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a b s t r a c t

In many applications, and in systems/synthetic biology, in particular, it is desirable to solve the switching
problem, i.e., to compute control policies that force the trajectory of a bistable system from one equilib-
rium (the initial point) to another equilibrium (the target point). It was recently shown that for monotone
bistable systems, this problemadmits easy-to-implement open-loop solutions in terms of temporal pulses
(i.e., step functions of fixed length and fixed magnitude). In this paper, we develop this idea further and
formulate a problem of convergence to an equilibrium from an arbitrary initial point. We show that
the convergence problem can be solved using a static optimization problem in the case of monotone
systems. Changing the initial point to an arbitrary state allows building closed-loop, event-based or
open-loop policies for the switching/convergence problems. In our derivations, we exploit the Koopman
operator, which offers a linear infinite-dimensional representation of an autonomous nonlinear system
andpowerful computational tools for their analysis. Our solutions to the switching/convergence problems
can serve as building blocks for other control problems and can potentially be applied to non-monotone
systems. We illustrate this argument on the problem of synchronizing cardiac cells by defibrillation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Synthetic biology is an active field of research with applications
in metabolic engineering, bioremediation, and energy sector (Pur-
nick &Weiss, 2009). One of themain goals of synthetic biology is to
engineer biological functions in living cells (Brophy & Voigt, 2014)
and control theory plays an essential role toward that end. Control
theoretic regulation of protein levels in microbes was achieved
by Menolascina, Di Bernardo, and Di Bernardo (2011), Milias-
Argeitis et al. (2011) and Uhlendorf et al. (2012). However, their
approaches result in time-varying feedback control signals, which
are affected by physical constraints in both sensing and actuation.
Actuation limitations are observed with chemical induction, for
instance. While the concentration of a chemical can easily be
increased by adding this chemical to a culture, it is more compli-
cated to decrease its concentration (although still possible through
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dilutions). Therefore, one of the challenges in synthetic biology is to
derive control policies that not only achieve the desired objectives
but are also simple enough to deal with limitations. An example of
such control policies is based on temporal pulses.

A basic but nevertheless important control problem is the one
of convergence to an equilibrium. In synthetic biology, it can, for
instance, be motivated by the genetic toggle switch circuit, which
is a major building block in applications. The genetic toggle switch
by Gardner, Cantor, and Collins (2000), for example, consists of
two interacting genes. Their design ensured that the concentration
of proteins expressed by one gene is always much higher than the
concentration of proteins expressed by the other gene: one gene
is switched ‘‘on’’ while the other is switched ‘‘off’’. In this case,
the system is bistable and the control objective of the problem is
to drive the state from one equilibrium (e.g. one gene switched
‘‘on’’) to the other (e.g. the other gene switched ‘‘on’’) in minimum
time and given a fixed energy budget (e.g. to avoid cell death). In
this paper, we propose to solve this convergence problem using
a specific set of signals, namely temporal pulses u(t) with fixed
length τ and magnitude µ:

u(t) = µh(t, τ ) h(t, τ ) =

{
1 0 ≤ t ≤ τ ,

0 t > τ .
(1)
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The main challenge in solving this convergence problem is the
absence of well-developed theory and computational methods.
This can be explained by the fact that classical optimal control
methods rely on the semigroup property (of the value function
and/or the dual variable), while our parametrization of control
signals violates it. We, therefore, restrict our analysis to the class
of monotone systems, properties of which allow for simpler solu-
tions.Wenote, however, thatmonotone systemsplay an important
role in systems/synthetic biology and hence there are many appli-
cations with this restriction. We solve the convergence problem
using a static optimization program involving a time-independent
function, which we call the pulse control function and denote by r .
This function links all the tunable parameters of the convergence
problem so that finding a tradeoff between the convergence time
and the energy budget becomes straightforward.

In our solution, we use the Koopman operator (cf. Mezić, 2005),
which offers a linear infinite dimensional description of a nonlinear
system and allows a spectral approach to the nonlinear system. In
particular, the definition of the pulse control function involves the
dominant eigenfunction of the Koopman operator of the unforced
system (i.e., when the control signal is equal to zero). This allows
using computational methods developed in the Koopman operator
framework to solve our problem. In particular, we show that the
function r can be computedwith Laplace averages (Mauroy,Mezić,
& Moehlis, 2013).

Our theoretical results generally do not apply to non-monotone
systems. Let alone a solution using pulses may not exist. However,
we can still use the function r in some cases to derive control
policies for non-monotone systems. Furthermore, we can use our
framework to solve more complicated control problems. We illus-
trate this idea on the problem of synchronization of cardiac cells
modeled by non-monotone FitzHugh–Nagumo systems (FitzHugh,
1961; Nagumo, Arimoto, & Yoshizawa, 1962).

Related Work. Sootla, Oyarzún, Angeli, and Stan (2016) pro-
posed to solve the problem of switching between exponentially
stable equilibria in monotone systems using temporal pulses. The
authors derived a computational procedure to estimate the set
of control signals allowing the switch. The control strategy pro-
posed by Sootla and Oyarzún (2016) is open loop, hence the
control signal cannot be adjusted during the experiment. Sootla,
Mauroy, and Gonçalves (2016) considered the same setting, but
using the Koopman operator framework to estimate the set of all
switching pulses and provide estimates for convergence time. In
this paper, we present an optimization program for solving the
convergence problem, which is a generalization of the switching
problem considered by Sootla, Mauroy, and Gonçalves (2016)
and Sootla and Oyarzún (2016). Mauroy (2014) considered the
convergence/escape problem cast in the Koopman framework for-
malism. Mauroy (2014) did not restrict the class of systems, but
assumed full controllability, i.e. control signals affect all the states
in an affine manner. Wilson and Moehlis (2014) proposed to syn-
chronize the cardiac cells by using geometric tools from Koopman
operator framework and the techniques based on the Pontryagin’s
maximum principle. The authors did not parametrize the control
signal, which lead to complicated time-dependent optimal control
signals. We will show that our scheme still achieves synchroniza-
tion, but in the longer time than the optimal solution by Wilson
and Moehlis (2014).

To summarize, in this paper, we consider a convergence prob-
lem similarly to Mauroy (2014), the target set is chosen similarly
to Wilson and Moehlis (2014), while the class of systems and the
control signals are restricted as in theworks by Sootla andOyarzún
(2016) and Sootla, Mauroy, and Gonçalves (2016). We opted for
restricting the class of systems in order to show optimality of our
approach in this specific case, which indicates that systems’ prop-
erties can be used to derive easy-to-implement and interpretable
optimal solutions.

Outline of the Paper. The remainder of the paper is organized
as follows. In Section 2, we cover basic definitions and properties
of monotone systems and we introduce the Koopman operator
framework. We formulate and discuss our convergence problem
in Section 3, while also presenting the main result. In Section 4,
we apply the theoretical results to the switching problem (open
and closed loop control) and to the synchronization of cardiac cells.
We prove themain result in Appendix and present some additional
results in our arXiv e-print (Sootla, Mauroy, & Ernst, 2016).

2. Preliminaries

Consider a system of the form

ẋ = f (x, u), x(0) = x0, (2)

with f : D × U → Rn, u : R → U , and where D ⊂ Rn, U ⊂ R
are open and u belongs to the space U∞ of Lebesgue measurable
functions with values from U . We assume that f (x, u) is twice
continuously differentiable (C2) in (x, u) on D × U . The flow map
φ : R×D×U∞ → Rn induced by the system is such thatφ(t, x0, u)
is a solution of (2) with an initial condition x0 and a control signal
u. We denote the differential of a function g(x, y) : Rn

× Rm
→ Rk

with respect to x as ∂xg(x, y). Let J(x) denote the Jacobian matrix of
f (x, 0) (i.e., J(x) = ∂xf (x, 0)/∂x). For every stable fixed point x∗ of
the system, we assume that the eigenvectors of J(x∗) are linearly
independent (i.e., J(x∗) is diagonalizable). The eigenvalues of J(x∗)
are denoted by λi with i = 1, . . . , n and are ordered by their real
part, that is ℜ(λi) ≥ ℜ(λj) for all i, j. We also denote the positive
orthant by Rn

>0 = {x ∈ Rn
|xi > 0, i = 1, . . . , n}, and the

nonnegative orthant by Rn
≥0 = {x ∈ Rn

|xi ≥ 0, i = 1, . . . , n}.
Koopman operator. Autonomous nonlinear systems can be stud-

ied in the framework of the Koopman operator. A semigroup of
Koopman operators acts on functions g : Rn

→ C (also called
observables) and is defined by

U tg(x) = g ◦ φ(t, x, 0), t ≥ 0 (3)

where ◦ is the composition of functions. Provided that the vector
field and observables are C1, one can define the infinitesimal gen-
erator of the operator as Lg(x) = (f (x, 0))T∇g(x) on a compact
set. The semigroup is linear (cf. Mezić, 2013) and can be studied
through its spectral properties. In this paper, we will limit our use
of the Koopman operator to unforced systems (2) on a basin of
attraction of an exponentially stable equilibrium x∗ (that is, the
eigenvalues λj of J(x∗) are such that ℜ(λj) < 0 for all j). The basin
of attraction is defined by B(x∗) = {x ∈ Rn

|limt→∞φ(t, x, 0) = x∗
}.

In this case, the eigenvalues λj of the Jacobian matrix J(x∗) are
called Koopman eigenvalues and are associated with the Koopman
eigenfunctions sj : B → C satisfying U tsj(x) = sj(φ(t, x, 0)) =

sj(x) eλjt for x ∈ B. If the vector field f (·, 0) is a C2 function
and the Jacobian matrix J(x∗) is diagonalizable, then the Koopman
eigenfunctions sj ∈ C1 (Mauroy & Mezić, 2016) and on a compact
set

∇sj(x)T f (x, 0) = λjsj(x). (4)

We refer to an eigenvalue λ1 satisfying ℜ(λ1) > ℜ(λj) for all λ1 ̸=

λj as the dominant eigenvalue. We assume that such an eigenvalue
exists (it is the case for strongly monotone systems) and we call
the associated eigenfunction s1 the dominant eigenfunction. If the
dominant eigenvalue is such that ℜ(λ1) < 0, then the dominant
eigenfunction s1 can be computed through the Laplace average

g∗

λ (x) = lim
t→∞

1
T

∫ T

0
(g ◦ φ(t, x, 0))e−λtdt. (5)
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For all g ∈ C1 that satisfy g(x∗) = 0 and (∇g(x∗))Tv1 ̸= 0,
the Laplace average g∗

λ1
is equal to s1(x) up to a multiplication

with a scalar. If the algebraic and geometric multiplicities of λ1
are equal to µ1, then there are µ1 independent eigenfunctions
associated with λ1 and they can be computed by choosing linearly
independent w1. The eigenfunctions sj(x) with j ≥ 2 are generally
harder to compute using Laplace averages, but can be obtained
through other methods, e.g., linear algebraic methods by Mauroy
and Mezić (2016) or the dynamic mode decomposition (DMD)
method (cf. Schmid, 2010; Tu, Rowley, Luchtenburg, Brunton, &
Kutz, 2014) by using the observed data. The dominant Koopman
eigenfunction s1 captures important geometric properties of the
system, in particular, it is related to the notion of isostables.

Definition 1. Suppose that s1 ∈ C1. An isostable ∂Bα associated
with the value α > 0 is the boundary of the set Bα = {x ∈

Rn
| |s1(x)| ≤ α}, that is ∂Bα = {x ∈ Rn

| |s1(x)| = α}.

A rigorous definition based on the flow is due to Mauroy
et al. (2013). Isostables are useful from a control perspective since
they capture the dominant (or asymptotic) behavior of the un-
forced system. Indeed, trajectories with initial conditions on the
same isostable ∂Bα1 converge synchronously toward the equilib-
rium (Mauroy et al., 2013), and reach other isostables ∂Bα2 , with
α2 < α1, after a time

T =
1

|ℜ(λ1)|
ln

(
α1

α2

)
. (6)

In the case λ1 ∈ R, for example, it can be shown that the tra-
jectories starting from ∂Bα share the same asymptotic evolution:
φ(t, x, 0) → x∗

+ v1 αeλ1t , as t → ∞.
Monotone Systems. We consider systems that preserve a partial
order induced by a nonnegative orthant Rn

≥0, but our results can
be extended to other cones K in Rn. We define a partial order ⪰

as follows: x ⪰ y if and only if x − y ∈ Rn
≥0 (we write x ⪰̸ y

if the relation x ⪰ y does not hold). We will also write x ≻ y
if x ⪰ y and x ̸= y, and x ≫ y if x − y ∈ Rn

>0. Similarly,
a partial order can be defined on the space of signals u ∈ U∞:
u ⪰ v if u(t) − v(t) ∈ Rn

≥0 for all t ≥ 0. Let [x, y] denote an
interval in the order ⪯, that is [x, y] = {z ∈ Rn

|x ⪯ z ⪯ y}.
For a function W : Rn

→ R ∪ {−∞, +∞}, we refer to the
set dom(W ) = {x ∈ Rn

||W (x)| < ∞} as its effective domain.
A function W : Rn

→ R ∪ {−∞, +∞} is called increasing if
W (x) ≥ W (y) for all x ⪰ y on dom(W ). Control systems in the
form (2) whose flows preserve a partial order relation ⪰ are called
monotone systems.

Definition 2. The system ẋ = f (x, u) is called monotone if
φ(t, x, u) ⪯ φ(t, y, v) for all t ≥ 0, and for all x ⪯ y, u ⪯ v.

Definition 3. The unforced system ẋ = f (x, 0) is strongly monotone
if it is monotone and x ≺ y implies that φ(t, x, 0) ≪ φ(t, y, 0) for
all t > 0.

A certificate for monotonicity is a condition on the vector field,
for which we refer the reader to Angeli and Sontag (2003). We
finally consider the spectral properties of unforced monotone sys-
tems that are summarized in the following result from Sootla and
Mauroy (2016).

Proposition 4. Consider that the system ẋ = f (x)with f ∈ C2(D) has
an exponentially stable equilibrium x∗ and let λj be the eigenvalues of
J(x∗) such that ℜ(λi) ≥ ℜ(λj) for all i ≤ j.
(i) If the system is monotone with respect to K on a set C ⊆ B(x∗),
then λ1 is real and negative, the right eigenvector v1 of J(x∗) can be

chosen such that v1 ≻ 0, while the eigenfunction s1 can be chosen
such that s1(x) ≥ s1(y) for all x, y ∈ C satisfying x ⪰ y.
(ii) Furthermore, if the system is strongly monotone with respect to K
on a set C ⊆ B(x∗) then λ1 is simple, real and negative, λ1 > ℜ(λj) for
all j ≥ 2, v1 and s1 can be chosen such that v1 ≫ 0 and s1(x) > s1(y)
for all x, y ∈ C satisfying x ≻ y;

Without loss of generality, we assume that the dominant eigen-
function s1 is increasing even if λ1 is not simple.

3. Convergence to an isostable problem

3.1. Problem formulation and discussion

In order to formulate the basic problem we want to address,
consider the following assumptions:

A1. The vector field f (x, u) in (2) is twice continuously differen-
tiable in (x, u) on D × U .

A2. The unforced system (2) has an exponentially stable equilib-
rium x∗ in D.

A3. The system is monotone with respect to Rn
≥0 × R and

forward-invariant on D × U .
A4. The eigenfunction s1(x) is such that ∇s1(x) ≫ 0 for all x ∈

dom(s1).
A5. f (x, µ1) ≻ f (x, µ2) for all x ∈ D and µ1 > µ2 ≥ 0.
A6. The space of control signals is limited to temporal pulses

u(t) = µh(t, τ ), where h is defined in (1).

Assumption A1 guarantees existence and uniqueness of solu-
tions, while Assumption A2 introduces a reference point x∗. These
assumptions are perhaps more restrictive than the ones usually
met in control theory. That is, f (x, u) is usually assumed to be
Lipschitz continuous in x for every fixed u, and the equilibria are
asymptotically stable. Our assumptions are guided by our conse-
quent use of the Koopman operator. Assumptions A1 and A2 guar-
antee the existence of continuously-differentiable eigenfunctions
on the basin of attraction B(x∗) of x∗. Monotonicity is crucial, but
forward-invariance on D × U is a rather technical assumption on
which our computational methods do not rely. Assumption A4 is
well-posed since s1 ∈ C1 due to Assumption A1. If Assumptions
A1–A3 hold, then we have ∇s1(x) ≻ 0 and f (x, µ1) ⪰ f (x, µ2) for
µ1 > µ2 ≥ 0, hence Assumptions A4 and A5 serve as technical
assumptions that guarantee uniqueness of solutions and a certain
degree of regularity. We will comment throughout the paper on
the case when Assumptions A4–A5 do not hold. Assumption A6 is
guided bymany applications, where there is a need to parametrize
in advance the control signal. In this paper, we choose the easiest
parametrization, although the only fundamental limitation is to set
u(t) to zero after some time τ . It is, therefore, possible to generalize
our approach to more complicated control signals. We proceed by
formulating a basic but fundamental problem.

Problem 1 (Converging to an Isostable). Consider the system ẋ =

f (x, u) satisfying assumptions A1–A6 and the initial state x0. Com-
pute a control signalu(t) = µh(t, τ ) such that the flowφ(t, x0, u(·))
reaches the set Bε(x∗) for some small ε > 0 inminimum time units
Tconv subject to the energy budget ∥u∥L1 ≤ Emax.

Our formulation based on the isostables is guided by our use
of the Koopman operator framework for computational purposes.
However, there are other benefits in this formulation. One can
view Bε(x∗) as a ball in the (contracting) pseudometric dK (x, y) =

|s1(x) − s1(y)| on a basin of attraction B(x∗) (dK (x, y) is a pseu-
dometric, since dK (x, y) can be equal to zero for some x ̸= y).
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By reformulating the standard convergence problem using a pseu-
dometric defined through Koopman eigenfunctions, we take into
account the dynamical properties of the unforced system. Further-
more, if ε is close to zero then solution of Problem 1 can be used
to solve a convergence-type problem. For example, the problem
of switching between equilibria, which is considered in Sootla,
Mauroy, and Gonçalves (2016) and Sootla and Oyarzún (2016),
falls into this category. The main challenge in solving this problem
is the parametrization of the control signal. Most of the control
methods (such as dynamic programming, Pontryagin’s maximum
principle) are not tailored to deal with time parametrized control
signals since they rely on the semigroup property of the value
function or the dual variable. Hence it is not entirely clear how to
systematically approach this problem through these methods.

3.2. A solution using a static optimization program

The computational solution to our problem will be established
by computing first a static function, which we call the pulse control
function and define below.

Definition 5. Let the function r : D × R≥0 × R≥0 → C
⋃

{∞}

such that r(x, µ, τ ) = s1(φ(τ , x, µ)), where s1 is a dominant
eigenfunction on the basin of attraction of x∗, be called the pulse
control function. By convention r(x, µ, τ ) = ∞, if φ(τ , x, µ) /∈

B(x∗)

If s1 is real-valued and increasing on dom(s1) = B(x∗), then we
assume it is extended to Rn so that s1 : Rn

→ R ∪ {−∞, +∞}

is increasing on Rn. We note that the switching function proposed
in Sootla, Mauroy, and Gonçalves (2016) corresponds to r(x∗, ·, ·).
The pulse control function r can be used in a context broader than
the switching function by Sootla, Mauroy, and Gonçalves (2016),
which we demonstrate in this paper. In particular, we will solve
Problem 1 using the following result, which we prove in Appendix.

Theorem 6. Consider the system (2), Problem 1 under Assump-
tions A1–A6 and the optimization program:

γ ∗
= min

µ≥0,τ≥0

1
|λ1|

ln (|r(x, µ, τ )|) + τ , (7)

subject to: r(x, µ, τ ) ≤ −ε, (8)

µ · τ ≤ Emax. (9)

If s1(x0) ≤ −ε, an optimal solution to (7) is an optimal solution
to Problem 1, if the former is feasible. Furthermore, the objective is
nonincreasing in µ and τ and an optimal solution to (7), if it exists,
is achieved at the boundary of the admissible set to the constraint (8)
and/or the constraint (9).

If Assumptions A5 and A6 do not hold, then we can have
multiple minima including the points which do not activate the
constraints. However, we can still compute a minimizing solution.
Intuitively, the objective function is the convergence time (in fact,
Tconv = γ ∗

− 1/|λ1| ln(ε)), the constraint on r(x, µ, τ ) ≤ −ε

ensures that we stop when reaching Bε and the constraint µ ·

τ ≤ Emax is the energy budget. Since the optimum is attained
when one of the constraints is active, (7)–(9) can be solved by
a line search over µ (or τ ) over the constraints curves, provided
that r can be estimated at any given point. In our simulations we
compute the function r for specific pairs of values (µ, τ ) and take
the minimum over these pairs. The two terms in the objective
function (7) show the tradeoff on the choice of the intermediate
target isostable (which is to be reached after a time τ ). For instance,
choosing an isostable close to the equilibrium can lead to a large

pulse duration τ (second term), but a small convergence time
of the free motion (first term). Furthermore, the function r also
allows to understand the tradeoff between the energy spent and
the convergence time, which is not straightforward using standard
optimal control theory.

3.3. Computation of the pulse control function

The eigenfunction s1 can be estimated through Laplace aver-
ages (5) and the function r is subsequently obtained since it is the
composition of the eigenfunction s1 with the flow. In particular,

r(x, µ, τ ) = lim
t̄→∞

1
t̄

∫ t̄

0
g ◦ φ(t, φ(τ , x, µ), 0)e−λ1tdt

= lim
t̄→∞

1
t̄

∫ t̄

τ

g ◦ φ(t, x, µh(·, τ ))e−λ1(t−τ )dt, (10)

where λ1 is the dominant Koopman eigenvalue, g ∈ C1 satisfies
g(x∗) = 0, vT

1∇g(x∗) ̸= 0, and h(t, τ ) is the step function defined
in (1). In practice, we choose g(x) = wT

1 (x − x∗), where w1 is the
dominant right eigenvector of J(x∗). Since λ1 is real according to
Assumption A3 and Proposition 4, we have

r(x, µ, τ ) = lim
t̄→∞

wT
1 (φ(t̄, x, µh(·, τ )) − x∗)e−λ1(t̄−τ )

≈ wT
1 (φ(t̄, x, µh(·, τ )) − x∗)e−λ1(t̄−τ )

where the time t̄ should be chosen large enough. In this case
the tolerance of the differential equation solver should be set to
O(eλ1(t̄−τ )). When only observed data are available, the eigenfunc-
tion – and therefore the function r – can be computed through
dynamicmodedecompositionmethods (cf. Schmid, 2010; Tu et al.,
2014). This idea is illustrated in Sootla, Mauroy, and Ernst (2016).

3.4. Is the control space rich enough?

Throughout the paper, we assume that the problem has a so-
lution in the form of a temporal pulse u(t) = µh(t, τ ). We will
argue that in the case of monotone systems, this is not a restrictive
assumption. First of all, if the system is globally asymptotically
stable, then clearly we can converge to x∗ by using a temporal
pulse. Assume now that the system is monotone with two expo-
nentially stable equilibria x∗ and x• and basins of attraction B(x∗)
and B(x•), respectively. Let the system be defined on a forward-
invariant set D = B(x∗)

⋃
B(x•). Assume also that x∗

≫ x•, which
is typically fulfilled in many bistable monotone systems. If x0 ∈

B(x∗), then we can choose u = 0, which is a temporal pulse with
τ = 0. Consider now the case x0 = x•. If there exists a control
signal u1

∈ U∞ driving the system from x• to x∗, then we have
φ(t, x•, u1) ⪯ φ(t, x•, µ), where u1(t) ≤ µ for (almost) all t . At
a time τ , the flow φ(τ , x•, u1) will be in the vicinity of x∗ and in
the basin of attraction of B(x∗). The flow φ(τ , x•, µ) will also be in
the basin of attraction of x∗. Indeed, if φ(τ , x•, µ) ∈ B(x•), then
[x•, φ(τ , x•, µ)] ∈ B(x•), which contradicts that φ(τ , x•, u1) ∈

B(x∗) and φ(τ , x•, u1) ∈ [x•, φ(τ , x•, µ)] (cf. Sootla & Mauroy,
2016). Hence if we can switch from x• to x∗ with a control signal
u(t), then we can switch with a temporal pulse. Finally the case
x0 ∈ B(x•) is treated in a similar manner by first allowing the
trajectory to converge to a neighborhood x• with u2

= 0 and then
applying the argument above.

This discussion shows that using temporal pulses in the case
of monotone systems does not restrict the space of feasible prob-
lems. However, we can strengthen the argument by showing that
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Fig. 1. Closed-loop and open-loop switching. Left panel: level sets of Tconv with ε = 10−2 , level set r = 0, and energy budget curve µτ = Emax . Center and right panel: open
and closed-loop simulations for Setting A and B, respectively. In both figures, xol1 , x

cl
1 stand for the trajectories of the state x1 in the open and closed-loop settings, respectively,

and uol , ucl stand for the corresponding control signals.

constant controls are optimal in the absence of energy constraints.
Due to space limitationswe refer the reader to Sootla,Mauroy, and
Ernst (2016).

4. Applications

We implemented our computational procedures both in python
(using lsoda ordinary differential equation (ODE) solver) and Mat-
lab (using ode15s ODE solver). We run our computational algo-
rithm on a laptop equippedwith a 4 core Intel i7 processor running
at 2.4 GHz and 8 GB of RAM, however, we did not explicitly
parallelize the computations. Computing one value of the function
r is equivalent to computing one trajectory of the system, albeit
with high precision (we set relative tolerance of the solvers to
10−10 –10−14).

4.1. Closed-loop switching in generalized repressilator

The eight species generalized repressilator is an academic ex-
ample, where each of the species represses another species in a
ring topology (cf. Strelkowa & Barahona, 2010). The corresponding
dynamic equations for a symmetric generalized repressilator are as
follows:

ẋ1 =
p011

1 + (x8/p012)
p013

+ p014 − p015x1 + u, (11)

ẋi =
p0i1

1 + (xi−1/p0i2)
p0i3

+ p0i4 − p0i5xi, ∀i = 2, . . . 8,

where p0i1 = 40, p0i2 = 1, p0i3 = 2, p0i4 = 1, and p0i5 = 1. This
system has two exponentially stable equilibria x∗ and x• and is
monotonewith respect to the conesKx = PxR8 andKu = R, where
Px = diag([1, −1, 1, −1, 1, −1, 1, −1]).We have also x•

⪯Kxx
∗.

It can be shown that the unforced system is strongly monotone in
the interior of R8

≥0 for all positive parameter values. We consider
here the problem of switching the system from one equilibrium x•

to the other equilibrium x∗ and we can verify that there exist pulse
control signals that induce such a switch.

In the left panel of Fig. 1, we plot the level set of the function
Tconv(x•, µ, τ , 10−2) =

1
|λ1|

ln
(

r(x•,µ,τ )
10−2

)
+ τ , the level set Emax =

100 of the function µτ = Emax, and the level set r(x•, µ, τ ) = 0.
The last two are related to the constraints of the static optimization
program (7). Note that r is computed with the dominant eigen-
function associated with the target equilibrium x∗. The function
Tconv can escape to −∞ around the level set r(x•, µ, τ ) ≈ 0. This is
not a conflict with the interpretation of the function Tconv, since it

represents the convergence time only if the value of |r(x•, µ, τ )| is
larger than 10−2. Otherwise 1

|λ1|
ln

(
|r(x•,µ,τ )|

10−2

)
is negative, and the

computational results are meaningless. This also explains why the
level sets of Tconv appear to have the same asymptotics as the level
set r(x•, µ, τ ) = 0 in Fig. 1.

Our goal is to compare the open-loop (proposed by Sootla
and Oyarzún, 2016) and closed-loop solutions to the switching
problem subject to perturbations of parameters p0ij. We consider
two settings for the simulation. In both settings, we compute the
control signals based on the nominal model (11) with the param-
eter values p0ij, but the simulations are obtained with two sets of
(exact) parameter values:
Setting A. We set pAi1 = 50 for odd i.
Setting B.We set pBi1 = 30 for odd i.

The Euclidean distance between the nominal initial point and
the actual initial point in Setting A and B is equal to 0.025 and
0.031, respectively. In order to compute an open-loop optimal
control policy based on the nominal model (i.e. with parameter
values p0ij), one can solve the static optimization program (7). The
plots in Fig. 1 also offer a graphical solution to the problem and
a depiction of possible tradeoffs in the problem. In our case, the
optimal solution lies at the intersection of the constraint curves
(i.e. energy budget curve and level set r(x•, µ, τ ) = 0). In our
simulations, we pick a pair (µ0, τ 0) lying near the zero level set
of r below the level set Emax = 100. This is not an optimal solution
for the energy budget Emax = 100, however, we pick a solution
with a lower energy expenditure and a larger time τ (and hence
larger convergence time) in order to have a possibility to react to
the obtained measurements in the case of the closed-loop setting.
We take τ 0

= 20 and compute µ0 minimizing the time Tconv
on a uniform grid of 100 points in [2, 10], which gives the value
µ0

= 3.53. For the closed-loop control, we take the same initial
pair (τ 0, µ0). In both setting A and B, we update the control signals
every tsamp = 2. For each update, we decrease the time of the
pulse by tsamp and we decrease the available energy budget by
subtracting the energy already consumed. We then compute the
values of the function r with a fixed τ = 20 − Ntsamp, where N is
the number of previous updates and we choose the value µ on a
uniform grid of 100 points in [2, 10], which minimizes Tconv with
r(x•, µ, τ ) < 0. The simulation results are depicted in the center
and right panels of Fig. 1. In Simulation A, the system converges
to the target equilibrium faster than the nominal one (i.e, with
parameters p0ij) and the closed-loop solution saves energy and
limits the overshoot in comparison with the open-loop solution.
In Simulation B, the opposite occurs and all the energy budget
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Algorithm 1 Closed-loop synchronization of cells
1: Inputs: r for given x, τ ,µ; time Tp between two pulses; number

of pulses Np
2: for i = 1, . . . ,Np do
3: Observe the current states xj of the systems
4: Compute the values of r at xj
5: Find (µ∗, τ ∗)
6: Apply the pulse and wait (during Tp − τ )
7: end for

is spent. In this case, the closed-loop solution allows the switch,
while the open-loop (i.e. Sootla and Oyarzún, 2016) does not.

4.2. Synchronization of cardiac cells

Besides the switching problem, our approach can be used for
more general problems. For example, a problem of importance in
biology is to synchronize an ensemble of systems (e.g. cells) with
a common control input. In this subsection we propose to use the
function r in order to compute a train of temporal pulses and solve
the synchronization problem. Provided that the function r and the
state xj of each system are known, we design a pulse that drives
every system toward isostables. The pair (µ∗, τ ∗) is chosen in such
a way that the corresponding pulse minimizes the maximum time
delay between the different systems, and it follows from (6) that
this pair can be computed as

(µ∗, τ ∗) = argmin
(µ,τ )∈R2

≥0

ln
(
maxj r(xj, µ, τ )
minj r(xj, µ, τ )

)
.

From a practical point of view, the values of the function r may be
known only for some (x, µ, τ ) (e.g., if r is computed from data).
In this case, the value r at the different states xj of the systems
can be computed by interpolation, and the optimal pair (µ∗, τ ∗)
will be picked among the pairs (µ, τ ) for which the value of r is
known.

We apply this closed-loop control (see Algorithm 1) to synchro-
nize FitzHugh–Nagumo systems (cf. FitzHugh, 1961; Nagumo et
al., 1962), which have been proposed as simplemodels of excitable
cardiac cells. This example is motivated by the synchronization
of cardiac cells (i.e. defibrillation) and is directly inspired by the
study by Wilson and Moehlis (2014) proposing optimal defibril-
lation strategies. We consider here 100 FitzHugh–Nagumo cells
described by the dynamics (see also Wilson & Moehlis, 2014)

V̇ = 0.26V (V − 0.13)(1 − V ) − 0.1Vw

ẇ = 0.013(V − w)

where V is the membrane potential and w is a recovery (gating)
variable. The values of r were computed a priori on a 20 × 20 grid
for (V , w) ∈ [0, 2] × [0, 2] and on a 51 × 41 grid for (µ, τ ) ∈

[0, 0.5] × [10, 50]. The time between two successive pulses is
Tp = 70 and the initial conditions are randomly distributed on
[0, 2] × [0, 2]. The maximum time delay between the cells (com-
puted with (6)) after each pulse is shown in Fig. 2(a) for the input
obtained with the closed-loop control (optimal pairs (µ∗, τ ∗)) and
for periodic pulse trains. The best performance is obtained with
the closed-loop control. As shown in Fig. 2(b), the optimal pairs
(µ∗, τ ∗) are not identical at each iteration, since they dependon the
states of the cells, which motivates the use of closed-loop control.
The first pulses correspond to a maximum value τ ∗

= 50, but
µ∗ takes intermediate values in the interval [0, 0.5]. In particular,
small values of µ are needed to obtain a fast convergence rate. We
observe in Fig. 2(a) that periodic pulse trains also synchronize the

Fig. 2. Upper panel. The maximum time delay between the FitzHugh–Nagumo cells
decreases as the number of pulses increases and the cells eventually synchronize.
The best performance is obtainedwith the closed-loop control based on the function
r (blue curve). Periodic pulses also synchronize the cells, but with a slower rate
of convergence (red curve) or a large initial delay (green curve). Lower panel. The
optimal pulse train consists of different optimal pairs (µ∗, τ ∗). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

cells, but slower than our closed-loop approach. A periodic pulse
train with maximum values (µ, τ ) = (0.5, 50) yields a slow rate
of convergence (red curve), while smaller values (µ, τ ) yield very
large delays for the first iterations (green curve).

Clearly, the optimal approach by Wilson and Moehlis (2014)
outperforms our method in terms of convergence and time de-
lays, however, our optimal control policy is easier to implement.
Furthermore, we can parametrize our control signal with differ-
ent (non-constant) basis functions. The proposed closed-loop con-
trol could be easily adapted to incorporate additional constraints
(e.g.maximumenergy) and provides a solution to the synchroniza-
tion problem. This solution is a compromise between a simple but
not optimal periodic pulse train and the complex exact solution of
the optimal control problem established by Wilson and Moehlis
(2014). Future work could extend these results to more realistic
cases, for instance where not all the states are observable.

5. Conclusion

In this paper, we studied a switching/convergence problem for
monotone systems. Our solution reduces a dynamic optimization
problem to the computation of the time-independent function r ,
which is defined using theKoopmanoperator. The properties of the
function r lead to straightforward solutions to a tradeoff between
the convergence time and the energy budget. This approach can
potentially be extended beyond monotone systems and switch-
ing/convergence problems. In this paper, we illustrate the possible
benefits of a closed-loop solution for the switching problem. We
also apply our framework to the synchronization of cardiac cells
represented by non-monotone FitzHugh–Nagumo models. In this
paper, we have not addressed partial state observability and/or
partial controllability issues. This constitutes one of the future
work directions.
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Appendix. Proof of the main result

First,wepresent someproperties of the pulse control function r .

Lemma 7. Let the system (2) satisfy Assumptions A1–A5. Then r is
a C1 function on its effective domain dom(r). Furthermore, for all
(x, µ, τ ) ∈ dom(r)

(i) ∂xr(x, µ, τ ) ≫ 0, ∂µr(x, µ, τ ) > 0 and ∂τ r(x, µ, τ ) >
λ1r(x, µ, τ )

(ii) If r(x, µ, τ ) ≤ 0, then ∂τ r(x, µ, τ ) > 0;
(iii) If f (x, ν) ⪰ 0, then ∂τ r(x, µ, τ ) > 0 for all finite τ > 0 and

µ > ν.

Proof. (o) First, we show that under the assumptions above for all
t > 0 and µ1 > µ2, we have

s1(φ(t, x, µ1)) > s1(φ(t, x, µ2)). (A.1)

Due to monotonicity, we have that φ(t, x, µ1) ⪰ φ(t, x, µ2) for all
t > 0 and µ1 > µ2. All we need to show is that φ(t, x, µ1) ̸=

φ(t, x, µ2) for all finite t > 0. At t = 0, the time derivatives of the
flow are equal to f (x, µ1) and f (x, µ2). Since f (x, µ1) ≻ f (x, µ2)
(Assumption A5), there exists a T > 0 such that φ(t, x, µ1) ≻

φ(t, x, µ2) for all t < T . If for some T we have that φ(T , x, µ1) =

φ(T , x, µ2) and φ(t, x, µ1) ≻ φ(t, x, µ2) for all t < T , then for
some index i we have dφi(t,x,µ1)

dt

⏐⏐⏐
t=T

<
dφi(t,x,µ2)

dt

⏐⏐⏐
t=T

. This implies
that fi(φ(T , x, µ1), µ1) < fi(φ(T , x, µ2), µ2), which together with
φ(T , x, µ1) = φ(T , x, µ2) contradicts Assumption A5. Therefore,
φ(t, x, µ1) ≻ φ(t, x, µ2) for all finite t > 0. Due to Assumption A4
we have that ∇s1(x) ≫ 0, which in particular means that s1(x) >
s1(y) for all x ≻ y, and (A.1) follows.
(i) The flow is continuously-differentiable for constant control
signals since f (x, u) ∈ C2 (Assumption A1), and hence r(x, µ, τ ) =

s1(φ(τ , x, µ)) is a C1 function.
For x ≻ y, where (x, µ, τ ) and (y, µ, τ ) ∈ dom(r), we have

s1(φ(τ , x, µ)) > s1(φ(τ , y, µ)) due to Assumptions A3 and A4.
Hence ∇xr(x, µ, τ ) ≫ 0.

For µ > ν, where (x, µ, τ ) and (x, ν, τ ) ∈ dom(r), we have
s1(φ(τ , x, µ)) > s1(φ(τ , x, ν)) due to Assumption A3 and point (o).
Hence ∂µr(x, µ, τ ) > 0.

Finally, ∂τ r(x, µ, τ ) > λ1r(x, µ, τ ) follows from

∂τ r(x, µ, τ ) =
ds1(φ(t, x, µ))

dt

⏐⏐⏐
t=τ

=

∇s1(φ(τ , x, µ))T f (φ(τ , x, µ), µ) >
∇s1(φ(τ , x, µ))T f (φ(τ , x, µ), 0) =

λ1s1(φ(τ , x, µ)) = λ1r(x, µ, τ ),

where the inequality is due to Assumptions A4 and A5, and the
following equality is due to (4).
(ii) This follows directly from point (i).
(iii) This proof employs a fairly standard technique in monotone
system theory. First note that f (x, ν) ⪰ 0 andAssumption A5 imply
that f (x, µ) ≻ 0. Consider a perturbed system ż = f (z, µ) + 1/n1,
where 1 is a vector of ones and n is a positive integer. Let the flow of
this systembeφn(t, x, µ).We have that f (x, µ)+1/n1 ≫ f (x, µ) ≻

0. Since this is the derivative of the flow with respect to time
around t = 0, then φn(δ, x, µ) ≫ x for a sufficiently small positive
δ. Now for t > δ, we have φn(t, x, µ) = φn(t − δ, φn(δ, x, µ), µ) ≫

φn(t − δ, x, µ), and hence φn(t, x, µ) ≫ φn(ξ, x, µ) for any t > ξ .
This conclusion holds for all n > 0. With n → ∞, we have that
φn(t, x, µ) → φ(t, x, µ). Therefore, φ(t, x, µ) ⪰ φ(ξ, x, µ) for all
finite t > ξ and ∂τφ(τ , x, µ) ⪰ 0. If the equality ∂τφ(τ , x, µ) = 0
is attained, then φ(τ , x, µ) is an equilibrium of the system ẋ =

f (x, µ). This is impossible since an exponentially stable equilibrium
cannot be reached in finite time τ due to uniqueness of solutions.
Hence we have φ(t, x, µ) ≻ φ(ξ, x, µ) for all finite t > ξ and,
using Assumption A4, we obtain s1(φ(t, x, µ)) > s1(φ(ξ, x, µ)) for
all finite t > ξ . The result follows. ■

If AssumptionsA4 andA5donot hold, then all the inequalities in
Lemma 7 are not strict. For instance, we have that ∂xr(x, µ, τ ) ≻ 0,
∂µr(x, µ, τ ) ≥ 0 and ∂τ r(x, µ, τ ) ≥ λ1r(x, µ, τ ) in point (i). We
present additional properties of the function r in Sootla, Mauroy,
and Ernst (2016). Nowwe can present the proof of our main result.

Proof of Theorem 6. It is straightforward to verify that all the con-
straints and optimization objective are the same for Problem 1 and
problem (7). Hence, by construction the first part of the statement
is fulfilled.

According to the constraint (8), we have that r(x0, µ, τ ) < 0,
which implies the following chain of inequalities:

∂τ (ln(|r(x0, µ, τ )|e|λ1|τ )) =
∂τ (|r(x0, µ, τ )|e|λ1|τ )

|r(x0, µ, τ )|e|λ1|τ
=

−∂τ (r(x0, µ, τ )) · e|λ1|τ
+ |λ1||r(x0, µ, τ )|e|λ1|τ

|r(x0, µ, τ )|e|λ1|τ
<

λ1|r(x0, µ, τ )|e|λ1|τ
+ |λ1||r(x0, µ, τ )|e|λ1|τ

|r(x0, µ, τ )|e|λ1|τ
= 0

where the inequality follows from Lemma 7. Hence, the derivative
of the objective function in (7)with respect to τ is negative. Finally,
∂µ ln(|r(x0, µ, τ )|e|λ1|τ ) is also negative according to Lemma 7.
Therefore if there is a feasible point, the constraints (8), (9) are
reached in order to minimize the objective. ■
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