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Abstract

Malaria is a major public health problem in the Democratic Republic of Congo. Despite prog-

ress achieved over the past decade in the fight against malaria, further efforts have to be

done such as in the surveillance and the containment of Plasmodium falciparum resistant

strains. We investigated resistance to artemisinin-based combination therapies currently in

use in Democratic Republic of Congo by surveying molecular polymorphisms in three

genes: pfcrt, pfmdr1 and pfk13 to explore possible emergence of amodiaquine, lumefantrine

or artemisinin resistance in Democratic Republic of Congo. This study essentially revealed

that resistance to chloroquine is still decreasing while polymorphism related to amodiaquine

resistance seems to be not present in Democratic Republic of Congo, that three samples,

located in the east of the country, harbor Pfmdr1 amplification and that none of the muta-

tions found in South-East Asia correlated with artemisinine resistance have been found in

Democratic Republic of Congo. But new mutations have been identified, especially the

M476K, occurred in the same position that the M476I previously identified in the F32-ART

strain, strongly resistant to artemisinine. Antimalarial first-line treatments currently in use in

Democratic Republic of Congo are not associated with emergence of molecular markers of

resistance.

Introduction

In the Democratic Republic of Congo (DRC) malaria is still a major public health problem.

Interventions conducted the last ten years led to reduce malaria related morbidity-mortality
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[1], but further efforts have to be done to reach the aim fixed by the World Health Organiza-

tion (WHO) to reduce malaria mortality and incidence by 90% in 2030 [2].

Efforts must be strengthened in many topics, such as surveillance and containment of Plas-
modium falciparum resistant strains. Resistance, that could be defined as the ability of a para-

site strain to survive or multiply in the presence of drug concentrations that normally kill

parasites of the same species or prevent their multiplication [3], is a phenomenon that has

always existed since drugs started to exert pressure phenomenon. All drugs submitted to the

malaria parasite became, some years after their introduction, ineffective [4]. In response to it,

WHO experts have recommended to use combination therapies including an artemisinin

component instead of using monotherapies [5]. Currently, all endemic countries have officially

adopted artemisinin-based combination therapies (ACT) as first-line treatment for non-severe

malaria.

In DRC, two ACTs have been accepted as first-line treatment by the National Malaria Con-

trol Program (NMCP): Artesunate-Amodiaquine in 2005 followed by Artemether-Lumefan-

trine in 2010. Both combinations are simultaneously in use in the country.

Resistance to previous antimalarials has led to an increase of malaria mortality from 1980 to

2004 [6], an increase of the global cost for disease control [7, 8], and an increase of transmis-

sion [9].It is clear that the spread of artemisinin resistance from Asia to Africa would seriously

threaten malaria control [10]. This resistance has been clearly established in South-East Asia

but currently, no report of artemisinin resistance has been described in Africa [11].

Monitoring parasite resistance to antimalarial drugs is mandatory in malaria control strate-

gies. Molecular markers are a good alternative to in vivo treatment trials or in vitro drug sus-

ceptibility testing to detect drug-resistant strains as they allow analyzing large sample and

assessing resistance to many antimalarial drugs simultaneously [12]. Unfortunately, molecular

studies require expensive infrastructures and reagents and also qualified persons that are not

always available in sub-Saharan Africa. This can explain the small number of studies con-

ducted in DRC [13].

Some molecular markers associated with malaria resistance have been clearly described.

The K76T mutation occurring on the Plasmodium falciparum chloroquine-resistance trans-

porter (pfcrt) gene is the key element of chloroquine resistance [14] and the SVMNT haplo-

type, defined by specific mutations at amino acid positions 72–76, found in the same gene has

been clearly linked to amodiaquine resistance [15]. Moreover, Ariey et al. provided the link

between mutations in the propeller region of the Kelch 13 gene (K13, PF3D7_1343700) and

artemisinin resistance [16]. Mutations on the Plasmodium falciparum multidrug resistance 1

(pfmdr1) gene and increase of its copy number have been related to resistance to many mono-

therapies [17–20] but also linked to ACT introduction [21, 22].

In previous studies, we have detected a high prevalence of pfcrt mutants in Kinshasa [23] so

in the present work we have extended the analysis to five other geographic areas in DRC. We

investigated resistance to ACT currently in use in DRC by surveying molecular polymor-

phisms in three genes: pfcrt, pfmdr1 and pfk13 to explore possible emergence of amodiaquine,

lumefantrine or artemisinin resistance in DRC.

Materials and methods

Ethical considerations

The protocol and the informed consent received the ethical approbation from the Ministry of

Public Health of the DRC and from the Institutional Committee of the Faculty of Medicine,

University of Kinshasa. All the participants involved in the study (or the parents/guardians of

children) provided a written consent.
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Study sites and participants

We conducted this study in six areas with different dynamics of transmission: Bolenge, Luzi-

zila and Mweka in the equatorial facies; Punia and Kapolowe in the tropical facies and

Butembo in the mountain facies. Malaria transmission is perennial in the equatorial and tropi-

cal facies but seasonal in the mountain one. In each site, one hundred individual has been ran-

domly selected in a household survey (except for Punia where only eighty individuals could be

selected). The survey was conducted between March and November 2014.

Blood collection and parasite identification

For each individual, blood samples were collected from finger prick and DNA was extracted

by using the QiaAmp1 DNA mini kit (Qiagen, Hilden, Germany) as previously described

[23].

One real-time PCR consisting in two duplex reactions (identifying P. falciparum + P. ovale
and P. malariae + P. vivax) was run to detect Plasmodium species [24] on a Lightcycler 480

instruments (Roche1) in the Clinical microbiology Unit of the University Hospital of Liege,

Belgium. P. falciparum positive samples were stored at −20˚C for further molecular analysis.

Assessing Pfmdr1 copy number

A relative quantification multiplex real-time PCR was run by using a couple of primers plus a

FAM-labelled probe for pfmdr1 detection and another couple of primers with a VIC-labeled

probe for β-tubullin detection [25]. Assays were run on a Lightcycler 480 instrument

(Roche1) in the presence of one single copy control reference strain 3D7. The results were

analyzed by the comparative ΔΔCt method. Parasites were considered to have an amplified

pfmdr1 gene if copy number was > 1.5 [26].

Assessing Pfcrt 72–76 haplotypes

A conventional PCR was run to amplify an approximately 152 pb fragment on the pfcrt gene

containing the region of interest followed by sequencing of amplicons, as described in a previ-

ous work [23]. Both 3D7 and K1 reference strains, respectively sensitive and resistant to chlo-

roquine, were used as control during the assays.

Assessing polymorphisms on the K13 propeller gene

Another conventional PCR was run by using primers recently described by Ariey et al. [16] to

amplify a fragment including positions where mutations related to artemisinin resistance were

found. All PCR assays were run in the presence of the F32-ART reference strain provided by

Centre National de la Recherche Scientifique—CNRS, France. All amplicons were purified on

a Sciclone G3 Automated Liquid Handling Workstation (Perkin Elmer, USA) using Agen-

courtCleanSEQ1 kit (Agencourt Bioscience, USA) and then sequenced jointly in the GIGA

centre of University of Liege, Belgium and in the Molecular biology platform of the University

Hospital of Liege, Belgium using a 3130xl DNA sequencer (Applied Biosystems, USA).

The K13-propeller SNPs were analyzed by comparing with the reference 3D7 strain

(PF3D7_1343700) using Sequencher1 Software Ver. 5.4.5 (Gene Codes corporation, Michi-

gan, USA) and the online BLASTx tool (National Center for Biotechnology Information,

USA).
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Results

Out of the 580 samples collected over the six geographic sites, 280 (48.2%) were PCR-positive

to P. falciparum, among which 6 (2.14%) were mixed infections (combined only with P. malar-
iae). Distribution of these prevalences by area and by age group has been described in a previ-

ous published study [27]. All results obtained for these molecular markers are presented in

Table 1.

Pfmdr1 copy number

Pfmdr1 analysis was successful for all P. falciparum positive samples. Only three samples

(1.07%), all found in Butembo (Nord-Kivu province) have a copy number amplification

beyond 1.5.

Pfcrt haplotype

One hundred and seventy-nine samples (63.9%) harbored the 76T mutation among which two

had the relatively rare CVMNT haplotype (in Mweka and Kapolowe) and the rest got the

CVIET one.

Pfk13 propeller polymorphism

On the 280 samples analyzed, sequencing was correctly done for 261 samples. We identified 9

samples (3.4%) with mutations in the propeller domain of the K13 among which 3 mutations

previously described (F495L, S522C and V520A) and 3 new mutations (M476K, N523T and

E509D)(Fig 1).

Discussion

Since the Congolese NMCP introduced ACT as first-line treatment in 2005, whatever some

local studies have assessed ACT efficacy, only one national survey, conducted by the NMCP,

has been performed to assess malaria first-line treatment efficacy. But results of this study have

not yet been published.

In this study, we reported only 1% (3/280) of the samples that have increased pfmdr1 copy

number and all of these samples are from Butembo, in the east of the country. This is the first

time that amplification of pfmdr1 gene copy number is assessed in DRC. Our results are simi-

lar to those reported from African samples by Uhlemann et al. in Gabon [28], Ngalah et al. in

Kenya [22] or Gadalla et al. [29] in Sudan where low prevalence (< 10%) of pfmdr1 gene copy

Table 1. Analysis of molecular markers related to Pf resistance in DRC.

Bolenge Mweka Kapolowe Luzizila Butembo Punia

Mol. marker Status N N (%) N N (%) N N (%) N N (%) N N (%) N N (%)

pfcrt 51 31 63 62 22 51

W 15 (29.4) 10 (32.3) 22 (34.9) 24 (38.7) 6 (27.3) 24 (47.1)

M 36 (70.6) 21 (67.7) 41 (65.1) 38 (61.3) 16 (72.7) 27 (52.9)

pfmdr1* 51 31 63 62 22 51

W 51 (100.0) 31 (100.0) 63 (100.0) 62 (100.0) 19 (86.4) 51 (100.0)

M 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (13.6) 0 (0.0)

K13 51 31 63 62 22 51

W 50 (98.1) 29 (93.5) 61 (93.7) 59 (95.2) 21 (95.4) 51 (100.0)

M 1 (1.9) 2 (6.5) 2 (3.2) 3 (4.8) 1 (4.5) 0 (0.0)

https://doi.org/10.1371/journal.pone.0179142.t001
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number was detected. That seems to be different than in South-east Asia where amplification

of Pfmdr1 copy number is frequently high [21, 26, 30]. Duah et al. have incriminated the use of

ACT in the occurrence of P. falciparum strains with pfmdr1 amplification in African samples

[31]. One other reason to explain this difference could be that mefloquine, a drug that selects

lines with increased pfmdr1 copy number [9], was widely used in Asia both in monotherapy

and as partner drug in ACT, comparatively than in Africa.

Increased pfmdr1 copy number has been linked with treatment failure (or reduced sensitiv-

ity) to some ACT [18, 21, 22, 29, 32]. The evidence for the first time of this increased pfmdr1
copy number in the East of the DRC emphasizes the importance of maintaining regular

monitoring.

As previously observed for Sulfadoxine-Pyrimethamine or chloroquine, pfmdr1 resistance-

based is maybe emerging in the East of the country before to expand to the rest of the country.

Before the present work, only one study assessed pfmdr1 polymorphism in DRC but by explor-

ing the N86Y mutation [33].

Despite the fact that prevalence of the K76T mutation (related to chloroquine-resistance) is

still in a high level in our results (65.7%) and that a cross resistance has been described between

chloroquine and amodiaquine [34], the SVMNT haplotype linked to in vivo and in vitro amo-

diaquine resistance [35], has not been found in our samples. Currently, this haplotype has

been reported to be present in only five African countries, including two bordering the DRC

(Angola and Tanzania) [36–40]. It seems that this haplotype is quite rare in Africa compared

to Asia. But continuous use of the artesunate-amodiaquine combination in DRC as first-line

treatment could make selection for this resistant strain in the future.

After analysis of the pfk13 gene, six different mutations in the propeller domain were

detected into nine samples (3.2%). Two of these mutations have been previously described in

other African countries. The S522C mutation was isolated in the present study in a sample

Fig 1. Distribution of mutations found in the k13 gene across DRC. New mutations are in green and

already described mutations are presented in blue.

https://doi.org/10.1371/journal.pone.0179142.g001
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from Butembo and has been previously reported in Uganda [41], which is relatively close to

Butembo (~80 Km). Due to the important trade and the frequent movement of population

between both countries around this geographic area, we can hypothesize that this mutant has

disseminated, but it’s not excluded that this mutant has independently emerged in DRC.

On the other hand, we found the V520A mutation in two sites relatively distant (Luzizila

and Mweka). Our results are similar to those reported by Taylor et al. who found this mutation

in DRC too, in the same geographic area than us. In the results provided by Taylor et al. in

2015, this mutation appears to be the most common in African parasites as it has been

reported in several African countries (Gambia, Mali, Ghana, Burkina-Faso, Kenya, Tanzania,

Malawi and DRC) [41]. One must ask if this mutation has spread out from one point or if it

has appeared spontaneously in many areas. Further phylogenetic analysis could put light on

that. However, a recent published multi-countries study has not found this mutation but has

reported the A578S mutation as the most prevalent in Africa [42]. We have not either found

this mutation in our samples.

Surprisingly, the F495L mutation that we found in Mweka was described for the first time

in samples from the China Myanmar border [43] then in Mayotte [44].

We also found three undescribed mutations on the pfk13 gene (M476K, E509D and

N523T). The M476K mutation could be of a particular interest because one mutation on this

position, the M476I, that appeared in vitro after artemisinin pressure in an African line from

Tanzania (F32-ART) [16, 45]. This M476I mutation was also largely found in isolates from

Myanmar [46]. Unfortunately, we cannot presently define what are the clinical implications of

this new M476K mutation.

The newly reported E509D and N523T mutations are not related or close to resistant poly-

morphisms described in Asia.

None of the mutations clearly correlated to increased parasite clearance time in Asian sam-

ples have been found in Africa yet.

Conclusion

The data reported in this study reports the occurrence of some polymorphisms onto P. falcipa-
rum genes related to drug resistance. None of the mutations clearly associated to ACT resis-

tance have been found in this study.

As in the rest of Africa, resistance to artemisinin seems not to be yet present there. DRC is

one of the rare countries that have officially adopted multiple first-line treatment in its policy.

This could provide a protective effect to the emergence of resistant strains but discovery of

new mutations on the pfk13 gene highlights the importance of a continuous monitoring. We

unfortunately have not assessed in vitro susceptibility of the isolates with these new mutations.

Supporting information
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