with the Sun
in its A pro�le, thus showing the need to damp the the cross-term contribution for this
model. When such a damping is realised, the solution directly changes to a low-metallicity
one. This leads us to consider that these particular results, obtained with a particular
parameter set are not to be trusted. Moreover, even for the other models, this set gave
higher metallicities, indicating that a systematic error, stemming from the A di�erences
with the Sun, was potentially re-introduced. Based on these considerations, we consider
that the inverted results obtained with this parameter set are not to be trusted. Ultimately,
one �nds out that the given interval is between [0.008,0.0014]. While the lowest values of
this inversion seem unrealistically low, one should keep in mind that errors of the order of
3.0×10−3 have been observed in the hare-and-hounds exercises, explaining the interval
obtained here. This spread is a consequence of the variations in the ingredients of the
microphysics in the models, which lead to better or worse agreement with the acoustic
structure of the Sun.

Similar tests have been performed with low metallicity AGSS09 models, to assess
whether they would favour a high metallicity solar envelope, as in our hare-and-hounds
exercises. The results are quite di�erent. For all parameters sets used in the �rst sets of
hare-and-hounds exercises, the inversion gives unrealistic results, ranging from negative
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Figure 7.20: Inversion results for various solar models. The reference metallicity values are
ploted in red, while the inverted values are given in blue with each symbol corresponding
to a trade-o� parameters set. Model 6 and 7 are excluded from the plot (see manuscript
for justi�cation).

metallicities to values of the order of 0.1 or more, depending on the models and parameter
sets. This is not surprising since one infers directly the metallicity di�erence, δZ, from
Eq. 7.6. This means that if this contribution is very small, it will be dominated by the
other di�erences, δA and δY . However, in Sect. 7.3.3, we attempted a few inversions
for smaller metallicity di�erences between targets and reference models. We showed
that in some cases, it was possible to infer the result but that the accuracy was reduced
and the cross-term could dominate the results. Using the same parameters as in our
supplementary hare-and-hounds exercises, we �nd that the AGSS09 models place the
solar metallicity value around 1.1×10−2, which is in agreement with the previous results.

The di�erences in acoustic structure are expected to be larger between the Sun
and the low metallicity standard models than between two numerical models of various
metallicities considered in our H&H exercises. Hence, it is not surprising that the inversions
performed in our H&H exercises are more successful than real solar inversions of low
metallicity standard models. The large di�erences imply larger cross-term contributions,
especially in the uppermost convective region where A is of very high amplitude. Another
weakness of low metallicity standard solar models is that they do not reproduce the
helium abundance in the convective zone. For example, the value found in Model 6 could be
di�erent from the solar value by up to 0.025, implying that even if the helium cross-term
kernel is strongly damped, it could still strongly pollute the results of the solar inversion.
In contrast, the models used in the hare-and-hounds exercises were calibrated to �t the
helium value within an accuracy of 0.01. This problem was less present for Model 7, for
which the ad-hoc changes in the ingredients lead to a better agreement with helioseismic
constraints and consequently, the inversion was slightly more stable. However, the sound
speed, density and convective parameter pro�le inversions still showed larger di�erences
than for GN93 models despite the changes. Therefore, we deem the reliability of the
solar inversions from the AGSS09 models, especially that of Model 6, which is particularly
unstable, to be less robust and constraining as the inversions from the GN93 models.
Therefore we excluded these models from Fig 7.20.
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Despite these uncertainties, the indications obtained from these models for a restricted
region of the parameter space, combined with the fact that the inversions from GN93
solar models favour a low solar metallicity, still lead us to advocate for a low value of
the solar metallicity. However, the precision of this value is quite poor and limited by the
intrinsic errors in Γ1 and the uncertainties on the equation of state. Still, we can conclude
that our results do not favour the GN93 abundance tables and any other table leading to
similar solar metallicities, like the GS98 or AG89 tables. Had the solar metallicity been
that of these abundance tables, a clear trend should have been seen when carrying out
solar inversions from low-metallicity AGSS09 models.

Consequences for solar models
The results presented in section 7.3.4 have signi�cant consequences for solar modelling
since they con�rm the low metallicity values found by S. V. Vorontsov et al. (2014). This
result implies that the observed discrepancies found in sound speed inversions (e.g. A. M.
Serenelli et al. (2009)) are not to be corrected by increasing the metallicity back to former
values, but could rather originate from inaccuracies in the physical ingredients of the
models. Amongst other, the opacities constitute the physical input of standard solar
models that is currently the most uncertain. Recently, experimental determinations of
the iron opacity in physical conditions close to those of the base of the solar convective
zone have shown discrepancies with theoretical calculations of between 30% and 400%
(Bailey et al. (2015)). The outcome of the current debate (see for example Blancard, Colgan,
et al. (2016), Iglesias and Hansen (2017), and Nahar and Pradhan (2016) amongst others)
in the opacity community that these measurements have caused will certainly in�uence
standard solar models and the so-called “solar modelling problem”.

Besides the uncertainties in the opacities, the inadequacy of the low-metallicity solar
models could also result from an inaccurate reproduction of the sharp transition region
below the convection zone. In current standard models, this region is not at all modelled,
although it is supposed to be the seat of multiple physical processes (see Hughes, Rosner,
and N. O. Weiss (2007) for a thorough review) that would a�ect the temperature and
chemical composition gradients, and thus the sound speed pro�le of solar models.

In addition to these main contributors, further re�nements of physical ingredients such
as the equation of state (see for example Baturin et al. (2013) and S. V. Vorontsov et al.
(2013) for recent studies) or the di�usion velocities could also slightly alter the agreement
of low-metallicity solar models and the Sun (see for example Turcotte et al. (1998) for a
study of the e�ects of di�usion).

7.3.5 Conclusion

In this section, we presented a new approach to determine the solar metallicity value,
using direct linear kernel-based inversions. We developed in Sect. 7.3.2 an indicator that
could allow us to restimate the value of the solar metallicity, provided that the seismic
information was su�cient. We showed that the accuracy of the method was limited by
intrinsic errors in Γ1 and di�erences in the equation of state.

In Sect. 7.3.3, we carried out extensive tests of the inversion technique, using various
physical ingredients and reference models. These tests showed that while the inversion
could distinguish between various abundance tables such as those of AGSS09 and higher
metallicity abundances, like those of GN93 or GS98, it could not be used to determine
very accurately the value of the solar metallicity, due to intrinsic uncertainties of the
method and models.

In Sect. 7.3.4, we applied our method on solar data, using the inversion parameters
calibrated in the hare-and-hounds exercises carried out previously. We concluded that our
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method favours a low metallicity value, as shown in S. V. Vorontsov et al. (2014). However,
further re�nements to the technique are necessary to improve the precision beyond that
achieved in this study.

Firstly, developing a better treatment of the cross-term contribution from the convective
parameter, A, taking into account its 0 value in the convective zone, could help with the
analysis of the trade-o� problem. Secondly, using other equations of state could help with
understanding the uncertainties this ingredient induces on the inversion results. Thirdly,
the use of a seismic solar model based on inversions of the A and Γ1 pro�les as a reference,
rather than calibrated solar models, could reduce the impact of the intrinsic Γ1 errors,
thus reducing the main contributor to the uncertainties of the inversion and provide more
accurate and precise results for this inversion.

7.4 Inversions of the convective parameter: a closer look at the tachocline

7.4.1 Introduction

The base of the solar convective envelope has always been under the spotlight and solar
scientists are still debating today on the implications of the tachocline modelling on the
magnetic and rotational properties of the Sun. Historically, the tachocline was de�ned
by Jean-Paul Zahn and Edward Spiegel in 1992 as the transition region between the
di�erentially rotating convective envelope and the uniformly rotating radiative zone. It
came in the spotlight a�er the successful inversions of the rotation pro�le of the Sun
(Kosovichev (1988)), revealing the importance of this very thin region, extending over
less than 4% of the solar radius (Corbard et al. (1999) and Elliott and D. O. Gough (1999))
between 0.708 and 0.713 r/R�. Historically, solar rotation was, and still is, an issue. The
transition in the rotation rate is thought to result from the combined e�ects of multiple
complex physical processes (see Kumar, Talon, and Zahn (1999), Spiegel and Zahn (1992),
and Spruit (1999) for example). The tachocline encompasses all uncertain phenomena of
stellar interiors (see Hughes, Rosner, and N. O. Weiss (2007) and references therein): it
is in�uenced by turbulent convection, rotational transport and is thought to be the seat
of the solar dynamo. It is strongly impacted by convective penetration (see Christensen-
Dalsgaard, Monteiro, et al. (2011) for a recent study) and therefore is in�uenced by the
various studies aiming at re�ning the current mixing-length formalism used for stellar
convection (Zahn (1999), C.-G. Zhang et al. (2013), and Q. S. Zhang and Li (2012a,b)). Thus,
this very thin region of the solar structure materializes all weaknesses of standard models.

Besides convective penetration and horizontal turbulence, the magnetic properties of
the solar wind also play a strong role, since the extraction of angular momentum will
depend on the surface conditions to properly reproduce the current solar rotation pro�le
(see Hughes, Rosner, and N. O. Weiss (2007) for a complete review). In recent years,
the advent of 3D hydrodynamical simulations has enabled more in-depth studies of the
solar tachocline (Acevedo-Arreguin, P. Garaud, and Wood (2013), P. Garaud (2002), and
P. Garaud and J.-D. Garaud (2008)). However, while such studies are crucial to gaining
more knowledge on the potential interactions between the various processes acting in
this region, they o�en operate at a turbulence regime far lower than what is expected at
the base of the solar convection zone and do not include all physical processes potentially
acting in these regions. Moreover, there would still be a long way to go from a perfect
depiction of the current state of the tachocline in a numerical simulation, to the inclusion
of its e�ects in a stellar evolutionary code (Brun, Miesch, and Toomre (2011)).

While its e�ects have �rst been seen in the rotation pro�le of the Sun, the tachocline
also leaves a mark in the sound speed pro�le of the Sun (Antia and Chitre (1998) and
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Monteiro, Christensen-Dalsgaard, and Thompson (1994)). The e�ects of extra mixing acting
below the convective zone during the evolution of the Sun are also witnessed in the
lithium and beryllium abundances, whose depletion is closely related to the amount of
mixing required. Some studies in global helioseismology have attempted to include its
e�ects in their modelling and determine the changes in the sound speed pro�le and helium
abundance resulting from its presence (Brun, Antia, et al. (2002), Richard, Théado, and
Vauclair (2004), Richard and Vauclair (1997), and Richard, Vauclair, et al. (1996)). With this
study, we show that a more e�cient thermodynamical quantity can be determined to
constrain the strati�cation near the tachocline. This inversion involves the convective
parameter3, de�ned as A = d lnρ

dr −
1

Γ1

d lnP
dr , with r the radial position, P the pressure, ρ the

density and Γ1 =
∂ lnP
∂ lnρ
|S, the �rst adiabatic exponent, with S the entropy. This quantity

is related to the Brunt-Väisälä frequency and is consequently an excellent probe of local
variations near the base of the convective zone.

Inversions of the convective parameter have been performed by D. O. Gough and
Kosovichev (1993b), who attempted to generalize its use to stars other than the Sun (D. O.
Gough and Kosovichev (1993a) and Takata and Montgomery (2002)). Unfortunately, the
diagnostic potential of this inversion was never used to calibrate the strati�cation just
below the convective zone. Moreover, no comparison between standard solar models
(SSMs) with various abundances has been performed, although this inversion probes the
region were the low metallicity models seem to be at odds with solar structure (A. M.
Serenelli et al. (2009)). In the following sections, we carry out inversions for SSMs built
with various abundances and opacity tables. We illustrate the importance of additional
mixing below the limit of the adiabatic convection zone at 0.713r/R� (Kosovichev and
Fedorova (1991)) to reduce inaccuracies between SSMs and the Sun. We discuss how this
inversion, coupled with classical helioseismic studies and the entropy inversion presented
in section 7.2, can be used to carry out an in-depth study of the solar tachocline.

7.4.2 Inversion results for standard solar models

As we have seen in section 7.4.1, the base of the solar convective envelope is a physically
uncertain region. In this section, we will show how inversions of the convective parameter
can be used to better understand the successes and failures of the standard models and
how they can be used in combination with classical tools of helioseismology to re�ne the
structural models of the Sun.

The standard models used in this study are built using the Liège stellar evolution code
(CLES, Scu�aire, Théado, et al. (2008)), for which the frequencies were computed with
the Liège oscillation code (LOSC, Scu�aire, Montalbán, et al. (2008)). All models used the
FreeEOS equation of state (Irwin (2012)) and either the OPAL (Iglesias and Rogers (1996)), or
OPLIB opacity tables (Colgan et al. (2016)). We considered the AGSS09 (Asplund, Grevesse,
Sauval, and Scott (2009)), GS98 (Grevesse and Sauval (1998)) and GN93 (Grevesse and
Noels (1993)) heavy elements abundances. The structural kernels of (A,Γ1) structural
pair (D. O. Gough and Kosovichev (1993b)) and the inversions were computed using a
customised version of the InversionKit so�ware using the SOLA inversion technique (Pijpers
and Thompson (1994)). We used the solar seismic dataset of Basu, Chaplin, et al. (2009)
and followed their de�nitions of the error bars for the SOLA method.

In �gure 7.21, we illustrate inversions of the convective parameter for standard solar
models using both the AGSS09 and GN93 abundances along the OPAL and OPLIB opacities.
As one can see, the GN93 OPLIB models, in red, show the smallest disagreements in terms

3In some references, this quantity can be denoted as the Ledoux discriminant.
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of convective parameter inversions while the AGSS09 OPAL models, in orange, show
strong di�erences right below the convective zone. This result is not surprising since
models built with the AGSS09 abundances do not set the base of the convective zone at
the location it is found in helioseismology and the sound speed inversion also show a
strong disagreement in this region.
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Figure 7.21: E�ects of the opacities on the convective parameter pro�le of SSMs. The
orange and green symbols are related to SSMs built with the AGSS09 abundances and
the OPAL and OPLIB opacity tables, respectively, while the blue and red symbols are
related to SSMs built with the GN93 abundances and the OPAL and OPLIB opacity tables,
respectively. Horizontal error bars show the interquartile width of the averaging kernels
while the vertical error bars are the 1σ errors from the propagation of the observational
1σ errors.

However, it is more surprising to see that in the region right below the tachocline,
around 0.65 normalised radii, the GN93 models seem to perform less well than the
AGSS09 models. This trend is seen for both the OPAL and the OPLIB opacity tables.
We attempted to see what is causing this disagreement and computed models using the
AGSS09 abundance tables but the GN93 Z/X value, to see if the overall heavy elements
mass fraction could be causing this disagreement. These results are illustrated in green in
�gure 7.22. Similarly, we analysed GS98 models, illustrated in orange in �gure 7.22 and
observed the same trend in their A pro�le. In addition to these tests, we also computed
models with an increased opacity in the region where the disagreement appeared and
could reproduce the trend observed in standard models built with the GN93 abundances
in models including the AGSS09 abundances. This inversion is also presented in �gure
7.22 in purple. From this analysis it seemed that the error in the convective parameter
stems from a too steep temperature gradient in this region, which is either a consequence
of a higher heavy elements mass fraction or a higher opacity.

This is further con�rmed in �gure 7.23, where we have separated A into contributions
from the temperature and mean molecular weight gradient using the equation of state as
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Figure 7.22: Analysis of the disagreement in high metallicity models. The green symbols
are related to an SSMs built with the AGSS09 abundances but the (Z/X) value used is
that of the GN93 tables. The orange and red symbols are related to an SSM built using
the GS98 and the GN93 abundances, respectively. The magenta symbols are related to a
standard model using the AGSS09 abundances but where the opacity pro�le has includes
a Gaussian increase around log(T ) = 6.35. All models were built using the OPLIB opacity
tables and the FreeEOS equation of state. Horizontal and vertical error bars are de�ned
as in �gure 7.21.

follows

A =− rδ

HP

(
∇ad−∇+

φ

δ
∇mu

)
, (7.17)

we have adopted the following notation for �gure 7.23

AT =− rδ

HP
(∇ad−∇) , (7.18)

Aµ =− r
HPφ

∇mu. (7.19)

In �gure 7.23, we can indeed see that the steepness of the temperature gradient is
signi�cantly changed when using di�erent abundance tables. It should also be noted that
the mean molecular weight gradient cannot be considered responsible for this variation,
since its amplitude is rather low in these regions and is nearly the same for both models.
Consequently, the amplitude of the deviation is only slightly modi�ed by the inclusion of an
additional mixing right below the convection zone, as we will see in the next section. The
most straightforward way to correct these discrepancies is to lower the metallicity of the
SSMs. However this would imply acknowledging a signi�cant increase in the inaccuracies
of the layers just below the convection zone, as can be seen from inversions of AGSS09
models in �gure 7.21.

The problem becomes more complicated when combining this information to the
entropy proxy and squared adiabatic sound speed pro�le inversions. Indeed, increasing
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Figure 7.23: Decomposition of the Ledoux convective parameters in its contribution from
temperature and mean molecular weight gradients.

the metallicity or the opacity around log(T ) = 6.3, in region of the so-called deep iron
opacity peak reduces the discrepancies between solar models and the Sun, as is expected
from previous helioseismic studies. This is illustrated in �gure 7.24, where one can see
that some models including a steeper temperature gradient can indeed reduce and even
reverse the trends seen in the sound speed inversion. In �gure 7.25, we can see that
increasing either metallicity or opacity signi�cantly helps for the position of the plateau,
but also degrades the agreement in the radiative region. This implies that the entropy
proxy inversion indicates that a steepening of the temperature gradient is required, but
the convective parameter inversion shows that this steepening cannot stem from a high
metallicity increase or from an opacity increase at log(T ) = 6.35 as we have performed.
Combining both diagnostics thus o�ers a powerful tool to constrain the possible changes
that can be made in the standard models to solve their current disagreements with the
Sun.

From the convective parameter inversion, it could seem that the changes in opacity
induces a sort of compensation of the errors of the solar models. In other words, that the
too steep temperature gradient around 0.65 in normalised radius could help correcting
the errors that will naturally emerge from the non-inclusion of an accurate representation
of the tachocline in the standard solar models. The overestimation of the temperature
gradient around 0.65 r/R� in solar models built using the GN93 abundances would also
imply that their agreement with the Sun results, at least partially, from a certain degree
of compensation. The steeper temperature gradient, resulting from the higher metallicity
of these models, reduces the discrepancies observed in the tachocline. This compensation
would also explain why the GN93 models reproduce well the steep variations in sound
speed observed at 0.713 r/R�, resulting from the transition from the adiabatic to the
radiative temperature gradient in the Sun without the need for any convective penetration.

From a theoretical perspective, the Schwarzschild limit derived by using the mixing-
length theory, as done in standard solar models, should not be located at the same depth
as the observed solar transition. In the Sun, the variation in the sound speed is located at
the kinetic limit of the convective elements which is in�uenced by convective penetration
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Figure 7.24: Inversions of the squared adiabatic sound speed pro�le for the models
illustrated in 7.22, the colour code and the errors are those of �gure 7.22.
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Figure 7.25: Inversions of the entropy proxy pro�le for the models illustrated in 7.22, the
colour code and the errors are those of �gure 7.22.

and di�ers from the limit derived solely by the mixing-length theory in standard solar
models. Moreover, the e�ects of shear could induce an additional mixing of the chemical
elements below the transition in temperature gradients, meaning that the fully mixed zone
will extend slightly deeper than 0.713 r/R�. This justi�es investigations of the impact of
an additional chemical mixing in the regions just below the transition of the temperature
gradients.
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7.4.3 Impact of additional mixing on the convective parameter pro�le

From the test cases presented in the previous section, it seems that most of the dis-
crepancies in the standard solar models are stemming from a very narrow region right
below the convective zone. As stated above, the tachocline is a very complex problem
and while from the chemical point of view, a certain degree of mixing is expected due to
shear, horizontal turbulence and convective plumes, there is currently no agreement on
the behaviour of the temperature gradient in this region. From the seismic point of view,
various attempts have been made to use the phase shi�s to constrain the transition in
the temperature gradients (see for example I. W. Roxburgh and S. V. Vorontsov (1994a)),
�nding that while the transition is not discontinuous, it should still be quite steep.

Using the convective parameter inversions, we have analysed the impact of turbulent
di�usion right below the convective zone. We used solar models including the AGSS09
abundances, the OPLIB opacities and the FreeEOS equation of state. We added a 0.1HP

undershooting at the base of the envelope, so that the temperature gradients transition
would �t that found in the Sun. To approximate the e�ects of a tachocline, we used a
simple exponential formulation of the di�usion coe�cient with a scale height related to
density, as done in Miglio, Montalbán, and Maceroni (2007). The extent of the mixing was
reduced to a slight zone of around 0.05 solar radii, of the order of the radial extent of the
tachocline (Corbard et al. (1999)). The inversion results of the convective parameter are
illustrated in �gure 7.26. As can be seen, the discrepancies with the Sun are reduced by
around 0.08 due to the extra-mixing below the convective zone. However, it should be
noted that neither the sound speed nor the entropy pro�le inversions are signi�cantly
improved by these changes, as can be seen in �gure 7.27 and 7.28.
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Figure 7.26: Inversions of the convective parameter for models built with the FreeEOS
equation of state, the OPLIB opacities and the AGSS09 abundances including extra mixing.
The orange symbols are associated with the SSM presented in previous plots, the blue
symbols are associated with a model including a small undershooting coe�cient to
reproduce the transition in temperature gradients. The green symbols are associated
with a model including a small convective penetration and an additional di�usive mixing
localised below the transition of the temperature gradients. The horizontal and vertical
error bars follow the de�nition adopted in previous �gures.
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From these tests, we conclude that mixing alone cannot correct the observed dis-
crepancies and that the remaining errors may stem from inaccuracies in the temperature
pro�le. This is con�rmed by the fact that further increasing the intensity or extent of the
mixing results in similar discrepancies than with a SSM rather than further improving
the agreement with the Sun. The observed inaccuracies could stem from various e�ects,
such as for example the surrounding opacity pro�le or the modelling of the transition of
temperature gradients in the tachocline. Indeed, there is currently no agreement on the
description of the transition from the adiabatic to radiative gradient around 0.713r/R�.
Ad-hoc parametrizations could be used to analyze the e�ects of attempting to properly
reproduce the transition region in the sound-speed, entropy and convective parameter
pro�les. However, this analysis would be strongly limited, since it assumes that the
opacities are perfectly accurate. From �gure 7.22, we can see that opacity changes can
indeed signi�cantly a�ect the convective parameter pro�le. Therefore, due to the current
debate in the opacity community, the analysis provided by parametric approaches should
not be overinterpreted and supplemented by theoretical inputs from hydrodynamical
simulations.
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Figure 7.27: Inversions of the squared adiabatic sound speed pro�le for the models
illustrated in 7.26, the colour code and the errors are those of �gure 7.26.

In addition to these processes, additional re�nements of the SSMs might be required
to reproduce the solar structure. For example, using individual elements instead of an
average metallic element might induce changes in the opacity calculations. Moreover,
using individual elements would allow a better inclusion of partial ionisation e�ects in the
computation of the di�usion velocities. Such re�nements would impact both temperature
and chemical composition gradients. Additional updates of the equation of state will
also slightly alter the results and while it would not eliminate the errors just below the
convection zone, it might in�uence the deeper radiative regions (see 7.4.5 for an illustration
of the e�ect of the equation of state). The link between such e�ects and the lithium
abundances should also be carefully studied with models including the e�ects of rotation
and properly reproducing the lithium and berylium abundances.
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Figure 7.28: Inversions of the entropy proxy pro�le for the models illustrated in 7.26, the
colour code and the errors are those of �gure 7.26.

7.4.4 Conclusion

The inversion of the convective parameter o�ers very strong diagnostics on the strati�ca-
tion right below the solar convective zone. Thanks to its very localised sensitivity, it can
be used e�ciently alongside the entropy inversions presented in section 7.2 to constrain
both temperature and mean molecular weight gradients in the solar tachocline. In standard
models, the convective parameter inversion can potentially lead to interpret the reason of
the success of the high metallicity models as the result of a form of possible compensatory
behaviour in the temperature gradient near the base of the convective envelope. Combin-
ing the knowledge of these diagnostics, we are already able to demonstrate that a certain
amount of di�usive mixing below the temperature gradient transition at 0.713r/R� helps
in reducing the disagreement with the Sun. However, additional mixing is insu�cient and
the remaining inaccuracies are the proof of an inadequate reproduction of the temperature
gradient in the lower part of the tachocline. Parametrizations of the transition region
could provide further insights into the problem, keeping in mind that non-radial variations
can also be expected in the tachocline and would thus limit the predictive power of 1D
structural inversions. Moreover, as a consequence of the current debate in the opacity
community, these studies should not aim at providing a full agreement, but rather be
used to reinforce the strong links between stellar models, hydrodynamical simulations and
theoretical developments, for progress in these �elds is necessary to improve our current
depiction of solar and therefore stellar interiors.

7.4.5 Supplementary material
Inversions for various equations of state, abundances and opacity tables

To further analyse the diagnostic provided by the inversion of the convective parameter,
we carried out inversions using standard solar models built with the OPAL and Ce�
equations of state. Both results are illustrated in �gure 7.29 alongside the results obtained
with the FreeEOS equation of state for a solar model using the GN93 abundances and
the OPLIB opacity tables. As can be seen, changing the equation of state alters the
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agreement with the deeper radiative regions and it seems that the FreeEOS and the Opal
equations of state should be favoured to the Ce� equation of state. However, changing this
physical ingredient does not correct the deviations found at the base of the convective
zone and does not reduce the discrepancy found with the GN93 abundances. Using the
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Figure 7.29: Inversions of the convective parameter pro�le models using the GN93
abundances, the OPLIB opacity tables and the Ce�, OPAL and FreeEOS equations of state,
illustrated in green, orange and blue, respectively.

OPAS opacities instead of the OPLIB tables alongside the AGSS09 abundances also slightly
changes the results, as illustrated in �gure 7.30. However, the fact that these opacities do
not cover the whole range of density and temperature of the solar structure reduces their
diagnostic potential. Indeed, this implies that they have to be reconnected near the base
of the convective envelope to other tables (either OPAL or OPLIB). This of course leads to
inconsistencies if one wishes to analyse �ne variations of the temperature gradient in these
regions. As we have seen from section 7.2, changing the opacity just above the convective
zone also changes the temperature gradient since this quantity is also in�uenced by the
derivatives of opacity.

Quality checks of the inverted results
To con�rm the results obtained for the Sun, we carried out a hare-and-hounds exercise
using standard solar models. We used the same set of modes as for our solar inversions,
using the actual observed uncertainties on the individual frequencies of the Sun for each
mode. Our hound was the standard solar model of our sample built with the AGSS09
abundances, the OPLIB opacities, and the FreeEOS equation of state, while the hare was
another standard solar model built with the OPLIB opacities, the OPAL equation of state,
and the GN93 abundances. From Fig. 7.31, we illustrate the di�erences in A between the
targert and the reference model as δA = ATar−ARef. We can see that the SOLA method
reproduces the trends of the convective parameter pro�le di�erences, with the exception
of the very deep regions, which remain poorly constrained by the acoustic oscillations
observed for the Sun. We can however see that the SOLA method reproduces quite well
the upper radiative zone, especially the variations around 0.65. However, we can also see
that the very steep variations, above 0.7 are not well reproduced. This is a consequence of
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Figure 7.30: Inversions of the convective parameter pro�le for models built using the
AGSS09 abundances, the FreeEOS equation of state and the OPLIB and OPAS opacities
plotted in green and purple, respectively.

the �nite width of the inversion kernels, which are unable to capture properly the strong
discontinuity in A at the base of the envelope. Similar problems are seen in Kosovichev
(2011) for model S and are intrinsic to this speci�c inversion. From a mathematical point
of view, this discontinuity will never be properly sampled since trying to further localise
the kernels only introduces Gibbs oscillations in the inverted pro�le. A certain degree
of pollution is also present in the result in the convective envelope. This inaccuracy is
reduced by further increasing the localisation of the kernels. However, as stated before,
this introduces an oscillatory behaviour in the inverted pro�le. In �gure 7.32, we illustrate
the averaging kernels of this inversion, showing a good �t of their target in most of the
radiative region. Below 0.1r/R�, however, the kernels are not properly localised and thus
the inversion cannot be trusted. In the convective zone, however, the kernels are well
localised and the large non-zero value in the A pro�le does not seem to stem from an
inaccurate �t to the target. The inversion sometimes attributes a too large value of δA in
such regions, which is clearly an artefact. It does not seem that this value stems from an
inaccurate �t of the target. Instead, it seems to be linked to the amplitude of the lobe just
below the convective zone in the inversion, since models built with the GN93 abundances
show a better agreement with the expected small value than the AGSS09 models. Similar
problems have also been seen in Kosovichev (2011) for solar inversions, but they do not
a�ect the diagnostic in the radiative region.

7.5 General Conclusion

In this chapter, we have attempted to demonstrate the necessity of a re-investigation
of the solar modelling problem, in light of the recent update of the opacity tables by
the Los Alamos National Laboratory group. However, we have shown in section 7.2 that
classical helioseismic tests were not su�cient to probe all the weaknesses of solar models,
since they did not seem to favour either of the abundance tables. Consequently, we have
attempted to provide additional helioseismic tests, allowing for a more in-depth study of
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Figure 7.31: Results of the hare-and-hounds exercises. The real di�erences in A are
illustrated in green while the blue symbols are the SOLA inversion results.
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the current solar issue.
From section 7.2, we have seen that the entropy proxy inversions could provide strong

constraints on the overall steepness of the temperature gradient in the solar radiative zone.
Such constraints are extremely valuable since they echo the current debate in the opacity
community concerning iron spectral opacity calculations. However, these inversions are,
of course, sensitive to some extent to the mean molecular weight gradient right below the
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convective zone, and slight changes could be expected from additional mixing processes
which would alter both the chemical composition but also indirectly the temperature
gradient right below the convective zone.

In combination with the inversion of the entropy proxy, we have demonstrated that the
seismic determination of the Ledoux convective parameter, developed by Kosovichev (1999),
could be of great use for probing the solar strati�cation right below the convective zone.
From this inversion, we were able to demonstrate that the success of the high metallicity
solar abundances might be explained by a compensatory e�ect in the strati�cation just
below the convective zone and that most of the discrepancies between standard solar
models and the Sun are located in the last 6% of the solar radiative zone, thus mostly in
the so-called tachocline. These results add weight to the argument that the solution of the
solar issue is partially to be found in the proper modelling of the (magneto-)hydrodynamical
processes acting at the base of the convective zone. Initial tests using both convective
penetration and turbulent di�usive mixing have shown that it could improve the agreement
with the Sun but are insu�cient to place the entropy proxy plateau at the correct height
and reduce the discrepancies found in the sound speed inversions. This result demonstrates
the complementary nature of the entropy proxy and convective parameter inversions,
which can be complemented by the frequency ratios and the sound speed inversions, to
ensure consistency with classical helioseismic tests.

In section 7.3, we have carried out an inversion of the solar heavy element abundance
in the convective envelope. We used extensive hare-and-hounds exercises to calibrate the
method and analyse the trade-o� problem and the possible compensations. We have thus
shown that helioseismic investigations favour a low metallicity in the convective zone.
However, as discussed in the conclusion of this section, further re�nements to the method
are required to allow a su�ciently precise determination of the metallicity, for it to be
considered constraining when building calibrated solar models.

Ultimately, this chapter has only scratched the surface of the solar modelling problem,
since most of the theoretical analysis still needs to be done to reconciliate the low-
metallicity solar models with helioseismic determinations of solar structure. The main
conclusion of this chapter is that high-metallicity models, using either the GN93 or GS98
abundances, are ruled out since they might rely on a compensation of their inaccuracies
in the radiative region for their accurate reproduction of solar structure and are not
supported by the metallicity inversions. Consequently, this implies that low-metallicity
models have to be used in asteroseismic modelling, keeping in mind that the current
uncertainties on potential hydrodynamical processes and opacity calculations reduce the
accuracy of these modelling results.



8. KEPLER LEGACY

8.1 Introduction

In the last decade, the space photometry missions CoRoT and Kepler have provided us
with a wealth of precise seismic data for a large number of stars. This revolution is now
allowing us to carry out precise seismic modelling for these stars and to test the physical
inputs of our stellar models. As a by-product of this modelling, asteroseismology also
delivers precise and accurate fundamental parameters, which are essential to other �elds
such as Galactic archeology or exoplanetology.

Amongst the observed targets, the Kepler LEGACY sample contains the dwarfs that
have the best frequency sets within the Kepler data (see Lund et al. (2017) for a description
of the dataset and Silva Aguirre et al. (2017b) for forward modelling results of the Kepler
LEGACY sample). As such, they can be seen as benchmark stars to test our inputs of stellar
models and the e�ciency of seismic modelling. Due to their high number of frequencies
and the precision of these determinations, they are also the ideal targets with which to
carry out structural seismic inversions. In this chapter1, we will present forward modelling
and inversion results for two targets of the LEGACY sample: namely Doris (KIC8006161)
and Saxo (KIC6603624). In Sect. 8.2, we present the targets and the forward modelling
results for each one of them. In Sect. 8.3, we present the inversion procedure we used to
further constrain the models of both stars and present the results of this process in Sect.
8.4. The implications of these results are then presented in Sect. 8.5.

8.2 Targets selection and forward modelling

The targets were selected by the number and precision of their observed frequencies as
well as their estimated mass from a crude grid-based modelling approach. We speci�cally
selected stars with masses close to 1M�. Firstly, stars closer to the Sun are easier to
model, and we know from helioseismology and from our theoretical test cases where it

1The results presented here are a reproduction of the article Buldgen, D. Reese, and M.-A. Dupret 2017, to
appear in the proceedings of the TASC2/KASC9 Workshop.
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was possible to obtain a su�ciently good modelling that linear inversion techniques can
be applied to constrain their structure (see Basu, Chaplin, et al. (2009) for an application
to the solar case). This is potentially not the case for more massive stars for which the
boundary of the convective core may not be reproduced accurately enough and thus
the evolutionary stage of the target not very well constrained. In such cases, using a
linear approximation may be questionable. The second reason is that we wanted to avoid
convective cores in the reference models because we used speci�c indicators using radial
derivatives to constrain the internal structure of the targets (Buldgen, D. R. Reese, and
M. A. Dupret (2015)). The thermodynamical quantities used in these indicators can have
discontinuous derivatives which will appear in the target function of the SOLA method.
Such targets are then impossible to �t with the continuous structural kernels built using
the eigenfunctions of solar-like oscillation modes.

Before trying to carry out structural inversions, we obtained reference models for each
target using a classical seismic forward modelling approach. This modelling was carried
out using a Levenberg-Marquardt algorithm. The models were built using the Liège stellar
evolution code (CLES, Scu�aire, Théado, et al. (2008)) and the oscillations were computed
using the Liège oscillation code (LOSC, Scu�aire, Montalbán, et al. (2008)). We used the
Ce� equation of state (Christensen-Dalsgaard and Daeppen (1992)), the OPAL opacities
(Iglesias and Rogers (1996)) supplemented at low temperatures by the opacities from
Ferguson et al. (2005) and the nuclear reaction rates from the NACRE project (Angulo et al.
(1999)) including the updated reaction rate for the 14N(p,γ)15O reaction from Formicola
et al. (2004). Convection was implemented using the classical, local mixing-length theory
(Böhm-Vitense (1958)). We used the individual small frequency separations, d02 and d13, the
e�ective temperature, Te f f , and the metallicity, [Fe/H], as constraints for our structural
models. Some �ts were also carried out using the frequency ratios r01 and r02 (I. W.
Roxburgh and S. V. Vorontsov (2003)) and this led to very similar results. No surface
correction was applied to the frequencies. The free parameters of the Levenberg-Marquardt
algorithm were the mass of the star, M, its age, its hydrogen mass fraction, X , its metallicity,
Z, and the mixing-length parameter, αMLT . Both stars were modelled using the AGSS09
abundance tables (Asplund, Grevesse, Sauval, and Scott (2009)), but tests were carried
out using the old GN93 abundances (Grevesse and Noels (1993)) to see whether some
comments could be made on the metallicity scale used to relate stellar metallicity to solar
metallicity.

8.2.1 Doris a.k.a KIC8006161

In Fig. 8.1, we illustrate the echelle diagram for Doris. This star has 54 observed individual
frequencies with a mean 1σ uncertainty of 0.49 µHz, an e�ective temperature of 5488±77K
and a [Fe/H] = 0.34±0.10. The initial mass estimate was 0.96M�. We illustrate in table
8.1 the results from the forward modelling process. These results are in agreement with
the �rst estimate to within a reasonable accuracy. We note that most of the uncertainty
stems from the well-known helium-mass degeneracy in seismic �tting and the intensity
of di�usion. It also seems clear that extra-mixing processes acting inside the star would
have an impact on these determinations. We only considered models with microscopic
di�usion but without including turbulent di�usion. We note that it was possible to �t
this target with both the GN93 abundances and the AGSS09 abundances within the same
accuracy. Had we included extra-mixing, the scatter of the fundamental parameters would
have been slightly larger.
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Figure 8.1: Echelle diagram for Doris (KIC8006161) illustrating the ridges of the `= 0,1,2,3
modes.

Table 8.1: Forward modelling results for Doris and Saxo
Doris Saxo

Mass (M�) 0.91−1.02 0.93−1.05
Age (Gy) 4.6−5.3 7.6−8.7

8.2.2 Saxo a.k.a KIC6603624

In Fig. 8.2, we illustrate the echelle diagram for Saxo. This target has 44 individual
frequencies with an average uncertainty of 0.336 µHz. Although the frequencies are
accurately determined, we wish to point out a small deviation in the echelle diagram, the
octupole mode of lowest frequency seems to be deviating from the ridge formed by the
other octupole modes. This irregularity made this mode very di�cult to �t and it seemed
that it could be due to a miscalculation of the frequency value (di�erences between di�erent
�tters have indeed been reported in I. W. Roxburgh (2017)). It seemed improbable that this
di�erence could be physical so we eliminated this mode and used only 43 frequencies to
calculate the small frequency separations used in our �ts. In addition to the seismic data,
we used the same constraints as for Doris, namely the e�ective temperature, at a value of
5674±77 and the [Fe/H] = 0.28±0.10. Our results, given in table 8.1 are in agreement
with the initial mass estimate of 1.01M�. Again, this target could be �tted using both the
old GN93 and the new AGSS09 solar abundances.

8.3 Inversion Procedure

In this section we brie�y present the inversion procedure used for both targets. We
followed the same methodology as in our study of the 16Cyg binary system (Buldgen,
D. R. Reese, and M. A. Dupret (2016)) and carried out inversions for both the mean density
and a core condition indicator based on the derivative of the squared isothermal sound
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Figure 8.2: Echelle diagram for Saxo (KIC6603624) illustrating the ridges of the `= 0,1,2,3
modes.

speed, denoted tu. The mean density inversions have been described in D. R. Reese,
Marques, et al. (2012) and the tu inversions have been presented in Buldgen, D. R. Reese,
and M. A. Dupret (2015). The SOLA inversion technique (Pijpers and Thompson (1994))
was used to related the relative frequency di�erences to corrections of these integrated
quantities, assuming the following relation

N

∑
i

ci
δνi

νi
≡
(

δA
A

)
inv

, (8.1)

where the ci are the inversion coe�cients, found by minimizing the cost function of the
SOLA method, and A is the integrated quantity whose correction is sought. Structural
inversions in asteroseismology are carried out using a sample of reference models to
analyze whether model dependency dominates the results or not. This is a consequence
of the linearity hypothesis used to compute the structural corrections from seismic
observations. To obtain the corrections of integrated quantities, we use the linear relations
between frequency and structure from D. O. Gough and Thompson (1991)

δνn,`

νn,` =
∫ R

0
Kn,`

sA,sB

δ sA

sA
dr+

∫ R

0
Kn,`

sB,sA

δ sB

sB
dr, (8.2)

with sA and sB being structural quantities like the squared adiabatic sound speed, c2, and
the density, ρ , as in classical helioseismic inversions. The Kn,` functions are the structural
kernels, which depend only on the reference model and its eigenfunctions. The δ notation
is related to the di�erences between observed and reference quantities following the
convention

δx
x

=
xobs− xre f

xre f
, (8.3)



8.4 Inversion Results 273

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Position r/R

S
5/
3

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

Position r/R

S
−
1

5/
3

Figure 8.3: Le� panel: radial pro�le of S5/3 for two stellar models of various mass and
age, illustrating the plateau in the convective region. Right panel: radial pro�le of S−1

5/3 for
two stellar models, illustrating the plateau of the proxy in convective cores.

where x can be a frequency or a structural quantity. The main problem in the context
of asteroseismology is that the linearization hypothesis may not be valid. Thus, one can
use multiple reference models to check for the robustness of the inference made with the
inversion technique.

The de�nition of the tu indicator is

tu =
∫ R

0
f (r)

(
du
dr

)2

dr, (8.4)

with f (r) = r(r−R)2 exp(−7 r2

R2 ), the weight function used for this inversion, R the stellar
radius, r the radial coordinate associated with each layer inside the model, and u the
squared isothermal sound-speed de�ned as u = P

ρ
. This quantity is very sensitive to

changes in the deep layers of stars and can be used to assess the reliability of the
representation of the strati�cation of the deep layers by the models. In fact, one can show
that u≈ T

µ
in the core regions and thus, this quantity will be very sensitive to the e�ects

of mixing processes that will change the temperature, T , and mean molecular weight, µ ,
gradients.

Besides this indicator, we also carried out inversions using a new core condition
indicator based on an entropy proxy, denoted S5/3 =

P
ρ5/3 . We consider the inversion results

of this indicator to be preliminary and a follow up with the de�nition and limitations of
this inversion will be presented in a future paper. This proxy is particularly well suited
for stars with a convective core since it will show a plateau in regions where convection
dominate. The width of the plateau is linked to the extent of the convective regions and
the height is sensitive to the transition with radiative regions, thus to the temperature
and chemical composition gradient. In Fig 8.3, we show the behaviour of S5/3 for the
convective envelope in the le� panel and of S−1

5/3 in the right panel for a convective core.

8.4 Inversion Results

In Fig. 8.4, we illustrate the inversion results for Doris for the tu indicator and an indicator
based on S−1

5/3, denoted SCore. The green crosses are the inverted results while the red
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circles illustrate the reference models computed using the Levenberg-Marquardt algorithm.
As can be seen, some models are in agreement with the inversion results while others
are not. There is also a clear trend showing that models not �tting the inverted mean
density, given here in abscissa, are incompatible with the other indicators. As already
seen in Buldgen, D. R. Reese, and M. A. Dupret (2016), the error bars on the tu inversion
are quite large, but there is a clear trend that can be deduced and used to select a
subsample of models from our initial forward modelling. The numerical value obtained for
the inverted tu/G2R6

Tar value is around 5.8±0.7g2/cm6, with RTar the target photospheric
radius and G the graviational constant. The SCore indicator shows an inverted SCoreGR1/3

Tar
value around 2.110±0.005cm/gm1/3. Again only a subset of models are in agreement with
these inversion results.
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Figure 8.4: Inversion results for Doris. Le� panel: ρ̄−SCoreG1/3Rtar plane where the red
circles illustrate the position of the reference models and the green crosses show the
inversion results with their error bars. Right panel: ρ̄− tu/(G2R6

tar) plane following the
same notations as the le� panel.

In �g. 8.5, we illustrate the inversion results for Saxo for the tu and the SCore indicator.
In this case, the results are stunningly di�erent, since no model seems to agree with
the inverted results, although the models were �tted to the observations with the same
accuracy as for Doris. The di�erence is particularly signi�cant for the SCore indicators and
seems to indicate that something has been wrongly reproduced in the reference models. A
small trend is seen with the mean density, as for the results for Doris, but the disagreement
is still much larger. For the tu indicator, the value found is around 1.5±1g2/cm6 while the
SCore inversion leads to a result around 1.7±0.06cm/g1/3.

8.5 Implications for the modelling of Doris and Saxo

Using the inversion results for Doris, we could de�ne a subsample of reference models,
selected in agreement with the determinations of the mean density, the tu and the SCore

indicators. These models are represented in Fig. 8.6, where the blue crosses represent the
models of our sample which are in agreement with the inversion procedure, the purple
crosses are models found in agreement with some but not all inversion results and the
red dots are the models which disagree with the inversion results. We point out that all
of these models included microscopic di�usion, so that the selection process is somewhat
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less spectacular than what is found in our study of 16Cyg. It should be noted however,
that models without microscopic di�usion for Doris are systematically rejected by both
inversions and have thus not been included in this study. Another point worth mentioning
is that unlike 16Cyg, Doris has no determination of its surface helium abundance and thus
further constraints could be brought on this model by determining the helium abundance
of the convective envelope of this target. This could lead to further studies of this star
and constrain mixing processes inside this star, as is currently being done for 16Cyg.

Nonetheless, the use of constraints from the inversions leads us to select a subsample of
models with a 2.5% uncertainty in mass and 4.5% uncertainty in age, thus illustrating the
diagnostic potential of the inversion technique and its e�ciency in constraining fundamental
parameters. The selection e�ect in age is very small since we did not plot models without
microscopic di�usion, which were systematically rejected by the inversion technique.
These uncertainties are of course internal error bars and do not take into account possible
inaccuracies in the physical ingredients of the model.

In the case of Saxo, no model seemed to �t the inverted constraints and thus a solution
still has to be found. Moreover, the reliability of the frequencies has to be assessed before
further inversions can be carried out. It is well known that the SOLA method is sensitive
to outliers and it is also clear that any mis�ts to the frequencies would signi�cantly a�ect
the inversion results, and thus the diagnostic provided by the method. If these results are
con�rmed, then it would seem that something is clearly missing in the description of this
target and further investigations would be needed.

8.6 Conclusions

In this chapter, we applied the inversions of integrated quantities as de�ned in D. R. Reese,
Marques, et al. (2012) and Buldgen, D. R. Reese, and M. A. Dupret (2015) to two targets
of the Kepler LEGACY sample. This sample of 66 dwarfs is considered to be the best
sample of solar-like and F-type stars observed by Kepler. This means that these targets
can be used as benchmark stars to constrain stellar physics and seismic modelling. Due
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to the high quality of the seismic data, they are very well suited for structural inversion
techniques. We demonstrated this by applying our methods to Doris and Saxo, and
showed that there was indeed a diagnostic from the inversion technique.

For Doris, this diagnostic allowed us to further constrain the fundamental parameters
of this star and led to a �nal uncertainty of 2.5% in mass and 4.5% in age. These results
are, of course, model-dependent and should be considered as internal error bars, not
taking into account potential errors in the physical ingredients of the stellar models.

In the case of Saxo, a clear disagreement with the models was brought to light. The
main problem with this result, but also with the seismic diagnostic for Doris, is linked to
the uncertainties in the frequency determinations of the Kepler LEGACY (see I. W. Roxburgh
(2017)). These results should then be checked again once this problem is clari�ed.
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9. Discussion, summary and future prospects

9.1 Asteroseismic inversions

In this thesis, we have attempted to provide additional constraints on stellar structure
using seismic inversion techniques. The philosophy of our approach was to extract relevant
structural constraints one at a time by deriving linear combinations of frequencies using
the classical SOLA linear inversion technique used successfully in helioseismology. The
main advantage of this method is that it allows us to test speci�c aspects of stellar structure
far beyond what is achievable by classic seismic forward modelling. Consequently, the
inversions we developed can put stringent constraints on fundamental parameters of stars
and help us re�ne our stellar structural models.

However, we have shown that our technique could only be applied to some of the
best asteroseismic targets available, because despite the very high quality of the data, it is
still far worse than solar seismic observations. Another major problem of our technique
is its sensitivity to surface e�ects, which has to be further tested and taken into account
in its implementation. So far, empirical corrections such as those of Ball and Gizon (2014)
and Sonoi et al. (2015) seem to be the most promising approaches to suppress surface
contributions, but complementary techniques could be developed, like those found in
D. O. Gough and Kosovichev (1993b) where small frequency separations were used as the
primary components of the inversion technique. However, the major drawback with this
method is that it partially eliminates the main advantage of the inversion, which is the
freedom of choice for the information to be extracted by the technique. By using small
frequency separations, or frequency ratios, as the basis of the linear combination derived
by the inversion, the process might be biased and the versatility of the inversion, thus its
main advantage, will be reduced.

In summary, the optimal strategy to extract information from structural seismic
inversion techniques still needs a few re�nements in the near future. However, its
constraining potential and its applicability to current seismic data are clear. In the
foreseable future, the application of such techniques on the Kepler LEGACY sample could
shed new light on the quality of the models of solar-like stars, but also on the limitations of
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our modelling of solar-like oscillators. Such analyses would not only help further improve
the accuracy of stellar models, but also assess in a more realistic way the uncertainties
on the stellar fundamental parameters we provide to other �elds of astrophysics.

Despite our in-depth investigation of the 16Cyg binary system, the conclusion of
section 6.3 is very clear and foretells some of our future projects. Indeed, a full reanalysis
of this system, with a various combination of seismic analysis techniques, is in preparation,
in collaboration with Patrick Eggenberger from Geneva Observatory and Morgan Deal
from Paris Observatory. The extension of such in-depth analyses is also foreseen for the
whole Kepler LEGACY sample, using the AIMS so�ware (D. R. Reese (2016)).

On a longer timescale, adapting structural inversion techniques to mixed modes would
also be a breakthrough for stellar seismology. It would allow us to probe in a very
e�cient way the impact of the supposed angular momentum transport mechanisms on
other thermodynamic variables and assess how wrong our structural models of evolved
stars actually are. From a technical point of view, such adaptations would require the
development of well-suited non-linear inversion techniques. Such investigations would
also be of primary importance for the young �eld of Galactic archeology, which strongly
relies on accurate fundamental parameters of evolved stars.

These developments are also part of future prospects, but �rst will require substantial
analytical developments. While �rst explorations have been undertaken, we believe that
investigations towards pre-existing formalisms in the �eld of quantum mechanics, where
the variational analysis is much more common, could help provide an elegant approach
for mixed modes.

In addition to evolved stars, applying structural inversions to γ Dor stars would
also provide important constraints on the internal mixing occuring near the border of
convective cores and would probably help re�ning our modelling of these regions in
stellar evolution codes. However, these developments will �rst require a clear assessment
of the validity of the linear approximation for models of γ Dor stars. Exploratory work
with gravity modes has been undertaken but will certainly require further substantial
developments.

From a purely methodological point of view, it should also be kept in mind that other
inversion techniques do exist in asteroseismology and that comparisons between methods
should also be attempted to assess the reliability and applicability domains of the various
approaches. Combining methodologies would further reinforce potentially important
results and con�rm the position of asteroseismology as a central �eld of astrophysics to
constrain stellar structure and evolution.

9.2 What’s wrong with the Sun?

Besides attempting to constrain the internal structure of solar-like stars, we have also
revisited the modelling problem of perhaps the most solar-like of all stars, the Sun itself.
We have analysed the agreement of standard solar models for the new opacity tables
published by the National Los Alamos Laboratory group. These investigations have shown
that using the latest opacity tables slightly improved some aspects of the solar-modelling
problem but increased signi�cantly the disagreements of other helioseismic tests. Facing
this stalemate, we used the various structural kernels we had developed for asteroseismic
applications to determine inverted pro�les of various thermodynamic quantities, such
as the entropy proxy or the Ledoux convective parameter. These inversions revealed
that most of the weaknesses of the standard solar models were located right below the
convective region, in the tachocline. The fact that the standard models fail in a region
where they are supposed to fail can be considered reassuring, to some extent, but means
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that signi�cant e�orts have to be made on the theoretical side to improve the quality of
our models.

Such developments will require the combination of all the available information, e.g.
constraints from neutrinos, spectroscopy (especially lithium and beryllium abundances),
and helioseismic inversions. From this global analysis, we can expect to be able to
test in depth the e�ects of the non-standard processes acting in the Sun. As stated
in the manuscript, the combination of all seismic diagnostics could be used to provide
ad-hoc pro�les of temperature and mean molecular weight just below the convective
zone, which could be compared to the results of hydrodynamical simulations and help
re�ne the formalism of mixing processes in stellar evolution codes. Moreover, an in-depth
comparison of solar models is required, to quantify the level of trust we can have in the
numerical quality of our structural models. All these e�orts are not to be undertaken alone,
but are part of a global project, of which the publications presented in this manuscript
are only the very �rst step. A collaboration between Geneva Observatory, the stellar
physics group of Montpellier University and the stellar physics group of the University
of Liège currently prepares such a study. The inclusion of additional participants to this
collaborative e�ort is also foreseen, since the expertise of multiple actors is required to
assess the solar problem in its full complexity.

In addition to p mode seismology, the recent detection of solar gravity modes (Fossat
et al. (2017)) is a game changer since these pulsations are able to put very strong constraints
on the central temperature of the Sun and complement the neutrino measurements.

From early analyses not presented in this manuscript, we con�rm that standard solar
models show an asymptotic period spacing between 35 and 36 min, as shown in previous
publications in the litterature (e.g. Provost et al. (1991)). These values are in strong
contradiction with the value of 34 min observed by Fossat et al. (2017) and are found
for the CEFF, OPAL and FreeEOS equations of state, when using either the OPAL, OPLIB
or OPAS opacity tables alongside either high or low metallicity abundances. This clear
disagreement between models and observations adds up to the current uncertainties on
the physical ingredients of solar models. The shi� in period spacing could result from
the e�ects of mixing, since the rotation rate of the solar core predicted from the splitting
of the g modes is found to be nearly 4 times larger than that of the upper radiative
layers. However, other structural ingredients, such as the screening factors or perhaps
the cross-sections of the nuclear reaction rates could perhaps su�er from inaccuracies of
a few percents, which would alter the period spacing of the models. The alteration of the
Brunt-Väisälä frequency required to agree with the observed asymptotic period spacing
would of course result in variations in the neutrino �uxes and could radically change the
scenery of the solar modelling problem.

However, it should also be kept in mind that the issue will of course also be in�uenced
by the outcome of the current debate in the opacity community and that, perhaps now
more than ever, the stellar modelling community relies on the results of atomic physics.
Nervertheless, investigations can still be carried out from a stellar modelling perspective,
by combining the information from rotation inversions with the expected impact on the
solar structure of the transport processes required to be consistent with the solar rotation
pro�le. Again, solar gravity modes exert here an enormous in�uence, since they strongly
constrain the type and e�ciency of the expected physical mechanism. Ultimately, the solar
modelling problem is perhaps as much a problem of combining all the pieces of a puzzle
together as one of adding new pieces to the game. However, what seems to be very clear,
is that the standard solar model is now showing its limitations and we have to step away
from its recipe if we want to bring stellar physics to a new level of accuracy.





BIBLIOGRAPHY

Acevedo-Arreguin, L. A., P. Garaud, and T. S. Wood (2013). “Dynamics of the solar tachocline
- III. Numerical solutions of the Gough and McIntyre model”. In: MNRAS 434, pages 720–
741 (cited on page 256).

Aerts, C., J. Christensen-Dalsgaard, and D. W. Kurtz (2010). Asteroseismology (cited on
page 50).

Anders, E. and N. Grevesse (1989). “Abundances of the elements - Meteoritic and solar”. In:
Geochimica et Cosmochimica Acta 53, pages 197–214 (cited on pages 223, 251).

Angulo, C. et al. (1999). “A compilation of charged-particle induced thermonuclear reaction
rates”. In: Nuclear Physics A 656, pages 3–183 (cited on pages 92, 179, 198, 241, 270).

Antia, H. M. (1996). “Nonasymptotic helioseismic inversion: iterated seismic solar model.”
In: A&Ap 307, pages 609–623 (cited on pages 17, 222).

Antia, H. M. and S. Basu (1994a). “Measuring the helium abundance in the solar envelope:
The role of the equation of state”. In: ApJ 426, pages 801–811 (cited on pages 154, 222).

— (1994b). “Nonasymptotic helioseismic inversion for solar structure.” In: A&Aps 107,
pages 421–444 (cited on pages 13, 109, 154, 222, 224, 226).

— (2006). “Determining Solar Abundances Using Helioseismology”. In: ApJ 644, pages 1292–
1298 (cited on pages 223, 236).

Antia, H. M. and S. M. Chitre (1998). “Determination of temperature and chemical composition
pro�les in the solar interior from seismic models”. In: A&Ap 339, pages 239–251 (cited
on page 256).

Appourchaux, T. et al. (2014). “Oscillation mode linewidths and heights of 23 main-sequence
stars observed by Kepler”. In: A&Ap 566, A20 (cited on page 76).

Asplund, M., N. Grevesse, and A. J. Sauval (2005). “The Solar Chemical Composition”. In:
Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis. Edited by T. G.
Barnes III and F. N. Bash. Volume 336. Astronomical Society of the Paci�c Conference
Series, page 25 (cited on pages 118, 236, 251).



284 BIBLIOGRAPHY

Asplund, M., N. Grevesse, A. J. Sauval, C. Allende Prieto, and R. Blomme (2005). “Line
formation in solar granulation. VI. [C I], C I, CH and C2 lines and the photospheric C
abundance”. In: A&Ap 431, pages 693–705 (cited on pages 223, 225).

Asplund, M., N. Grevesse, A. J. Sauval, C. Allende Prieto, and D. Kiselman (2004). “Line
formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O
abundance”. In: A&Ap 417, pages 751–768 (cited on pages 223, 225).

Asplund, M., N. Grevesse, A. J. Sauval, and P. Scott (2009). “The Chemical Composition of
the Sun”. In: ARA&A 47, pages 481–522 (cited on pages 98, 145, 168, 180, 199, 223, 225,
236, 257, 270).

Backus, G. E. and J. F. Gilbert (1967). “Numerical Applications of a Formalism for Geophysical
Inverse Problems”. In: Geophysical Journal 13, pages 247–276 (cited on pages 68, 71,
110, 160, 203, 240).

Baglin, A. et al. (2009). “CoRoT: Description of the Mission and Early Results”. In: IAU
Symposium. Edited by F. Pont, D. Sasselov, and M. J. Holman. Volume 253. IAU
Symposium, pages 71–81 (cited on pages 14, 82, 155).

Bahcall, J. N., W. F. Huebner, et al. (1982). “Standard solar models and the uncertainties in
predicted capture rates of solar neutrinos”. In: Reviews of Modern Physics 54, pages 767–
799 (cited on pages 14, 222).

Bahcall, J. N. and C. Peña-Garay (2004). “Solar models and solar neutrino oscillations”. In:
New Journal of Physics 6, page 63 (cited on pages 14, 224).

Bailey, J. E. et al. (2015). “A higher-than-predicted measurement of iron opacity at solar
interior temperatures”. In: Nature 517, page 3 (cited on pages 223, 225, 229, 255).

Ball, W. H., B. Beeck, et al. (2016). “MESA meets MURaM. Surface e�ects in main-sequence
solar-like oscillators computed using three-dimensional radiation hydrodynamics simu-
lations”. In: A&Ap 592, A159 (cited on page 76).

Ball, W. H. and L. Gizon (2014). “A new correction of stellar oscillation frequencies for
near-surface e�ects”. In: A&Ap 568, A123 (cited on pages 76, 172, 279).

Basu, S. (2003). “Stellar Inversions”. In: ApSS 284, pages 153–164 (cited on pages 17, 84,
100, 135, 154, 155, 160).

— (2016). “Global seismology of the Sun”. In: Living Reviews in Solar Physics 13, page 2
(cited on page 17).

Basu, S. and H. M. Antia (1995). “Helium abundance in the solar envelope”. In: MNRAS 276,
pages 1402–1408 (cited on pages 222, 224, 235).

— (1997a). “Seismic measurement of the depth of the solar convection zone”. In: MNRAS
287, pages 189–198 (cited on pages 222, 235).

— (1997b). “Seismic measurement of the depth of the solar convection zone”. In: MNRAS
287, pages 189–198 (cited on page 224).

— (2006). “Seismic Determination of Solar Heavy Element Abundances”. In: SOHO-17. 10
Years of SOHO and Beyond. Volume 617. ESA Special Publication, page 36.1 (cited on
pages 223, 225).

— (2008). “Helioseismology and solar abundances”. In: Physics Reports 457, pages 217–283
(cited on pages 82, 225).

Basu, S., W. J. Chaplin, et al. (2009). “Fresh Insights on the Structure of the Solar Core”.
In: ApJ 699, pages 1403–1417 (cited on pages 76, 205, 226, 242, 257, 270).

Basu, S. and J. Christensen-Dalsgaard (1997a). “Equation of state and helioseismic inver-
sions.” In: A&Ap 322, pages L5–L8 (cited on pages 66, 67).

— (1997b). “Equation of state and helioseismic inversions.” In: A&Ap 322, pages L5–L8
(cited on page 178).



BIBLIOGRAPHY 285

Basu, S., J. Christensen-Dalsgaard, W. J. Chaplin, et al. (1997). “Solar internal sound speed
as inferred from combined BiSON and LOWL oscillation frequencies”. In: MNRAS 292,
page 243 (cited on page 178).

Basu, S., J. Christensen-Dalsgaard, J. Schou, et al. (1996). “Solar structure as revealed by 1
year LOWL data”. In: Bulletin of the Astronomical Society of India 24, page 147 (cited on
pages 13, 133, 141, 178, 222, 236).

Basu, S. and M. J. Thompson (1996). “On constructing seismic models of the Sun.” In:
A&Ap 305, page 631 (cited on page 228).

Basu, S. et al. (1996a). “Filtering out near-surface uncertainties from helioseismic inversions”.
In: MNRAS 280, page 651 (cited on page 75).

— (1996b). “Filtering out near-surface uncertainties from helioseismic inversions”. In:
MNRAS 280, page 651 (cited on page 134).

Baturin, V. A. et al. (2013). “The Current Version of the SAHA-S Equation of State: Im-
provement and Perspective”. In: Progress in Physics of the Sun and Stars: A New Era in
Helio- and Asteroseismology. Edited by H. Shibahashi and A. E. Lynas-Gray. Volume 479.
Astronomical Society of the Paci�c Conference Series, page 11 (cited on pages 27, 32,
224, 255).

Baudin, F. et al. (2012). “Modelling a high-mass red giant observed by CoRoT”. In: A&Ap
538, A73 (cited on page 194).

Bazot, M., S. Bourguignon, and J. Christensen-Dalsgaard (2012). “A Bayesian approach to
the modelling of α Cen A”. In: MNRAS 427, pages 1847–1866 (cited on page 107).

Beck, P. G., T. R. Bedding, et al. (2011). “Kepler Detected Gravity-Mode Period Spacings in
a Red Giant Star”. In: Science 332, page 205 (cited on page 43).

Beck, P. G., J. Montalban, et al. (2012). “Fast core rotation in red-giant stars as revealed by
gravity-dominated mixed modes”. In: Nature 481, pages 55–57 (cited on page 51).

Bedding, T. R., R. P. Butler, et al. (2001). “Evidence for Solar-like Oscillations in β Hydri”.
In: ApJl 549, pages L105–L108 (cited on page 14).

Bedding, T. R., B. Mosser, et al. (2011). “Gravity modes as a way to distinguish between
hydrogen- and helium-burning red giant stars”. In: Nature 471, pages 608–611 (cited on
pages 43, 51).

Belkacem, K., M. J. Goupil, et al. (2011). “The underlying physical meaning of the νmax - νc

relation”. In: A&Ap 530, A142 (cited on pages 49, 51).
Belkacem, K., J. P. Marques, M. J. Goupil, B. Mosser, et al. (2015). “Angular momentum

redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of
red giants induced by mixed modes”. In: A&Ap 579, A31 (cited on page 43).

Belkacem, K., J. P. Marques, M. J. Goupil, T. Sonoi, et al. (2015). “Angular momentum
redistribution by mixed modes in evolved low-mass stars. I. Theoretical formalism”.
In: A&Ap 579, A30 (cited on page 43).

Belkacem, K., R. Samadi, et al. (2009). “Solar-Like Oscillations in a Massive Star”. In:
Science 324, page 1540 (cited on page 51).

Blancard, C., J. Colgan, et al. (2016). “Comment on “Large Enhancement in High-Energy
Photoionization of Fe XVII and Missing Continuum Plasma Opacity””. In: Physical Review
Letters 117.24, page 249501 (cited on pages 223, 229, 255).
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Richard, O., S. Théado, and S. Vauclair (2004). “Updated Toulouse solar models including
the di�usion-circulation coupling and the e�ect of µ-gradients”. In: Sol. Phys. 220,
pages 243–259 (cited on page 257).

Richard, O. and S. Vauclair (1997). “Local mixing near the solar core, neutrino �uxes and
helioseismology.” In: A&Ap 322, pages 671–673 (cited on page 257).

Richard, O., S. Vauclair, et al. (1996). “New solar models including helioseismological
constraints and light-element depletion.” In: A&Ap 312, pages 1000–1011 (cited on
page 257).

Rogers, F. J. and A. Nayfonov (2002). “Updated and Expanded OPAL Equation-of-State
Tables: Implications for Helioseismology”. In: ApJ 576, pages 1064–1074 (cited on
pages 27, 32, 97, 168, 209, 223, 224, 229, 241).

Rogers, F. J., F. J. Swenson, and C. A. Iglesias (1996). “OPAL Equation-of-State Tables for
Astrophysical Applications”. In: ApJ 456, page 902 (cited on pages 27, 168).

Roxburgh, I. W. (1964a). “On stellar rotation, I. The rotation of upper main-sequence stars”.
In: MNRAS 128, page 157 (cited on page 30).

— (1964b). “On stellar rotation, II. The rotation of lower main-sequence stars”. In: MNRAS
128, page 237 (cited on page 30).

— (1989). “Integral constraints on convective overshooting”. In: A&Ap 211, pages 361–364
(cited on page 29).

— (2010). “Asteroseismology of solar and stellar models”. In: ApSS 328, pages 3–11 (cited
on pages 17, 104, 133).

— (2015a). “Surface layer independent model �tting by phase matching: theory and
application to HD 49933 and HD 177153 (aka Perky)”. In: A&Ap 574, A45 (cited on
page 16).

— (2015b). “Surface layer independent model �tting by phase matching: theory and
application to HD 49933 and HD 177153 (aka Perky)”. In: A&Ap 574, A45 (cited on
pages 17, 104, 133).

Roxburgh, I. W (2016). “16CygA&B and Kepler Legacy values : Di�erences between the
values of frequencies by di�erent �tters”. In: ArXiv e-prints (cited on page 177).

Roxburgh, I. W. (2016a). “Asteroseismic model �tting by comparing εnl values”. In: A&Ap
585, A63 (cited on page 16).

— (2016b). “Asteroseismic model �tting by comparing εnl values (Corrigendum)”. In: A&Ap
586, page C2 (cited on page 16).

— (2017). “Anomalies in the Kepler Asteroseismic Legacy Project Data A re-analysis of 16
Cyg A & B, KIC 8379927 and 6 solar-like stars”. In: A&Ap 604, A42 (cited on pages 71,
271, 276).

Roxburgh, I. W. and S. V. Vorontsov (1994a). “Seismology of the Solar Envelope - the Base
of the Convective Zone as Seen in the Phase Shi� of Acoustic Waves”. In: MNRAS 268,
page 880 (cited on pages 222, 262).

— (1994b). “The Asymptotic Theory of Stellar Acoustic Oscillations - a Fourth-Order
Approximation for Low-Degree Modes”. In: MNRAS 268, page 143 (cited on page 45).

— (1996). “An asymptotic description of solar acoustic oscillation of low and intermediate
degree”. In: MNRAS 278, pages 940–946 (cited on page 45).

— (2003). “The ratio of small to large separations of acoustic oscillations as a diagnostic
of the interior of solar-like stars”. In: A&Ap 411, pages 215–220 (cited on pages 45, 106,
227, 270).



BIBLIOGRAPHY 297

Roxburgh, I. and S. Vorontsov (2003). “Diagnostics of the Internal Structure of Stars using
the Di�erential Response Technique”. In: ApSS 284, pages 187–191 (cited on page 17).

Salmon, S. et al. (2012). “Testing the e�ects of opacity and the chemical mixture on the
excitation of pulsations in B stars of the Magellanic Clouds”. In: MNRAS 422, pages 3460–
3474 (cited on pages 34, 225).

Schou, J., H. M. Antia, et al. (1998). “Helioseismic Studies of Di�erential Rotation in the
Solar Envelope by the Solar Oscillations Investigation Using the Michelson Doppler
Imager”. In: ApJ 505, pages 390–417 (cited on pages 32, 82, 236).

Schou, J., J. Christensen-Dalsgaard, and M. J. Thompson (1994). “On comparing helioseismic
two-dimensional inversion methods”. In: ApJ 433, pages 389–416 (cited on pages 47,
141).

Schuler, S. C. et al. (2011). “Detailed Abundances of the Solar Twins 16 Cygni A and B:
Constraining Planet Formation Models”. In: ApJl 737, page L32 (cited on page 199).

Schwarzschild, K. (1906). “On the equilibrium of the Sun’s atmosphere”. In: Nachrichten
von der Königlichen Gesellscha� der Wissenscha�en zu Göttingen. Math.-phys. Klasse,
195, p. 41-53 195, pages 41–53 (cited on page 26).

Scu�aire, R. (1974a). “Space oscillations of stellar non radial eigen-functions”. In: A&Ap 34,
pages 449–451 (cited on page 42).

— (1974b). “The Non Radial Oscillations of Condensed Polytropes”. In: A&Ap 36, page 107
(cited on page 13).

Scu�aire, R., J. Montalbán, et al. (2008). “The Liège Oscillation code”. In: ApSS 316,
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